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The original Eshelby homogenization theory (1) was modified by Li et al. to encompass 
the full range of inclusion volume fraction (0 ≤ fΩ ≤ 1) using modified Eshelby tensor terms 
derived for spherical inclusions within a finite domain (2).  Example effective Young’s modulus 
(Eeff) vs. fΩ curves based on the original and modified Eshelby theories are shown in Figure S1A, 
for arbitrarily selected values of the elastic modulus (EM = 10 kPa and EΩ = 100 kPa) and the 
Poisson’s ratio (υM = υΩ = 0.49) for the substrate and inclusion, respectively. Compared to the 
modified theory, the original Eshelby theory only agreed within the first 15% of the inclusion 
volume fraction range, consistent with the sparse inclusion condition for which homogenization 
theory was originally developed. We also compared the modified Eshelby model with the 
Hashin-Shtrikman variational approach, which predicts lower and upper bounds on the effective 
elastic modulus of a composite material with arbitrary interface geometry given the elastic 
properties and inclusion volume fraction of the material constituents (3). The modified Eshelby 
model fell within the limits of the Hashin-Shtrikman model throughout the full range of the 
inclusion volume fraction (Figure S1B). This supported our incorporation of the modified 
Eshelby homogenization theory into our hybrid Eshelby decomposition (HED) approach to 
analyze AFM indentation of composite samples with layered heterogeneity. 
 

 
 

  

	

 
Figure S1: Comparison of homogenization theories: (A) Li’s modified Eshelby theory for finite inclusions 
diverges from Eshelby’s original homogenization theory when the inclusion volume fraction exceeds about 15%. 
(B) Over the full range of inclusion volume fractions, the modified Eshelby theory falls within the upper- and 
lower-bounds predicted by the Hashin-Shtrikman model for arbitrary finite inclusions. 	
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For any arbitrary two-component sample with known elastic properties of the inclusion 
and substrate (e.g., Einc = 100 kPa, Esub = 10 kPa, υinc = υsub = 0.49), the effective modulus vs. 
volume fraction relationship can be calculated using Equation (11) from the modified Eshelby 
homogenization theory (Figure S2A).  For a specific hypothetical example using these modulus 
values, AFM indentation of a layered sample with a stiff (100-kPa) 3-µm top layer on a soft (10-
kPa) 50-µm substrate using a 25-µm spherical probe was modeled by FEM, and pointwise 
analysis of the simulated force-depth response (4) was used to obtain the effective elastic 
modulus vs. indentation depth (Figure S2B). From these two curves, the effective inclusion 
volume fraction vs. indentation depth (feff vs. D) relationship is readily obtained at matched 
values of Eeff, using a simple local linear interpolation algorithm as needed to match the modulus 
values exactly.  For instance, in the above example the pointwise effective modulus equals 15 
kPa at a depth of 2 µm (Figure S2B), while the same effective modulus of 15 kPa corresponds to 
an inclusion volume fraction of 0.2 based on the Eshelby equation (Figure S2A).  Therefore, for 
this model, the effective inclusion volume fraction is 0.2 at an indentation depth of 2 µm.  
Proceeding through all the indentation depths, the volume fraction vs. indentation depth curve is 
readily constructed without ambiguity (Figure S2C).  A somewhat unexpected empirical finding 
that is critical to the HED approach is that for a given indenter geometry and layered sample 
configuration, the feff vs. D curve is relatively insensitive to the specific layer and substrate 
modulus values, hence giving rise to the concept of a “master curve” as presented in Figures 4 
and 5 in the Results.  This means that a PDMS sample with a soft 3-µm thick top layer on a stiff 
50-µm substrate has essentially the same feff vs. D relationship as a 3-µm soft intima on a 50-µm 
stiff media.  This has practical value because layer thickness is readily measured by microscopy 
or other means, while the layer-specific elastic modulus values are typically the unknown desired 
quantities in biological applications of AFM indentation. 

 

  

	

Figure	S2:		(A)	Effective	modulus	vs.	volume	fraction,	(B)	effective	(i.e.,	pointwise)	modulus	vs.	depth,	and	
(C)	effective	volume	fraction	vs.	depth	obtained	by	combining	data	from	panels	A	and	B	at	matched	values	
of	effective	modulus.	
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 To examine the robustness of the HED approach in the presence of uncertainty or 
variability in tissue dimensions, we analyzed synthetic data using intentionally inaccurate layer 
thickness values to determine the effects on the reconstructed layer-specific elastic moduli. Finite 
element modeling was used to simulate a 25-µm diameter AFM tip indenting a 4-µm thick, 3-
kPa top inclusion layer on a 10-kPa bottom substrate, with data spanning about 40% of the full 
volume fraction range. HED analysis was then performed using master curves corresponding to 
3-, 4-, 5-, 6-, and 7-µm thick top layers, introducing under- and over-estimation of the top layer 
thickness.  The reconstructed modulus values for the bottom layer were 9.5, 9.8, 10.6, 10.6, and 
11.2 kPa, respectively, and the reconstructed modulus values for the top layer were 2.4, 2.8, 3.4, 
3.5, and 3.9 kPa, respectively. Thus, errors in the top-layer thickness appear to have a greater 
effect on the estimated values of the top-layer modulus (blue squares), while the substrate 
modulus (red circles) appears less sensitive to thickness errors (Figure S3).  For the most severe 
case in the simulation (i.e., assuming a 7-µm layer thickness instead of the true 4-µm thickness) 
the 75% error in thickness yielded a 30.8% error in modulus of the top layer, and a 11.7% error 
in the bottom layer modulus.  More typical errors in thickness related to tissue fixation, on the 
order of 10%, are therefore likely to introduce similar errors in the HED-reconstructed modulus 
values, which is comparable to the experimental uncertainty of the AFM measurements.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  
Figure S3: Estimated error in HED-reconstructed inclusion 
and substrate elastic modulus values for a layer sample due 
to errors in the assigned thickness of the top layer.   
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To evaluate the effects of a restricted data set limited to a portion of the full range of 
inclusion volume fractions (0 ≤ feff ≤ 1), Monte Carlo simulation including 10% random noise 
was used to generate 1000 synthetic data sets from the FEM of indentation of a 100-kPa 
inclusion layer on a 10-kPa substrate.  The feff data were restricted to sub-ranges between 0.2 and 
0.8 prior to fitting with the Eshelby curve to estimate the values of substrate and inclusion 
moduli, Esub and Einc.  The distributions of estimated moduli were quantified in terms of the 
percent error of the interquartile range (IQR), calculated from the 50% confidence interval 
relative to the true assigned values.  In Figure S4, each color bar spans the included sub-range of 
feff on the x-axis, and the resulting percent error is color-coded with darker colors indicating 
smaller errors in the estimated elastic modulus values.  

In general, a wider sub-range of volume ratio and a smaller lower-bound of the sub-range 
(corresponding to deeper indentations) yielded more accurate estimates of Esub (Figure S4A) and 
Einc (Figure S4B). In the figure below, the bottom group with sub-ranges starting at feff = 0.2 
generated ~8% error in Esub and Einc, and the error tended to increase as the upper-end value of 
the feff sub-range was reduced, narrowing the data range.  The error also tended to increase as the 
lower-end value of the feff sub-range groups increased to 0.3 or 0.4. Including a small lower-end 
value of the feff contributed to better estimation of Esub even with a slightly smaller width of the 
sub-range (Figure S4A). For example, the 0.3-0.6 sub-range generated ~12% error in Esub versus 
~16% error in the 0.4-0.8 sub-range, and the group starting with feff equal to 0.2 at the lower-end 
yielded < 8% error in Esub even with a sub-range width of just 30% of the full range (i.e., 0.2-0.5).  

Similarly, the approximation of Einc improved with a larger upper-end value of feff, but 
also depended strongly on the lower-end value of the sub-range (Figure S4B). To illustrate this, 
the 40%-wide sub-ranges of 0.4-0.8, 0.3-0.7, and 0.2-0.6 yielded ~13%, ~10%, and ~9% errors 
in Einc, respectively. The 0.4-0.8 sub-range extended closest to the pure inclusion limit (feff = 1) 
but resulted in higher error in Einc (and in Esub) than the other two ranges. This indicated that 
coverage of lower inclusion volume fractions, achieved with deeper indentations during an AFM 
experiment, is a priority for accurate modulus estimation by HED analysis. Therefore, we 
conclude that data covering a sub-range width of at least 30% of the lower portion of the full feff 
range, excluding the two extreme ends of the range that tend to be unachievable in practice, 
allowed robust reconstruction of Esub and Einc even in the presence of random noise, with 
improved accuracy as the feff sub-range width increases. 

 
  

 
Figure S4: Monte Carlo simulation of the percent error in the 50% inter-quartile range (IQR) of reconstructed 
(A) substrate modulus Esub, and (B) inclusion modulus Einc, for different sub-ranges of the effective inclusion 
volume fraction, feff.	



	 6 

The pointwise modulus (Epw) distribution of a SOFT inclusion bi-layer started high as the 
indention began, decreased as the indenter moved down to the softer inclusion layer, and then 
increased as the indenter compressed the stiffer bottom substrate (Figure S5A). According to 
HED analysis, the extracted elastic moduli of top inclusion and bottom substrate were 276.1 kPa 
and 130.3 kPa, respectively. We suspected that a thin stiff surface film, possibly related to the 
polymer-air interface during the PDMS curing process, might have caused the stiff behavior at 
the onset of indentation. To clarify this speculation, a FEM four-layer model was created with a 
500-nm surface film (3 MPa) on top of a 5-µm thick inclusion (60 kPa) and an interface film 
with the same properties between the soft inclusion and the stiffer (200 kPa) substrate layer. The 
FEM simulated a 15-µm spherical probe indenting 3-µm deep into the four-layer model. 
Analysis of the simulated force-depth data showed depth-dependent Epw similar to the AFM 
experiment; the four-layer model skewed the Epw and increased overall stiffness in comparison to 
the corresponding bi-layer model without stiff films (Figure S5B). Scanning electron 
microscope (SEM) imaging of the cross-section of a bi-layered PDMS sample confirmed the 
presence of a thin top surface layer and a thin interface layer (Figure S5C), consistent with the 
hypothesized thin films created during the two-step curing process of the bi-layer sample.  

 
  

 

Figure S5: Representative elastic modulus vs. depth curve of (A) an AFM experiment on the SOFT PDMS bi-
layer sample, (B) simulated four-layered FEM model of 60-kPa inclusion and 200-kPa substrate without (black) 
and with (red) 5-MPa stiff films, in which the latter showed similar behavior to experimental data in panel A. (C) 
SEM image of a bi-layer PDMS sample showed two film structures, one at the top surface (single arrow) and 
one at the bi-layer interface (double arrows). 
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A representative HED analysis of AFM indentation of a FLAT mouse aorta configuration 
is demonstrated below. The indentation force vs. depth relationship was obtained from each 
force curve (Figure S6A). The pointwise analysis (4) was then used to obtain an apparent elastic 
modulus vs. indentation depth curve from each force-depth pair, revealing depth-dependent 
changes in elastic modulus that reflect heterogeneity of the sample material properties (Figure 
S6B); a pointwise elastic modulus that starts low at shallow depths and increases as the probe 
indents deeper suggests a composite sample with a soft layer on top of a stiffer substrate. The 
master curve for a SOFT configuration with 3-µm top layer and 35-µm substrate, defining the 
effective inclusion volume fraction (feff) vs. indentation depth (gray line, Figure S6C), was then 
combined with the pointwise modulus to obtain the modulus vs. volume fraction relationship at 
matched indentation depths (Figure S6D); the included data spanned a 30% volume fraction 
range of 0.3-0.6 (black data points in Figure S6C), reflecting an indentation depth of 0.54 to 
1.56 µm (the shaded regions in Figures S6A and S6B).  Fitting the modulus vs. volume fraction 
data with the modified Eshelby theory (2) yielded estimates of the substrate modulus (at feff = 0) 
and inclusion modulus (at feff = 1), corresponding to Emed (41.2 kPa) and Eint (4.1 kPa), 
respectively (Figure S6D). In this demonstration, the HED analysis included a volume fraction 
range of about 0.3 to 0.6 (30% coverage) and showed a robust reconstruction of media and 
intima elastic properties consistent with the overall mean values of Emed (37.45 ± 6.29 kPa) and 
Eint (6.64 ± 0.78 kPa) obtained in this study (see Figure 9 in main text). 
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Force vs. Depth Figure S6: Representative 
experimental AFM indentation 
responses on wild type mouse 
abdominal aorta in the FLAT 
configuration, showing (A) 
indentation force vs. depth, (B) 
pointwise elastic modulus vs. 
depth, (C) inclusion volume 
fraction vs. depth, and (D) the 
resulting modulus vs. volume 
fraction (feff) curve used to extract 
the layer-specific aorta elastic 
properties, E

med
 = 41.2 kPa (feff = 

0) and E
int 

= 4.1 kPa (feff = 1), for 
the media and intima, 
respectively. Note that the shaded 
regions (0.54-1.56 µm) in panels 
(A) and (B) correspond to the 
inclusion volume fraction range of 
0.3-0.6 in panels (C) and (D). 
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 As mentioned in the Discussion, Sokolov and coworkers accounted for the steric 
interaction with a soft superficial brush structure to improve estimation of elastic properties of a 
stiffer cellular material underlying a surface layer of glycoproteins and membrane protrusions (5, 
6), but the biophysics of this model is fundamentally different than our case of bonded elastic 
layers, where penetration of the top layer does not occur.  The Sokolov study also showed that 
the substrate modulus can be estimated by neglecting the brush region of the indentation 
response and fitting the elastic Hertz model only to the deepest indentation data.  Other 
investigators have used a similar approach to examine depth-dependent changes in elastic 
properties of biological samples (7).  This is similar to the Linearized-Hertz approach of Kaushik 
et al. (8), in which bi-layer properties of a soft-on-stiff sample are extracted by neglecting the 
transition zone and selectively fitting the Hertz model to the shallow-indentation and deep-
indentation regimes.  To test the efficacy of this approach compared to HED analysis, the FEM 
was used to simulate AFM indentation using a 25-µm spherical probe, and a bi-layer sample with 
a 3-µm thick top layer in either a SOFT inclusion configuration (1-kPa layer on a 10-kPa 
substrate) or a STIFF inclusion configuration (100-kPa layer on a 10-kPa substrate).  As shown 
in Figure S7A and B, for the SOFT inclusion case, when the Hertz-type model was restricted to 
the initial 10% of the indentation range (0 to 0.3 µm) or the final 10% of the indentation range 
(2.7 to 3.0 µm), the estimated modulus values were Einc = 3.65 kPa and Esub = 7.90 kPa, 
respectively.  Using the same approach for the STIFF inclusion case (Figure S7D and E), the 
estimated modulus values were Einc = 29.50 kPa and Esub = 12.32 kPa.  In comparison, the HED 
analysis yielded Einc = 1.27 kPa and Esub = 9.60 kPa for the SOFT layer configuration (Figure 
S7C), and Einc = 90.66 kPa and Esub = 10.01 kPa for the STIFF layer configuration (Figure S7F).  
Thus, although the modified Hertz approach was able to distinguish the soft-on-stiff from the 
stiff-on-soft heterogeneity configurations, accuracy of the estimated layer-specific modulus 
values was markedly improved using the HED analysis.  

 

Figure S7: Comparison of Hertz-type (A, B, D, E) and HED (C, F) analysis methods for SOFT (A, B, C) and 
STIFF (D, E, F) layer inclusion configurations simulated using FEM (see text for details).  Thick lines and 
symbols represent the FEM data, thin lines represent model fits.  White region in Hertz-type graphs shows 
subregion of data used for fitting. 
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