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ABSTRACT Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length
scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct
mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties
being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples in-
dented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization
theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, uti-
lizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation
of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tis-
sues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values
typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-
consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We
further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic
wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and
not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface
and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite
material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of hetero-
geneous multilayered samples without destructively separating individual components before testing.
INTRODUCTION
Nanoindentation with atomic force microscopy (AFM) is
widely used to evaluate micromechanical properties of
soft biological samples. Traditional AFM data analysis ap-
plies Hertz contact theory (1), which assumes an infinitely
thick sample with homogenous, isotropic, linear elastic
material properties. However, these assumptions are unsuit-
able for most biological samples. To improve AFM analysis
for biological applications, various approaches have consid-
ered finite sample thickness (2,3), nonlinear elasticity (4,5),
and nonideal tip geometry (2,6), but the local material het-
erogeneity of biological samples remains a challenge. Our
published pointwise modulus approach (2) uses a point-
by-point analysis of the AFM indentation response to detect
Submitted October 23, 2017, and accepted for publication April 11, 2018.

*Correspondence: kevin.costa@mssm.edu

Editor: Celeste Nelson.

https://doi.org/10.1016/j.bpj.2018.04.036

� 2018 Biophysical Society.
depth-dependent changes in apparent elastic properties and
identify the mechanical effects of sample heterogeneity. As
an AFM tip indents deeper into a sample, it encounters
underlying or embedded structures that contribute to the re-
sulting pointwise modulus. Methods built upon homogeni-
zation theory can determine the effective elastic modulus
of a composite material based on the mechanical properties
of the individual substrate and inclusion constituents and are
applicable to micromechanical studies including AFM (7).
However, the inverse problem of extracting component-spe-
cific properties from the composite sample response has
remained a challenge that we aim to solve through a combi-
nation of theoretical and computational approaches.

Finite element modeling (FEM) provides a powerful
computational tool to simulate AFM indentation. FEM has
been used to relate measured mechanical properties to struc-
tural variations of biological samples (8–13). Such models
can mimic the heterogeneity of a sample and simulate force
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responses of the AFM tip (12). FEM models have also been
combined with AFM experiments on live cells in which
biochemical agents were used to isolate specific populations
of cytoskeletal fibers and study their mechanical properties
(10). In these studies, a double-layered model consisting of
cytoskeleton protein fibers and an inner nucleus was applied
to determine the elastic moduli of each layer. A stiff cell cor-
tex layer was simulated to explain the consistently stiffer
measurement of cell elasticity using a sharp tip compared
to a spherical tip (14). In another study, elastic properties of
the glycocalyx and cell body of human umbilical vein endo-
thelial cells were determined using a two-layer thin-film
method (15) that was originally developed based on FEM
for compliant layers on stiffer substrates (16). Indeed, a
number of investigators have examined the decoupling of
layer-specific mechanical properties with micro- or nanoin-
dentation of various multilayered polymer films having
submicron dimensions and modulus ratios up to 10,000-
fold (17–19). A more relevant brush model was reported
formultilayered cell structures composed of a penetrablemo-
lecular brush surrounding an elastic cell body (20,21). How-
ever, the fully penetrable brush-like superficial layer is not
suitable for polymer samples or biological tissues that behave
like multilayered elastic continua. Therefore, indentation
analysis of more general elastic heterogeneity patterns rele-
vant to mesoscale biological tissues, with micronscale di-
mensions and layer-specific modulus values that differ by
an order of magnitude or less, deserves further development.

The mammalian artery wall is a representative heteroge-
neous biological tissue often described as a three-layered
structure composed of the intima, media, and adventitia.
Each layer has specificmechanical properties (22,23) reflect-
ing distinct cellular and extracellular matrix compositions.
Traditionally, mechanical tensile testing has been applied
to obtain bulk stress-strain relationships of human (23,24)
and murine (25,26) arteries. To date, studying the transmural
mechanical heterogeneity of individual layers of arteries has
required physical separation (23) or pharmacological inter-
vention (26) to dissociate the layers. These perturbations
have the potential to disturb or damage key structures,
thereby altering the intrinsic tissue properties of interest.
Recently, micropipette aspiration has been used to measure
layer-specific properties of porcine aortic valves, in which
each layer has a dimension of 100–500 mm (27). By compar-
ison, mouse aortas are smaller (20–60 mm thick) (28), which
poses a technical challenge for measuring arterial wall
biomechanics by conventional methods.

AFM provides a unique tool to map localized microme-
chanical properties of soft tissues (29–32), including hetero-
geneity of mouse aorta (33) and micromechanics of porcine
arterial endothelium (34), media (35), and adventitia
(35,36). However, these studies focused on an exposed sur-
face layer without considering the underlying layer, or
measured multiple moduli by physically separating individ-
ual layers before testing. A more recent AFM indentation
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study showed age-dependent variations of mechanical prop-
erties of intact bilayered Drosophila myocardium composed
of a top muscle layer and bottom cardiomyocyte layer (37);
however, their bidomain linearized Hertz method of analysis
did not include computational validation.

Therefore, the objective of this study was to develop a
Hybrid Eshelby Decomposition (HED) method, which to
our knowledge is new, for analyzing AFM indentation of
soft heterogeneous layered samples with micron-scale
dimensions that can be measured independently and with
a 2- to 10-fold disparity in layer-specific elastic properties.
We validate this method computationally using FEM simu-
lations and experimentally by measuring the dehomogen-
ized, layer-specific properties of spin-coated elastomer
samples as well as intact mouse aorta wall tissue, utilizing
knowledge of the constituent layer thickness to achieve
solution uniqueness. This analysis method for AFM inden-
tation provides a specialized approach for investigating
the elastic properties of structurally heterogeneous layered
synthetic and natural samples, such as cells embedded in
gels, human tissue biopsies, and tissues from small animal
models of development and disease, that are impractically
tiny for mechanical testing by traditional methods.
METHODS

Conceptual approach for deconstructing
heterogeneous mechanical properties

First, four key steps in the HED approach are summarized usingAFM inden-

tation of a flattened aortic tissue section to exemplify a multilayer biological

sample. AFM indentation is applied to obtain the depth-dependent pointwise

moduli of the sample (Fig. 1A). The layer thicknesses are then obtainedusing

histological staining or fluorescentmicroscopy of a slice perpendicular to the

layers and used to create an FEM to simulate indentation with an appropriate

geometry (Fig. 1 B). The resulting apparent modulus versus depth is com-

bined with modified Eshelby homogenization theory to determine the

effective volume fraction of the inclusion as a function of indentation depth

(Fig. 1C), which can be represented by a ‘‘master curve’’ for a given indenter

and sample geometry. Lastly, the experimental pointwise moduli in Fig. 1 A

and the inclusionvolume fractiondata in Fig. 1C are combined at each inden-

tation depth by plotting pointwisemodulus (Epw) versus the effectivevolume

fraction (feff) and fitting by least squares using the modified Eshelby model

(see Eq. 10 below) to extract the individual component moduli (Esub and

Einc), as shown in Fig. 1 D. The mathematical and experimental aspects of

HED analysis will be further explained in the following sections.
FEM

To simulate the AFM indentation problem, Abaqus FEM software (version

6; Dassault Systèmes Simulia, Johnston, RI) was used to model an axisym-

metric rigid indenter and a linear elastic substrate material with 50 mm

thickness and 50 mm radius (Fig. 2) using four-node linear axisymmetric

elements (CAX4). Arbitrary Lagrangian-Eulerian mesh adaptivity with a

frequency ranging from 1 to 30 increments and two to five remeshing

sweeps was used to avoid excessive mesh distortion and to ensure accuracy

and convergence of the solution. Depending on the model geometry, either

the structured or the free technique of mesh seeding with proximal meshing

bias of 5–10 was applied, yielding a mesh with �1800 elements (Fig. 2 A).

Furthermore, the bottom surface of the substrate was constrained in rotation



FIGURE 1 Hybrid Eshelby Decomposition

(HED) method. Starting with experimental AFM

indentation data on a layered sample, (A) depth-

dependent pointwise moduli confirming a mechani-

cally heterogeneous samplewere calculated. (B) An

FEMmodel (e.g., using Abaqus) simulated an AFM

indentation response for the given layered sample

geometry andAFMprobe tip dimensions using arbi-

trary elastic properties of the simulated sample. (C)

The effective volume fraction of the layered inclu-

sion versus indentation depth (i.e., master curve)

was estimated for the given sample geometry based

on modified Eshelby homogenization theory

applied to FEM results. (D) The results of steps

(A) and (C) were combined to plot pointwise

modulus versus effective volume fraction at

matched depths, and least-squares minimization

(e.g., in MATLAB) was used to fit this data using

modified Eshelby model for finite inclusions; as-

signing a Poisson ratio (n¼ 0.49), the fitting proced-

ure yields values of elastic modulus for the substrate

and layered inclusion (Esub and Einc, respectively).

To see this figure in color, go online.
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(UR3) and axial direction (U2); the centerline of the substrate was con-

strained in rotation and radial direction (U1). An analytical rigid spherical

indenter 10, 15, or 25 mm in diameter underwent a prescribed 3 mm axial

displacement (i.e., indentation depth) with frictionless surface-to-surface

contact conditions on the substrate and was constrained along the indenta-

tion axis. Indentation depth was prescribed as a time-dependent step with

100 increments. The total reaction force (F) and axial displacement (D)

on the indenter were recorded to simulate force-depth responses of AFM

indentation (Fig. 2 B). Abaqus simulations were performed on a Mac Pro

workstation with dual Intel Xeon E5520 2.27 GHz and 2.39 GHz processors

(Apple Computer, Cupertino, CA) with 16 GB memory. A single indenta-

tion simulation typically ran 2–5 min, depending on the geometry and

settings for adaptive meshing.

Rather than attempt to accurately represent any specific biological mate-

rial, this idealized model was developed to simulate key aspects of AFM

indentation of general layered samples. The spherical indenters of 10, 15,

or 25 mm diameter are commonly used in AFM indentation studies of bio-

logical tissues (29,31,38). For the sample, we used a heterogeneous layered

configuration consisting of a top inclusion (3 mm thick and 50-mm radius)

and a bottom substrate (47 mm height, 50 mm radius); both soft and stiff in-

clusion layers were examined with the elastic modulus range of 1–200 kPa

in relation to a fixed 10-kPa substrate, simulating cases of stiff-inclusion-

to-substrate ratios of 2:1–10:1 and soft-inclusion-to-substrate ratios from

1:10 to 1:2. An incompressibility constraint was imposed (Poisson ratio,
n ¼ 0.49) on all materials. This covers a range of elastic moduli reported

for various constituents of living cells and soft tissues in physiological

and pathological conditions (39–41), with different stiffness combinations

yielding a diversity of AFM indentation force-depth responses. Postpro-

cessing of the simulated indentation curves followed our established point-

wise modulus analysis to determine the depth-dependent apparent elastic

properties (2).
Pointwise apparent modulus

Various techniques have been proposed to improve the standard Hertz con-

tact analysis of AFM indentation data, especially for applications on soft

samples like cells and tissues. Biological samples are often nonlinear,

anisotropic, and heterogeneous. Prior studies have considered the nonline-

arity, viscoelasticity, and heterogeneity of biological samples as well as

nonideal AFM tip geometry and finite sample thickness (2,3,6,37,42,43).

Accurate identification of the contact point is also an important challenge

with AFM indentation on soft biological samples (3). Our preferred strategy

involves fitting the force curve using a bidomain model that assumes a

linear precontact region and a polynomial postcontact region, with the

actual contact point being a fitted model parameter that ensures C0 continu-

ity of the two regions, as detailed elsewhere (44). Once the contact point is

identified, the pointwise modulus analysis method is used to objectively
FIGURE 2 Cross section of FEM-simulated

indentation of an axisymmetric layer model. The

spherical AFM probe moves to a depth, D, in con-

tact with the sample and reports the reaction force,

F, at the center of the indenter. (A) The correspond-

ing von Mises stress field shows high stress at the

interface of top and bottom layers. (B) The corre-

sponding indentation field, approximated by the

range of nonzero axial displacement at a prescribed

indentation depth, illustrates the inclusion and sub-

strate volumes (Vinc and Vsub, respectively) within

the indentation field demarcated by the outermost

displacement contour. To see this figure in color,

go online.
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reveal deviations from Hertz contact theory without a priori assumptions

about sample material properties; material nonlinearity and heterogeneity

lead to characteristic depth-dependent variations in the pointwise elastic

modulus (2). Briefly, rather than fitting the entire force-depth response to

extract an equivalent Young’s modulus, the pointwise approach evaluates

each postcontact indentation force-depth data point and calculates the cor-

responding apparent elastic modulus. For a spherical indenter tip with

radius R, the pointwise modulus equation is

bEpwðdÞ ¼ 3

8

Fiffiffiffiffiffiffiffi
Rd3i

q ; (1)

where bEpw is the pointwise apparent elastic modulus, and Fi and di are the

matched indentation force and depth for data point i. Note that for a

homogeneous linear elastic material, bEpw is related to the Young’s modulus,

EY, and Poisson’s ratio, n, as follows:

bEpw ¼ EY

2ð1� y2Þ: (2)

Modified homogenization theory

Eshelby homogenization theory estimates effective bulk (Keff) and shear

moduli (meff) for sparse, uniformly distributed inclusions, U, in an infinite,

homogeneous, isotropic elastic substrate medium, M, based on the respec-

tive bulk moduli (KM and KU) and shear moduli (mM and mU), the substrate

Poisson’s ratio (yM), and the volume fraction of inclusion (fU) (45). As illus-

trated in Fig. S1 A, a modified Eshelby model extends homogenization

theory from a maximal fU of �0.15 to the full range of inclusion volume

fraction (0 % fU % 1) using modified Eshelby tensor terms, s1 and s2,

derived by Li et al. for inclusions with a circular cross-section in a finite

domain (46):

s1 ¼ 1� fU
2ð1� yMÞ (3)

1� fU
�

3fUð1� fUÞ
�

s2 ¼
4ð1� yMÞ$ ð3� 4yMÞ �

3� 4yM
: (4)

These components can be incorporated into the isotropic elasticity tensor

to yield Keff and meff in terms of fU and mechanical properties of the sub-

strate and inclusion (7), as follows:

Keff ¼
"
1� fU

�
KM

KM � KU

� s1

��1
#
KM (5)

" � ��1
#

meff ¼ 1� fU
mM

mM � mU

� s2 mM: (6)
Eeff ¼ 50½1875ðE1 � E2Þf 3 � 3750ðE1 � E2Þf 2 þ 1225ðE1 � 
61785ðE1 � E2Þ2f 4 � 3750

�
58E2

1 � 1217E2
2 þ 1159E

�2
�
52829E2

1 � 3166546E2
2 þ 3113717E
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As with an isotropic linear elastic material, an effective Young’s modulus

(Eeff) can then be determined from the effective bulk and shear moduli:

Eeff ¼ 9meff Keff

meff þ 3Keff

: (7)

Finally, the pointwise elastic modulus ðbEpwÞ described previously (2,47)

can be related to the effective mechanical properties defined above:

bEpw ¼ 9meff Keff

2ð1� y2Þ�meff þ 3Keff

� (8)

or

Eeff ¼ 2
�
1� y2

�
$bEpw: (9)

To adapt the modified Eshelby homogenization theory to our HED

approach, we assumed the spherical inclusion terms, s1 and s2, would

also be applicable for a layered inclusion geometry within a finite domain.

Note that the Eeff vs. fU relationship described by Eq. 7 falls within the

upper and lower limits derived by Hashin and Shtrikman for arbitrary inclu-

sion geometries (48) (Fig. S1 B).

To adapt the theory for uniform inclusions to a discrete layered sample,

the inclusion volume fraction fU, which is constant for a given homoge-

neous composite sample, was replaced with an effective inclusion volume

fraction, feff, that depends on the sample configuration, the indenter geom-

etry, and the indentation depth. As the AFM tip indents a heterogeneous

material composed of a fixed substrate and discrete inclusion, the effective

volume fraction of the inclusion can vary as the indentation field interro-

gated by the indenter tip expands. Therefore, we considered feff as the

amount of inclusion within the instantaneous indentation field (Vinc) relative

to the total volume of the indentation field (Vinc þ Vsub), as illustrated in

Fig. 2 B; Vsub is the amount of substrate within the indentation field. This

representation helps to explain the concept of an effective inclusion volume

fraction and how it could vary with indentation depth, but the actual depth-

dependent function of feff vs. D is determined as described in the next

section.

Finally, the bulk and shear moduli (K and m) of an isotropic elastic

material can be expressed in terms of the Poisson’s ratio (y) and Young’s

modulus (E) as follows: K ¼ E=ð2ð1þ yÞð1� 2yÞÞ and m ¼ E=ð2ð1þ yÞÞ
and m ¼ E=ð2ð1� yÞÞ. Therefore, by substituting these expressions for

KM, KU, mM, and mU in Eqs. 5 and 6, the effective elastic modulus in

Eq. 7 can be represented as a function of feff, the Young’s moduli of sub-

strate (Esub) and inclusion (Einc), and the Poisson’s ratio of the substrate

(ysub) and inclusion (yinc):

Eeff ¼ f
�
Esub;Einc; ysub; yinc; feff

�
: (10)

For the specific case of nearly incompressible materials (such as many

elastomers and hydrated soft tissues), with ysub ¼ yinc ¼ 0.49, this function

takes the following form:
E2Þf þ 650E1 þ 676E2� � ½ðE1 � E2Þf � E1 � 50E2�E1

1E2

�
f 3 þ �293783E2

1 � 9268717E2
2 þ 8974934E1E2

�
f 2

1E2

�
f � 1300

�
25E2

1 þ 1300E2
2 þ 1276E1E2

� !:
(11)
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Note that in Eq. 11, the substitutions f ¼ feff, E1 ¼ Esub, and E2 ¼ Einc

were made for brevity. A typical modified Eshelby curve for a stiff layer

inclusion is illustrated in Fig. 1 D, showing increasing effective modulus

as inclusion volume fraction rises (a soft layer inclusion would show a

decreasing curve). The substrate modulus is on the left end of the curve

(feff ¼ 0), and the layer inclusion modulus is on the right end of the curve

(feff ¼ 1).
Determination of effective volume fraction

Determination of effective volume fraction for known substrate and inclusion

moduli in an FEM simulation of AFM indention is achieved using theoretical

Eshelby curves. For example, a heterogeneous material with 100 kPa inclu-

sion in 10 kPa substrate material has a unique relationship for effective

modulus versus volume fraction. Simulated AFM indentations yield the

force-depth relationship based on their specific configurations and give rise

to distinct depth-dependent pointwise moduli. Accordingly, by combining

the theoreticalEeff vs. fUEshelby relationship (Eqs. 5, 6, 7) with the pointwise

Eeff vs. D from the FEM (Eqs. 1 and 9), the effective volume fraction at each

indentation depth (feff vs. D) is readily obtained at matched values of Eeff, as

illustrated in Fig. 1 C and further described in Fig. S2.
Reconstruction of experimental modified Eshelby
curves

AFM indentation is simulated using incompressible linear elastic materials

in Abaqus. Therefore, by prescribing y ¼ 0.49 for both substrate and inclu-

sion, the resulting Eeff (Eq. 10) is a function of the variable feff along with

two constant coefficients representing the substrate and inclusion elastic

moduli (Esub and Einc, respectively) (Fig. 1 D). The average simulated feff
vs. depth relationship and the corresponding pointwise moduli versus depth

from experimental indentation tests on heterogeneous multilayered samples

were combined, and the resulting Eeff vs. feff relationship was fitted with the

Eshelby model using least-squares curve-fitting procedures in MATLAB

(The MathWorks, Natick, MA), yielding the two parameters of interest,

Esub and Einc. Custom software has been developed to extract the substrate

and inclusion moduli from AFM indentation data; the entire procedure con-

stitutes our HED analysis.
PDMS fabrication

To experimentally validate the HED approach, synthetic samples of

bilayered polydimethylsiloxane (PDMS) were fabricated from silicone

elastomer (Sylgard 184) and Xiameter silicone fluid (PMX-200 100CS),

both from Dow Corning (Midland, MI), with varying composition of
FIGURE 3 AFM indentation was performed in the (A) RING and (B) FLAT (th

the elastic modulus of the medial layer of the vessel wall. (C) The thickness of th

a tissue-specific FEMmodel for HED analysis. (D) A representative AFM indent

versus z-sensor position relationship (i.e., force curve); the AFM probe approache

sample, and indents the sample (red extension curve). The probe then withdraw

online.
base-polymer:curing agent (weight %Xiameter) to tune the elasticity of

PDMS. Two PDMS formulations—stiffer PDMS-A, 20:1 (20%) and softer

PDMS-B, 30:1 (100%)—were spun onto 25 � 25 mm glass coverslips us-

ing a Laurell spin processor (WS-400E-6NPP; Laurell Technologies, North

Wales, PA) at different speeds to fabricate bilayered samples with desired

thickness. Materials were cured at 65�C on a hot plate after each spin;

the bottom substrate and top inclusion layer were cured for 15 and

10 min, respectively. Two configurations of bilayered PDMS were created

(n¼ 6–8 each), with layer thickness (verified using a Wyko NT1100 optical

profiler (Veeco Instruments, Plainview, NY)) and spinning speeds as fol-

lows: 1) STIFF inclusion (top PDMS-A: 4.6 5 0.8 mm, 6000 rpm; bottom

PDMS-B: 39.15 8.4 mm, 500 rpm) and 2) SOFT inclusion (top PDMS-B:

4.9 5 0.54 mm, 5000 rpm; bottom PDMS-A: 37.1 5 1.3 mm, 1000 rpm).

Homogenous control samples of PDMS-A and B were spun twice to mimic

the geometry and curing process of the heterogeneous bilayer samples.

PDMS samples were stored in deionized (DI) water to prevent further expo-

sure to air before AFM testing.
Mouse aorta isolation

All animals received humane care and treatment compliant with the Na-

tional Research Council’s Guide for the Care and Use of Laboratory

Animals, following experimental protocols approved by the Institutional

Animal Care and Use Committee at the Mount Sinai Medical Center.

Healthy, three-month-old male wild-type mice (n ¼ 4) were anesthetized

by isofluorane (Baxter Healthcare, Deerfield, IL), sacrificed by cervical

dislocation, and injected with 100 mL of heparin (Sagent Pharmaceuticals,

Schaumburg, IL) to minimize blood clots. The aortic tree was dissected

from the root to the diaphragm and cleaned with forceps to remove sur-

rounding soft tissue. Live aortas were kept in culture media, containing

Dulbecco’s modified Eagle’s medium (Mediatech, Manassas, VA), 1%

penicillin-streptomycin solution (Mediatech), and 10% fetal bovine serum

(Atlanta Biologicals, Norcross, GA), as described elsewhere (49). For

experimental testing, the abdominal aorta was dissected and sliced into

two adjacent ring sections. Onewas mounted intact with the annular surface

facing up (RING configuration, Fig. 3 A) on a 50 mm petri dish using med-

ical-grade double-stick tape (Nearly Me Technologies, Waco, TX); the

other was cut axially and mounted flat to expose the lumen side of the vessel

(FLAT configuration, Fig. 3 B). Samples were maintained in culture media

at 37�C for up to 3 h before AFM testing.
Histological analysis

Abdominal aorta sections immediately adjacent to those used for AFM

testing were fixed in 4% paraformaldehyde (Electron Microscopy
e bottommedia in gray and top intima in red) configurations for determining

e aortic intima and media were obtained by histological staining for building

ation response of a FLAT section of mouse aorta shows the probe deflection

s the sample from right to left on the z-position axis, makes contact with the

s from the sample (blue retraction curve). To see this figure in color, go
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Sciences, Hatfield, PA), switched to 15% sucrose solution in phosphate-

buffered saline (Sigma-Aldrich, St. Louis, MO), cryosectioned into

10-mm-thick sections, and then stained with hematoxylin and eosin to

visualize the tissue geometry and structure. Images were taken from

nine aortic sections under 40� magnification; five to six measurements

per tissue were quantified for layer-specific dimensions using image pro-

cessing with ImageJ software (Fig. 3 C). The intima layer thickness was

measured from the endothelial surface to internal elastic lamina, the

media layer was measured from internal elastic lamina to external elastic

lamina, and the adventitia layer was measured from external elastic lam-

ina to the outer vessel wall. Thickness values for the intima, media, and

adventitia layers were 3.3 5 0.5, 22.7 5 3.0, and 13.1 5 2.9 mm,

respectively.
AFM

Mechanical measurements of bilayered PDMS and live aorta samples

were performed using a biological AFM (MFP-3D-BIO; Asylum

Research, Santa Barbara, CA) with the control and data acquisition plat-

form running in the Igor Pro (Wavemetrics, Portland, OR) software envi-

ronment. PDMS samples were pretreated with 2% bovine serum albumin

(Sigma-Aldrich) in DI water for 30 min to minimize the adhesion force

between the samples and the AFM probe (37) and indented in DI water

with a 10-mm-diameter polystyrene spherical probe mounted on a silicon

cantilever (spring constant, k ¼ 40 N/m). RING and FLAT aorta sections

were indented with a silicon cantilever probe (k ¼ 8.9 N/m) with a 15 mm

borosilicate glass spherical probe in culture medium at 37�C. All probes
were purchased from Novascan Technologies (Ames, IA). The bilayered

PDMS and FLAT aorta samples were indented with a trigger force of

1.6–4.8 mN at a rate of 4 mm/s and 0.45–1.5 mN at a rate of 2 mm/s,

respectively, to achieve an indentation depth of at least 3 mm for extract-

ing individual layer properties. AFM indentation of aorta RING sections

targeted the middle media layer with an indentation force of 0.3–0.5 mN

at a rate of 2 mm/s. AFM indentations were performed at multiple loca-

tions using three to five force maps per sample; each force map (array

size; scan area) was prescribed based on the available testing area

of the samples as follows: PDMS (6 � 6 array; 80 � 80 mm), FLAT aorta

samples (4 � 4 array; 20 � 20 mm), and RING aorta samples (4 � 4

array; 10 � 10 mm).

Raw AFM force curves (probe deflection versus z-sensor position)

consist of extension and retraction motions of the AFM probe as it ap-

proaches and withdraws from the sample (Fig. 3 D). The pointwise elastic

modulus was determined as described previously (2) using the extension

portion of the force curves. Approximating the measured thickness of

bilayered PDMS and FLAT samples, the PDMS FEM had a 5 mm inclusion

layer on top of a 50 mm substrate; the FLATaorta FEM had a 3 mm inclusion

layer (intima) on top of a 35 mm substrate layer (media), which subsumed

all underlying structures other than the intima (Fig. 3 C). The HED analysis

was used to extract layer-specific elastic moduli from AFM indentation

tests on the PDMS and FLAT aorta samples.
Statistical analysis

To examine the robustness of the HED algorithm, Monte Carlo simulation

was used to analyze the influence of random noise and the volume fraction

data range on the extracted elastic properties of substrate and inclusion. A

synthetic set of effectivemodulus versus volume fraction datawas generated

from a theoretical Eshelby curve for a hypothetical samplewith a 10 kPa sub-

strate modulus and a 100 kPa top-layer inclusion. Uniformly distributed

random noise was simulated as 10% of the maximal volume fraction (X

axis) and effective modulus (Y axis) of the substrate-inclusion combination.

Unless otherwise specified, all results were summarized as mean 5 SD.

Tissue data were compared using a Student’s t-test. A p-value of<0.05 was

considered statistically significant.
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RESULTS

FEM indentation response of layered
heterogeneous samples: pointwise modulus and
effective volume fraction

FEMs were constructed with three elements: 1) a 50-mm-
thick 10 kPa substrate, 2) 3 mm top-layer inclusions ranging
from 1 to 100 kPa to simulate inclusion/substrate modulus
ratios for both stiff inclusions (modulus ratio >1) and soft
inclusions (modulus ratio <1), and 3) a rigid 25 mm diam-
eter spherical indenter tip. As the tip indented the inhomo-
geneous sample, the softer material deformed more than
the stiffer material, and stresses at the layer interface accu-
mulated toward the stiffer material. Indentation force
increased with indentation depth, and the force increased
more rapidly on stiff than soft inclusions (Fig. 4 A). Point-
wise moduli (Epw) logarithmically decayed or increased
with indentation depth in stiff or soft inclusion cases,
respectively (Fig. 4 B), mimicking the heterogeneity pattern
of the composite material; at low indentation depths, the
force response was dominated by the inclusion properties
but asymptotically approached the substrate elastic modulus
as the indentation field expanded at deeper indentation
depths. As expected, a higher inclusion modulus yielded a
higher asymptotic value of effective elastic modulus for
the composite material. Also, a bigger disparity between
the inclusion and substrate properties required a larger
indentation depth to reach a plateau. Indeed, we introduced
the HED approach to analyze heterogeneities with a 2- to
10-fold difference between the inclusion and substrate
moduli. Lower heterogeneity cases with less than a twofold
difference exhibit a nearly flat pointwise modulus versus
depth curve, and in practice may be less critical to distin-
guish from their homogenized equivalent.

The effective volume fraction decreases as indentation
depth increases, with proportionally less inclusion and more
substrate being probed by the indenter (Fig. 4, C and D).
The volume fraction for stiff and soft inclusions started at
similar levels of 0.7–0.9 but propagatedwith different patterns
as two families of curves. The stiff inclusion curves were
remarkably insensitive to Einc; the soft inclusion curves had
a different characteristic shape that decreased more gradually
with indentation depth, and the final value of feff (at
the maximal indention depth of 3 mm) increased as Einc

decreased.
Master curve approximation

The finding that each inclusion configuration (i.e., stiff
versus soft layer) coalesced into two distinct families of
curves indicated that feff depends primarily on the geomet-
rical configuration of the layers with relative insensitivity
to the specific mechanical properties. Therefore, the two
distinct families of curves were averaged to obtain two
‘‘master curves,’’ referred to as STIFF inclusion and SOFT



FIGURE 4 Representative FEM results for the

layer indentation model with top stiff (black,

20–100 kPa) and soft (gray, 1–5 kPa) inclusions

on a 10 kPa bottom substrate. (A) Indentation force

versus depth is shown. (B) Corresponding point-

wise elastic modulus versus depth is shown; the

stiff inclusion curves start high and decrease with

indentation depth, whereas soft inclusion curves

start low and increase with depth. The effective

volume fraction versus depth for (C) stiff inclusion

and (D) soft inclusion show distinct characteristics,

but each family of curves behaves similarly.
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inclusion, to represent the layered geometry without regard
to the individual mechanical properties (Fig. 5 A). Each
master curve represents the depth-dependent effective inclu-
sion volume fraction for the specific sample configuration.

In addition to the top-layer configuration (STIFF versus
SOFT), the feff vs. D master curves also depended on the
AFM indenter size and the thickness of the top inclusion layer.
The effect of indenter size (10, 15, or 25 mm diameter) on the
master curve for a 3mmSTIFF top layer is shown inFig. 5B. A
3 mm maximal indentation depth was prescribed in all the
models; therefore, a larger indenter had a larger contact sur-
face and a correspondingly extended indentation field with a
relatively smaller contribution from the inclusion layer.
Consequently, feff decreased as indenter size increased
(f10 mm > f15 mm > f25 mm) at matched indentation depths,
and the master curve shifted downward from the 10 to the
25 mm indenter. To evaluate the effect of inclusion geometry,
FEM models with varying top-layer thickness (3, 4, or 5 mm)
were indentedwith a 25mmsphere.A thinner top layer yielded
a lower effective volume fraction at a specific indentation
FIGURE 5 Representative master curves for (A) STIFF or SOFT inclusion o

inclusion of a 3 mm top layer using a 10, 15, or 25 mm spherical indenter; and

indenter.
depth (f3 mm< f4 mm< f5 mm) such that the master curve shifted
downward from the 5 mm to the 3 mm inclusion thickness
(Fig. 5 C). In summary, the effective volume fraction of the
inclusion varied at different indentation depths and depended
on the top inclusion thickness, the diameter of the indenter,
and the SOFTor STIFF inclusion configuration. But as noted
above, the master curve was relatively insensitive to the spe-
cific modulus values for the inclusion and substrate materials.
Extracted substrate and inclusion moduli

Examples of reconstructed Eshelby curves (modulus versus
volume fraction) using Eq. 11 are shown in Fig. 6 for a range
of layer inclusion models with a 10 kPa substrate modulus
using either the STIFF or SOFT master curves in Fig. 5 A.
For the stiff inclusion models, the estimated value of Esub

at the feff ¼ 0 end of the curves converged at the prescribed
value of 10 kPa with an error less than 4%, and the estimated
inclusion moduli (Einc) approached the specified values of
20, 40, 60, 80, and 100 kPa to within 10% error for all
f a 3 mm top layer indented with a 25 mm spherical indenter; (B) STIFF

(C) STIFF inclusion of a 3, 4, or 5 mm top layer using a 25 mm spherical
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FIGURE 6 Reconstruction of Eshelby curves of a layer model with a 10 kPa substrate and (A) stiff inclusions ranging from 20 to 100 kPa, (B) soft in-

clusions ranging from 1 to 5 kPa, and (C) the same soft inclusions using refined master curves. The arrows indicate the actual inclusion elastic modulus

values for each case. The refined master curves in (C) yield better estimations of the five soft inclusions and the 10 kPa substrate compared to the primary

master curve approximations in (B). To see this figure in color, go online.
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cases (Fig. 6 A). Similarly, the soft inclusion models
yielded <15% error in the extracted value of Esub

and < 10% error in the extracted values of Einc for the cases
of 3, 4, and 5 kPa, but the error in Einc increased to 23% for
the 2 kPa inclusion and 90% error for the 1 kPa layer (Fig. 6
B). This increased error likely reflected the larger variability
in the SOFT master curve (Fig. 5 A). Therefore, a two-step
iterative estimation process was implemented to improve
the accuracy of deconstructed elastic moduli. Based on the
initial estimates of Esub and Einc, a refined master curve
was generated that better represents the effective volume
fraction versus depth relationship for the particular hetero-
geneous sample. When applied to the above soft inclusion
models, errors in the extracted values of Einc reduced to
10 and 22% for the inclusion cases of 2 and 1 kPa,
respectively, and the associated errors in Esub were <5.5%
(Fig. 6 C).

Another potential source of error in the estimation of Esub

and Einc is related to variability in the top inclusion layer
thickness, as occurs with many biological samples. To
examine this issue, HED analysis was performed using
intentionally inaccurate inclusion layer thickness values to
determine the effects on the reconstructed layer-specific
elastic moduli. We used simulation results for a 25-mm-
diameter sphere indenting a 3-kPa, 4-mm-thick top inclusion
layer on a 10 kPa bottom substrate, with data spanning
�40% of the full volume fraction range, and performed
HED analysis using master curves corresponding to 3-, 4-,
5-, 6-, and 7-mm-thick top layers, introducing errors due
to under- and overestimation of the top-layer thickness.
The reconstructed values of Einc ranged from 2.4 to
3.9 kPa for the 3 and 7 mm cases, whereas the corresponding
estimates of Esub ranged from 9.5 to 11.2 kPa. Thus, for top-
layer thickness errors ranging from�25 toþ75%, the errors
in Einc ranged from roughly �20 to þ30%, whereas the er-
rors in Esub remained within �10% of the true value
(Fig. S3). This analysis suggests that uncertainties in top-
layer thickness have a greater effect on the estimated values
2724 Biophysical Journal 114, 2717–2731, June 5, 2018
of the top-layer modulus, whereas the substrate modulus ap-
pears less sensitive to thickness errors.
Sensitivity analysis

Monte Carlo simulation was used to study the influence of
random noise and a restricted volume fraction data range
on the extracted values of Esub and Einc from a synthetic
set of Eeff vs. feff data for a 100 kPa top-layer inclusion
and a 10 kPa substrate. Because a typical AFM indentation
experiment will not interrogate all possible volume fractions
from 0 to 1, the available data tend to fall into the middle
range of feff (see Fig. 1 D). Therefore, restricted subranges
representing 30, 40, or 50% of the full feff data range (spe-
cifically, 0.2–0.6, 0.3–0.6, 0.2–0.7, or 0.3–0.7) were culled
from the synthetic data set. Reconstructed values of Esub

and Einc showed robustness to random noise with the distri-
butions of estimated moduli centered on the prescribed
values of 10 and 100 kPa, respectively. However, the ex-
tracted substrate and inclusion moduli were sensitive to a
restricted feff data subrange (Fig. S4). A higher starting value
and a lower ending value of feff resulted in more outliers. In
particular, the low end of the feff subrange had a strong influ-
ence on the accuracy of estimated values of Esub as well as
Einc. A subrange width of at least 30% volume fraction
coverage without including data at the extreme ends of the
range was generally sufficient to reconstruct Esub and Einc

with an error in the 50% interquartile range within 10% of
the prescribed values, even in the presence of random noise,
as summarized in Fig. 7.
PDMS indentation

To experimentally validate the HED approach, we used thin
synthetic samples of SOFT (soft layer on stiff substrate) and
STIFF (stiff layer on soft substrate) bilayered samples made
from silicone-based PDMS-A and B elastomers with known
layer geometries. At low indentation depths, the force



FIGURE 7 Robustness of the HED algorithm

based on synthetic data from the theoretical

Eshelby curve for Esub ¼ 10 kPa and Einc ¼
100 kPa, subject to 10% random noise and a

restricted feff data range, as indicated. Eshelby re-

constructions were repeated for 1000 runs of

each condition using boxplots to compare variation

of estimated (A) substrate and (B) inclusion

moduli.
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response reflected the top inclusion properties; STIFF inclu-
sion showed a slightly higher force than SOFT inclusion
(Fig. 8 A). As the probe indented deeper, the indentation re-
flected the substrate property; thus, the force increased more
rapidly in the SOFT sample, which had a stiffer substrate
than that of the STIFF sample (Fig. 8 A). The pointwise
modulus showed depth-dependent distributions for the
SOFT or STIFF inclusion cases that rose and decreased,
respectively, as the indentation depth increased in the
data-fitting regions, indicated by the arrows in Fig. 8 B. Us-
ing an FEM-generated ‘‘master curve’’ for the effective in-
clusion volume fraction versus depth relationship using
the known geometric parameters (5 mm top layer, 50 mm
substrate, and 10 mm spherical indenter), the experimental
relationship between effective modulus and volume fraction
(Eeff vs. feff) was then generated and fitted with the modified
Eshelby model given in Eq. 11, as shown in Fig. 8 C. The
volume fraction of 0.4–0.7 was selected for the SOFT and
STIFF inclusions, which correlated to the indentation depths
of 0.72–2.5 mm (up arrows) and 0.3–2.2 mm (down arrows),
respectively (Fig. 8 B). The deconstructed elastic moduli of
PDMS-A (EA) and PDMS-B (EB) from the heterogeneous
bilayered samples were compared between the two configu-
rations and also with homogeneous samples of PDMS-A
and PDMS-B. The resulting elastic moduli of PDMS-A
FIGURE 8 Experimental AFM indentation responses on heterogeneous PDMS

layered on PDMS-B) bilayer configurations. (A) Representative indentation forc

curves are shown. (C) Corresponding elastic modulus versus effective inclusion

each sample configuration. Solid lines represent the best-fit Eshelby curve for eac

6–8) elastic properties of PDMS-A and PDMS-B obtained by HED analysis of

bilayer samples are shown as well as homogeneous samples of PDMS-A and PD

the selected volume fraction were indicated by up arrows (SOFT) and down ar
and B extracted using the HED algorithm showed self-con-
sistency between SOFT (EA: 200.0 5 47.8 kPa; EB: 119.0
5 15.6 kPa) and STIFF (EA: 182.8 5 54.1 kPa; EB: 91.2
5 18.9 kPa) inclusion configurations (Fig. 8 D), confirming
that EA was stiffer than EB, as designed. Although these
moduli were also comparable to the values of EA (232.0
5 29.9 kPa) and EB (69.2 5 7.0 kPa) measured from the
homogenous PDMS samples, the results could suggest a
tendency for the HED method to underestimate stiff and
overestimate soft layer moduli in composite materials.
However, the experimental errors are larger than expected
based on the above finite element analyses (e.g., Fig. 6),
and as discussed below and in the Supporting Materials
and Methods related to Fig. S5, the discrepancies appear
to primarily reflect the influence of surface films inadver-
tently created during the PDMS curing process.
Mouse aorta indentation

The HED method was applied to measure the layer-specific
elastic properties of mouse aortic tissue using AFM inden-
tation. Because of the minuscule size of the mouse abdom-
inal aorta (�40-mm thick), we were unable to reliably indent
just the intimal layer of the aorta in the RING configuration.
Furthermore, in both the FLAT and RING configurations,
samples with SOFT (PDMS-B layered on PDMS-A) and STIFF (PDMS-A

e versus depth and (B) the resulting pointwise elastic modulus versus depth

volume fraction is reconstructed using the FEM-generated master curve for

h data set, yielding Esub at feff ¼ 0 and Einc at feff ¼ 1. (D) Mean (5 SD, n¼
AFM indentation of SOFT (squares) and STIFF (triangles) heterogeneous

MS-B (diamonds). Note: the data ranges of elastic moduli corresponding to

rows (STIFF). To see this figure in color, go online.
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the loose, fibrous structure of the adventitial layer interfered
with proper contact between the probe and sample, yielding
highly variable and nonreproducible indentation results.
Thus, the only comparison of layer-specific mechanical
properties between RING and FLAT conditions that could
be made with confidence was for the medial layer; in partic-
ular, aortic RING samples directly yielded elastic properties
of the medial layer (Ering), and FLAT samples yielded
apparent pointwise moduli (Eflat) for the composite aortic
wall tissue, with HED analysis of Eflat used to extract
modulus values for the intimal (Eint) and medial (Emed)
layers. Raw force curves from the RING indentation had a
steeper postcontact region than from the FLAT configura-
tion (Fig. 9 A), indicating an effectively stiffer material
when directly indenting the tunica media versus the com-
posite layered aortic wall. This is confirmed by the histo-
grams in Fig. 9 B, which show that the distribution of
moduli for Ering tended to be stiffer than for Eflat. The Ering

measurements exhibited a unimodal distribution (Fig. 9 B),
suggesting that the selected 15 mm spherical probe tip was
large enough for the indentation field to encompass a com-
bination of structures in the media rather than detecting
distinct cellular and matrix constituents. The distribution
of Eflat was also unimodal (Fig. 9 B), suggesting in-plane
mechanical uniformity despite the depth-dependent hetero-
geneity of the FLAT configuration. The resulting mean
value of Ering was 44.3 5 8.5 kPa, which was significantly
stiffer (p < 0.03) than Eflat of 27.9 5 3.0 kPa (Fig. 9 D,
black and white bars, respectively).
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Using the full depth-dependent data for Eflat, HED anal-
ysis was used to reconstruct the elastic modulus of the top
intima layer and the underlying media substrate. Whereas
Eint showed a very narrow distribution, Emed had a broader
distribution and was shifted to the right (Fig. 9 C). The re-
sulting mean value of Eint (6.6 5 0.8 kPa) was significantly
softer than Emed (37.5 5 6.3 kPa, p < 0.001), as shown in
Fig. 9 D (gray bars). In these FLAT aorta tests, the effective
inclusion volume fraction typically ranged from �0.3 or
0.4 up to �0.8 (see Figs. S4 and S6), spanning a range
that exceeded the 30% minimal coverage for accurate
modulus reconstruction determined by the above FEM
sensitivity analysis. Notably, the HED-derived Emed was
not significantly different from the directly measured Ering

(p ¼ 0.34). This demonstrated the ability of HED analysis
to separate the mechanics of the intima and the underlying
media layer with a single nondestructive test, yielding
modulus values that were consistent with direct indentation
of the media layer.
DISCUSSION

Herein, we propose the HED approach to analyze AFM
indentation data when studying the micromechanical prop-
erties of soft samples that have a heterogeneous layered
structure. This may be particularly well suited for small
biological samples, such as mouse blood vessels or embryo-
logic heart tissues (37), in which the different layers are
anatomically interconnected. For example, transgenic
FIGURE 9 (A) Representative AFM indentation

response of mouse aorta showed that indentation of

the RING configuration yielded a stiffer measure-

ment than that of the FLAT sample. Distributions

show apparent elastic properties from arrays of in-

dividual AFM indentations of (B) RING and FLAT

sections and (C) the deconstructed intima and me-

dia properties extracted from the composite FLAT

sections using HED analysis. (D) Mouse aorta

elastic properties obtained from AFM indention

on RING and FLAT configurations are shown

along with the layer-specific elastic moduli of the

intima and media obtained by HED analysis of

Eflat. Of note, the deconstructed medial layer,

Emed, was not significantly different from the

directly measured Ering value.
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mouse models of Marfan syndrome exhibit severe local
elastic network disruption in the tunica media of the aorta
(50), but the associated changes in layer-specific biophysi-
cal properties of the arterial wall are difficult to measure
without first dissociating the tissue layers. Also, for develop-
mentally immature or pathologically compromised animal
models, the tissues of interest may be small and fragile,
requiring gentle mechanical testing with microscale
resolution.

AFM indentation is a well-developed experimental tech-
nique for testing micromechanical properties of soft sam-
ples, but standard data analysis methods utilize the
idealized Hertz contact theory, which is based on simpli-
fying assumptions that are fundamentally inappropriate for
most biological samples (2). Nix and co-workers have at-
tempted to decouple the mechanical properties of indented
multilayered polymer samples (17,18); the investigators
extracted the top layer properties at the nanometer scale
but did not extract the modulus of the bottom substrate,
which was of equal interest in our study. The transition
from a polymer brush layer to elastic indentation of a nano-
scale multilayer system has been analyzed by Tsukruk and
colleagues using a theoretical model and an experimental
layered polymer (18); however, the layer thicknesses were
submicron, and the modulus values varied by over 10,000-
fold from a compliant polymer (15 MPa) to a silicon sub-
strate (160,000 MPa); such conditions do not apply for
many biological samples. Alternatively, a recent study pub-
lished by Sarrazin and colleagues described an approach
called the Coated Half-Space Indentation Model of Elastic
Response (CHIMER) to extract the thickness of the upper
layer in a bilayer sample based on the apparent Young’s
modulus and a numerically derived ‘‘weight function’’ for
different modulus mismatches from 10-fold to 10,000-fold
(19). However, they only considered top layers with stiff-
nesses at least 10-fold greater than the bulk (i.e., not appli-
cable for soft top layer on stiffer substrate), with the thickest
layer studied being only �150 nm. The application of these
polymer-film models to biological systems, in which the
thickness is on the order of microns and the stiffness ratio
is typically not more than �10-fold, has not been validated
to our knowledge. Sokolov and co-workers sought to
improve the estimation of cellular mechanics by accounting
for a surface layer of glycoproteins and membrane protru-
sions treated as a superficial brush structure (20,21). Pene-
tration of the soft brush layer is assumed at higher
indentation depths, where the associated steric repulsion
force becomes dominated by the elastic response of the un-
derlying cell material. However, the biophysics of this
model is fundamentally different than our case of a soft
elastic layer on a stiffer elastic layer (or vice versa), in which
penetration of the top layer does not occur. Other modified
Hertzian approaches have been developed for analyzing the
indentation of a soft layer on a stiffer substrate (16,37), but
computational validation has been limited. As demonstrated
in Fig. S7, using this approach to analyze FEM-simulated
indentation data can distinguish soft-on-stiff from stiff-on-
soft bilayer samples; but in both cases, the extracted
modulus values do not accurately recover the prescribed
moduli, whereas the HED analysis yields markedly
improved estimates of the layer-specific elastic moduli.
Ultimately, users will need to decide how to balance the
ease of use with the need for accuracy in choosing a data
analysis method for specific applications.

The physical interpretation of the effective inclusion vol-
ume fraction, feff, in a layered PDMS sample or a flattened
full-thickness section of mouse aorta wall can be descried
as the relative contribution from the top layer to the total
interrogated region of the sample within the indentation
field. In an aorta microindentation test, an feff value of 1 in-
dicates that only the thin top intima layer of the vessel is
being probed; this might occur immediately after contact
if the indentation field does not extend beyond the intima
layer. Likewise, an feff value of 0 would mean the underlying
media layer is the only contributor to the indentation
response, which is not achievable when indenting a flattened
aorta sample with the intima and media layers intact. In
practice, the indentation field includes contributions from
both the intima and media layers, so the limiting feff values
of 0 and 1 are not observed experimentally. The same is true
for the thin bilayered PDMS samples fabricated for this
study. Indeed, the analysis of the effects of restricted data
subranges was motivated by experience with AFM indenta-
tion on bilayered samples; when the AFM probe initially
makes contact with the sample, the pointwise modulus can
be noisy or dominated by surface interaction forces, inter-
fering with data in the limit of feff approaching 1.0; similarly,
the zero inclusion volume fraction limit is difficult to
achieve because with a top layer configuration, there is al-
ways some amount of inclusion encompassed within the
indentation field. According to our sensitivity analysis, a
minimal coverage of 30% of the feff data subrange, biased
toward the smaller values of feff achieved during deeper
indentations, yielded robust estimates of Esub and Einc; accu-
racy increased as the subrange width increased. A represen-
tative HED analysis of abdominal aorta indentation was
examined with a volume fraction range of 0.3–0.6 using
the minimal 30% coverage, and this yielded consistent esti-
mates of medial and intimal properties (Fig. S6). Thus, our
approach appears to provide an improved analysis to eval-
uate the mechanical properties of an embedded layer in an
intact sample with preserved structural integrity, even
when the data range is restricted by some practical limita-
tions of AFM indentation experiments.

Previous FEM analyses of the AFM indentation problem
have demonstrated an increase in reaction forces related to
boundary and tip-sample interaction conditions (2,12). To
correct for such effects, modifications of the standard
AFM indentation analysis have previously been developed
to account for finite sample dimensions (3,5), particularly
Biophysical Journal 114, 2717–2731, June 5, 2018 2727
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when the indentation depth exceeds 10% of the sample
thickness. Such approaches can improve estimation of the
elastic properties of thin soft samples on an underlying rigid
substrate, but this does not address through-thickness het-
erogeneity of the intrinsic sample properties. One approach
to mechanical characterization of a thin layer on a deform-
able substrate (e.g., the glycocalyx on a living cell) has been
to simply limit the sample indentation to shallow depths
(51), but it is questionable to assume that an underlying
layer will not influence measurement of top-layer proper-
ties. A new equation was proposed and validated by FEM
for determining the nanomechanics of a compliant layer
on a stiffer substrate for the application to high-modulus
chemical films such as silicon dioxide on silicon (16).
Recently, the mechanical properties of the endothelial gly-
cocalyx were reported based on this method (15). However,
the applicability for mesoscale soft materials has not been
validated, which may involve adapting the equation coeffi-
cients derived for stiff polymers to soft samples, extending
the range of overlayer thickness, and correcting for substrate
effects with indentation depths exceeding one-tenth of the
sample thickness (3,5). Therefore, our HED method was
developed and validated specifically for soft samples with
at least a twofold disparity in constituent moduli and with
layer dimensions on a scale of microns comparable to the
indenter diameter and indentation depth. This technique
made it possible to simultaneously measure the mechanical
properties of the aortic intima and media from individual
AFM indentation tests on the composite vessel wall.

PDMS elastomer was readily used to create multilayer
thin films with defined thickness by multiple spin coating
steps. However, interface characteristics such as adhesion
forces, surface charges, and hydrophobicity of PDMS
caused significant snap-on events during AFM indentation
testing (52,53). Therefore, PDMS samples were pretreated
with bovine serum albumin solution to minimize adhesive
interaction between the tip and sample (37). Additionally,
the pointwise modulus analysis consistently revealed an
initially high apparent stiffness that abruptly decreased
with indentation depth in all the tested PDMS configurations
(Fig. S5 A), suggesting a very thin and stiff surface film
possibly caused by the PDMS curing process. Such a phe-
nomenon has been reported in a previous AFM indentation
study of PDMS, which ruled out artifacts due to adhesion
force, viscoelastic effects, and mismatched contact point
as the underlying cause (54). To explore this phenomenon,
a four-layer FEM was created with a very stiff film on top
of the bilayer and an interface film between the layers;
analysis of the simulated data showed depth-dependent
Epw similar to the AFM experiments, which was distinct
from a corresponding bilayer model without stiff films
(Fig. S5 B). Another study by Kovalev et al. in multilayered
polymer thin films documented distinct, step-like transitions
in depth-dependent elastic modulus from computational
models as well as experimental AFM indentation on syn-
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thetic layered materials (18). However, unlike the Kovalev
study, our pointwise modulus analysis did not reveal step-
like changes with indentation depth, possibly because of
the much larger indenter radius and layer thicknesses and
substantially smaller heterogeneity in layer-specific
modulus values in our samples. Nevertheless, scanning elec-
tron microscopy images of a cross section of our bilayered
PDMS sample confirmed the presence of a thin interface
layer that formed during the PDMS curing process
(Fig. S5 C). Because of this surface artifact, AFM indenta-
tion of the PDMS samples was more complicated than a
simple assumption of one stiff material (PDMS-A) and
one soft material (PDMS-B). The surface thin film seems
to be the primary reason for the discrepancy in the estima-
tion of soft and stiff material properties when comparing
the elastic moduli from homogenous and heterogeneous
PDMS samples (Fig. 8 D). However, the purpose of the
PDMS indentation was to demonstrate the applicability of
the HED analysis to well-controlled heterogeneously
layered samples. Therefore, self-consistency of the decon-
structed values of EA and EB from both the SOFTand STIFF
PDMS layer inclusion configurations was considered a
highly relevant experimental validation of the HED method.

AFM indentation of the flattened aorta sample evaluated
the apparent elastic properties of the unloaded vessel wall.
Assuming a two-layer configuration, the HED-extracted
mechanical properties of arterial layers reflected their struc-
tural composition: the soft tunica intima consists of endothe-
lial cells and basement membrane, whereas the stiffer tunica
media includes vascular smooth muscle cells and sheets of
elastic laminae. Our findings support the predictions of
Huang et al. (55), who used a heterogeneous fiber matrix
theory to model the effects of hydraulic pressure on tissue
transport properties, reflecting a more sparse and permeable
tissue matrix in the intima compared to the media. By
contrast, an experimental study of harvested human coro-
nary arteries with nonatherosclerotic intimal hyperplasia
showed that the intima was stiffer than the media based on
direct tensile testing of physically dissociated layers of the
vessel wall (22). Although the potential impact of dissection
artifacts is difficult to assess, these studies suggest that the
layer-specific properties of the vessel wall could be altered
by pathophysiological adaptive processes compared to
healthy arteries. The elastic modulus measured by AFM in
our study was comparable to the reported macroscopic
modulus of rat abdominal aorta under uniaxial testing in
the circumferential direction (66 kPa) but lower than the
corresponding longitudinal modulus (590 kPa) (49,56).
Similarly, inflation testing of the mouse abdominal aorta
yielded an elastic modulus of �50 kPa in the circumferen-
tial direction but higher in the longitudinal direction (57).
Such macroscopic anisotropy reflects the microstructural or-
ganization and preferred alignment of cell and matrix com-
ponents of the vessel wall and is exacerbated by the material
nonlinearity and recruitment of collagen fibers at higher
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strains (58). We have not considered material anisotropy and
nonlinearity in our HED analysis. Identification of such ma-
terial properties by AFM may require more complex testing
capabilities, such as indentation combined with in-plane
stretching (2). Also, generation of the master curve requires
estimation of the top-layer thickness, which is generally
achievable after, if not before, performing the indentation
tests. However, if not measured in fresh samples, then tissue
layer dimensions obtained from fixed samples should be
corrected for potential distortion during processing.
Although the 10% shrinkage generally attributed to parafor-
maldehyde fixation of biological samples is predicted to
have minimal impact on the modulus values extracted by
HED decomposition, thickness uncertainty impacts the esti-
mated inclusion and substrate moduli, particularly for the
surface layer (see Fig. S3). We validated our HED method
with multilayered PDMS and mouse aorta samples with a
surface layer of 3–5 mm and an elastic modulus heterogene-
ity of less than 10-fold. The HED method has not been vali-
dated for very thin surface layers less than 1 mm thick nor
for samples with layer-specific elastic modulus ratios in
the 10� to 10,000� range or different Poisson ratios,
mainly because these conditions were not immediately rele-
vant for the samples of primary interest. However, the un-
derlying theory can readily generalize to such conditions,
and additional targeted validation should be performed in
future studies that seek to utilize the HED method for
such applications.

AFM indentation involves primarily compressive loading
with a finite strain field that is highly localized in an other-
wise unloaded sample configuration. Thus, it is encouraging
that the modulus values obtained by AFM indentation are on
the same scale as some measurements obtained by macro-
scopic stretching of the composite vessel wall. More impor-
tantly, our reconstructed modulus of tunica media extracted
from AFM indentation of the composite FLAT tissue config-
uration agreed remarkably well with direct indentation
measurements of aortic media in the RING tissue configura-
tion, further validating the HED analysis method and
suggesting that AFM indentation may be less sensitive to
tissue anisotropy than macroscopic stretching. In summary,
we demonstrated that the HED analysis is able to assess the
effective elastic properties of the surface tunica intima and
underlying tunica media of mouse aorta in an unloaded
but intact condition. Such measurement capabilities could
expand our understanding of tissue-specific vascular
biomechanics in transgenic animal models of disease, as
we have recently shown (59). Extension to other tissue types
and disease states should be straightforward.

As we have demonstrated, the accuracy of reconstructed
elastic properties using the HED algorithm depends on the
available range of inclusion volume fraction data. Thus,
the concept of the ‘‘master curve’’ describing volume frac-
tion versus indentation depth can provide a practical tool
to aid the design of AFM experiments; knowing the geom-
etry of the subcomponents of a sample of interest, the master
curve allows rational selection of the size of the AFM probe
tip, the maximal indentation depth required to assess the
individual components in layered soft samples, and a canti-
lever spring constant sufficient to achieve the necessary
indentations. In the case of a thick top layer, the range of in-
clusion volume fraction may be too limited to achieve
accurate estimation of individual properties of a bilayer
sample. For example, we tried the FLAT aorta configuration
with the adventitia layer facing up, but the reconstruction
was not successful partly because of the limited volume
fraction subrange (<30%) due to the average thickness of
the adventitia being �10 mm. According to our mathemat-
ical validation, a criterion of>30% data range in the decon-
structing procedures is essential for successful HED
analysis. In cases in which this minimal subrange could be
achieved, our results in the PDMS and aorta experiments
showed agreement and consistency between our test and
control measurements. This confirmed that the HED
approach could deconstruct individual properties of a bilay-
ered sample even with a restricted data range, which is a
typical limitation of biological experiments compared to a
well-defined synthetic system. Lastly, once FEMs are used
to generate master curves for different geometric configura-
tions, they will not require substantial access or expertise
with Abaqus or similar computer modeling software to uti-
lize the HED method compared to FEM-based inverse
modeling approaches (60). So we anticipate that the HED
analysis can be readily used by investigators to improve
AFM indentation analysis of heterogeneous layered soft
samples composed of two nearly incompressible elastic
materials.
CONCLUSIONS

We validated the HED technique to extract layer-specific
elastic moduli of mechanically heterogeneous two-layered
samples measured by AFM indentation, with the indenter
radius selected to achieve an effective inclusion volume
fraction (feff) in the range of 0.3–0.6 or greater for a given
top-layer thickness. With particular interest in applications
for soft biological samples, we specifically examined nearly
incompressible materials having a stiffer or softer top (in-
clusion) layer with a 2- to 10-fold disparity in elastic prop-
erties and a top-layer thickness that could be measured
independently as an input for the HED analysis. The method
was effective using data simulated by FEM and was robust
to random noise and restricted data ranges covering as little
as 30% of the central subrange of effective volume fraction
values. The mechanical properties of two distinct PDMS
formulations (materials A and B) were recovered from
AFM indentation experiments on synthetic two-layer elas-
tomer samples. Furthermore, layer-specific mechanical
properties of the intima and media of intact mouse aortic
wall were obtained by simply indenting the luminal surface
Biophysical Journal 114, 2717–2731, June 5, 2018 2729
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of the flattened tissue sample with the AFM. Overall, the
study provides an approach to measure the heterogeneous
properties of synthetic or biological soft samples that are
too small or fragile to be assessed by conventional mechan-
ical testing methods without requiring a priori physical or
chemical disruption of the composite structure, opening
new opportunities for studying micromechanical properties
of biophysically relevant samples using AFM indentation.
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The original Eshelby homogenization theory (1) was modified by Li et al. to encompass 
the full range of inclusion volume fraction (0 ≤ fΩ ≤ 1) using modified Eshelby tensor terms 
derived for spherical inclusions within a finite domain (2).  Example effective Young’s modulus 
(Eeff) vs. fΩ curves based on the original and modified Eshelby theories are shown in Figure S1A, 
for arbitrarily selected values of the elastic modulus (EM = 10 kPa and EΩ = 100 kPa) and the 
Poisson’s ratio (υM = υΩ = 0.49) for the substrate and inclusion, respectively. Compared to the 
modified theory, the original Eshelby theory only agreed within the first 15% of the inclusion 
volume fraction range, consistent with the sparse inclusion condition for which homogenization 
theory was originally developed. We also compared the modified Eshelby model with the 
Hashin-Shtrikman variational approach, which predicts lower and upper bounds on the effective 
elastic modulus of a composite material with arbitrary interface geometry given the elastic 
properties and inclusion volume fraction of the material constituents (3). The modified Eshelby 
model fell within the limits of the Hashin-Shtrikman model throughout the full range of the 
inclusion volume fraction (Figure S1B). This supported our incorporation of the modified 
Eshelby homogenization theory into our hybrid Eshelby decomposition (HED) approach to 
analyze AFM indentation of composite samples with layered heterogeneity. 
 

 
 

  

	

 
Figure S1: Comparison of homogenization theories: (A) Li’s modified Eshelby theory for finite inclusions 
diverges from Eshelby’s original homogenization theory when the inclusion volume fraction exceeds about 15%. 
(B) Over the full range of inclusion volume fractions, the modified Eshelby theory falls within the upper- and 
lower-bounds predicted by the Hashin-Shtrikman model for arbitrary finite inclusions. 	
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For any arbitrary two-component sample with known elastic properties of the inclusion 
and substrate (e.g., Einc = 100 kPa, Esub = 10 kPa, υinc = υsub = 0.49), the effective modulus vs. 
volume fraction relationship can be calculated using Equation (11) from the modified Eshelby 
homogenization theory (Figure S2A).  For a specific hypothetical example using these modulus 
values, AFM indentation of a layered sample with a stiff (100-kPa) 3-µm top layer on a soft (10-
kPa) 50-µm substrate using a 25-µm spherical probe was modeled by FEM, and pointwise 
analysis of the simulated force-depth response (4) was used to obtain the effective elastic 
modulus vs. indentation depth (Figure S2B). From these two curves, the effective inclusion 
volume fraction vs. indentation depth (feff vs. D) relationship is readily obtained at matched 
values of Eeff, using a simple local linear interpolation algorithm as needed to match the modulus 
values exactly.  For instance, in the above example the pointwise effective modulus equals 15 
kPa at a depth of 2 µm (Figure S2B), while the same effective modulus of 15 kPa corresponds to 
an inclusion volume fraction of 0.2 based on the Eshelby equation (Figure S2A).  Therefore, for 
this model, the effective inclusion volume fraction is 0.2 at an indentation depth of 2 µm.  
Proceeding through all the indentation depths, the volume fraction vs. indentation depth curve is 
readily constructed without ambiguity (Figure S2C).  A somewhat unexpected empirical finding 
that is critical to the HED approach is that for a given indenter geometry and layered sample 
configuration, the feff vs. D curve is relatively insensitive to the specific layer and substrate 
modulus values, hence giving rise to the concept of a “master curve” as presented in Figures 4 
and 5 in the Results.  This means that a PDMS sample with a soft 3-µm thick top layer on a stiff 
50-µm substrate has essentially the same feff vs. D relationship as a 3-µm soft intima on a 50-µm 
stiff media.  This has practical value because layer thickness is readily measured by microscopy 
or other means, while the layer-specific elastic modulus values are typically the unknown desired 
quantities in biological applications of AFM indentation. 

 

  

	

Figure	S2:		(A)	Effective	modulus	vs.	volume	fraction,	(B)	effective	(i.e.,	pointwise)	modulus	vs.	depth,	and	
(C)	effective	volume	fraction	vs.	depth	obtained	by	combining	data	from	panels	A	and	B	at	matched	values	
of	effective	modulus.	



	 4 

 To examine the robustness of the HED approach in the presence of uncertainty or 
variability in tissue dimensions, we analyzed synthetic data using intentionally inaccurate layer 
thickness values to determine the effects on the reconstructed layer-specific elastic moduli. Finite 
element modeling was used to simulate a 25-µm diameter AFM tip indenting a 4-µm thick, 3-
kPa top inclusion layer on a 10-kPa bottom substrate, with data spanning about 40% of the full 
volume fraction range. HED analysis was then performed using master curves corresponding to 
3-, 4-, 5-, 6-, and 7-µm thick top layers, introducing under- and over-estimation of the top layer 
thickness.  The reconstructed modulus values for the bottom layer were 9.5, 9.8, 10.6, 10.6, and 
11.2 kPa, respectively, and the reconstructed modulus values for the top layer were 2.4, 2.8, 3.4, 
3.5, and 3.9 kPa, respectively. Thus, errors in the top-layer thickness appear to have a greater 
effect on the estimated values of the top-layer modulus (blue squares), while the substrate 
modulus (red circles) appears less sensitive to thickness errors (Figure S3).  For the most severe 
case in the simulation (i.e., assuming a 7-µm layer thickness instead of the true 4-µm thickness) 
the 75% error in thickness yielded a 30.8% error in modulus of the top layer, and a 11.7% error 
in the bottom layer modulus.  More typical errors in thickness related to tissue fixation, on the 
order of 10%, are therefore likely to introduce similar errors in the HED-reconstructed modulus 
values, which is comparable to the experimental uncertainty of the AFM measurements.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  
Figure S3: Estimated error in HED-reconstructed inclusion 
and substrate elastic modulus values for a layer sample due 
to errors in the assigned thickness of the top layer.   
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To evaluate the effects of a restricted data set limited to a portion of the full range of 
inclusion volume fractions (0 ≤ feff ≤ 1), Monte Carlo simulation including 10% random noise 
was used to generate 1000 synthetic data sets from the FEM of indentation of a 100-kPa 
inclusion layer on a 10-kPa substrate.  The feff data were restricted to sub-ranges between 0.2 and 
0.8 prior to fitting with the Eshelby curve to estimate the values of substrate and inclusion 
moduli, Esub and Einc.  The distributions of estimated moduli were quantified in terms of the 
percent error of the interquartile range (IQR), calculated from the 50% confidence interval 
relative to the true assigned values.  In Figure S4, each color bar spans the included sub-range of 
feff on the x-axis, and the resulting percent error is color-coded with darker colors indicating 
smaller errors in the estimated elastic modulus values.  

In general, a wider sub-range of volume ratio and a smaller lower-bound of the sub-range 
(corresponding to deeper indentations) yielded more accurate estimates of Esub (Figure S4A) and 
Einc (Figure S4B). In the figure below, the bottom group with sub-ranges starting at feff = 0.2 
generated ~8% error in Esub and Einc, and the error tended to increase as the upper-end value of 
the feff sub-range was reduced, narrowing the data range.  The error also tended to increase as the 
lower-end value of the feff sub-range groups increased to 0.3 or 0.4. Including a small lower-end 
value of the feff contributed to better estimation of Esub even with a slightly smaller width of the 
sub-range (Figure S4A). For example, the 0.3-0.6 sub-range generated ~12% error in Esub versus 
~16% error in the 0.4-0.8 sub-range, and the group starting with feff equal to 0.2 at the lower-end 
yielded < 8% error in Esub even with a sub-range width of just 30% of the full range (i.e., 0.2-0.5).  

Similarly, the approximation of Einc improved with a larger upper-end value of feff, but 
also depended strongly on the lower-end value of the sub-range (Figure S4B). To illustrate this, 
the 40%-wide sub-ranges of 0.4-0.8, 0.3-0.7, and 0.2-0.6 yielded ~13%, ~10%, and ~9% errors 
in Einc, respectively. The 0.4-0.8 sub-range extended closest to the pure inclusion limit (feff = 1) 
but resulted in higher error in Einc (and in Esub) than the other two ranges. This indicated that 
coverage of lower inclusion volume fractions, achieved with deeper indentations during an AFM 
experiment, is a priority for accurate modulus estimation by HED analysis. Therefore, we 
conclude that data covering a sub-range width of at least 30% of the lower portion of the full feff 
range, excluding the two extreme ends of the range that tend to be unachievable in practice, 
allowed robust reconstruction of Esub and Einc even in the presence of random noise, with 
improved accuracy as the feff sub-range width increases. 

 
  

 
Figure S4: Monte Carlo simulation of the percent error in the 50% inter-quartile range (IQR) of reconstructed 
(A) substrate modulus Esub, and (B) inclusion modulus Einc, for different sub-ranges of the effective inclusion 
volume fraction, feff.	
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The pointwise modulus (Epw) distribution of a SOFT inclusion bi-layer started high as the 
indention began, decreased as the indenter moved down to the softer inclusion layer, and then 
increased as the indenter compressed the stiffer bottom substrate (Figure S5A). According to 
HED analysis, the extracted elastic moduli of top inclusion and bottom substrate were 276.1 kPa 
and 130.3 kPa, respectively. We suspected that a thin stiff surface film, possibly related to the 
polymer-air interface during the PDMS curing process, might have caused the stiff behavior at 
the onset of indentation. To clarify this speculation, a FEM four-layer model was created with a 
500-nm surface film (3 MPa) on top of a 5-µm thick inclusion (60 kPa) and an interface film 
with the same properties between the soft inclusion and the stiffer (200 kPa) substrate layer. The 
FEM simulated a 15-µm spherical probe indenting 3-µm deep into the four-layer model. 
Analysis of the simulated force-depth data showed depth-dependent Epw similar to the AFM 
experiment; the four-layer model skewed the Epw and increased overall stiffness in comparison to 
the corresponding bi-layer model without stiff films (Figure S5B). Scanning electron 
microscope (SEM) imaging of the cross-section of a bi-layered PDMS sample confirmed the 
presence of a thin top surface layer and a thin interface layer (Figure S5C), consistent with the 
hypothesized thin films created during the two-step curing process of the bi-layer sample.  

 
  

 

Figure S5: Representative elastic modulus vs. depth curve of (A) an AFM experiment on the SOFT PDMS bi-
layer sample, (B) simulated four-layered FEM model of 60-kPa inclusion and 200-kPa substrate without (black) 
and with (red) 5-MPa stiff films, in which the latter showed similar behavior to experimental data in panel A. (C) 
SEM image of a bi-layer PDMS sample showed two film structures, one at the top surface (single arrow) and 
one at the bi-layer interface (double arrows). 
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A representative HED analysis of AFM indentation of a FLAT mouse aorta configuration 
is demonstrated below. The indentation force vs. depth relationship was obtained from each 
force curve (Figure S6A). The pointwise analysis (4) was then used to obtain an apparent elastic 
modulus vs. indentation depth curve from each force-depth pair, revealing depth-dependent 
changes in elastic modulus that reflect heterogeneity of the sample material properties (Figure 
S6B); a pointwise elastic modulus that starts low at shallow depths and increases as the probe 
indents deeper suggests a composite sample with a soft layer on top of a stiffer substrate. The 
master curve for a SOFT configuration with 3-µm top layer and 35-µm substrate, defining the 
effective inclusion volume fraction (feff) vs. indentation depth (gray line, Figure S6C), was then 
combined with the pointwise modulus to obtain the modulus vs. volume fraction relationship at 
matched indentation depths (Figure S6D); the included data spanned a 30% volume fraction 
range of 0.3-0.6 (black data points in Figure S6C), reflecting an indentation depth of 0.54 to 
1.56 µm (the shaded regions in Figures S6A and S6B).  Fitting the modulus vs. volume fraction 
data with the modified Eshelby theory (2) yielded estimates of the substrate modulus (at feff = 0) 
and inclusion modulus (at feff = 1), corresponding to Emed (41.2 kPa) and Eint (4.1 kPa), 
respectively (Figure S6D). In this demonstration, the HED analysis included a volume fraction 
range of about 0.3 to 0.6 (30% coverage) and showed a robust reconstruction of media and 
intima elastic properties consistent with the overall mean values of Emed (37.45 ± 6.29 kPa) and 
Eint (6.64 ± 0.78 kPa) obtained in this study (see Figure 9 in main text). 
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Force vs. Depth Figure S6: Representative 
experimental AFM indentation 
responses on wild type mouse 
abdominal aorta in the FLAT 
configuration, showing (A) 
indentation force vs. depth, (B) 
pointwise elastic modulus vs. 
depth, (C) inclusion volume 
fraction vs. depth, and (D) the 
resulting modulus vs. volume 
fraction (feff) curve used to extract 
the layer-specific aorta elastic 
properties, E

med
 = 41.2 kPa (feff = 

0) and E
int 

= 4.1 kPa (feff = 1), for 
the media and intima, 
respectively. Note that the shaded 
regions (0.54-1.56 µm) in panels 
(A) and (B) correspond to the 
inclusion volume fraction range of 
0.3-0.6 in panels (C) and (D). 
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 As mentioned in the Discussion, Sokolov and coworkers accounted for the steric 
interaction with a soft superficial brush structure to improve estimation of elastic properties of a 
stiffer cellular material underlying a surface layer of glycoproteins and membrane protrusions (5, 
6), but the biophysics of this model is fundamentally different than our case of bonded elastic 
layers, where penetration of the top layer does not occur.  The Sokolov study also showed that 
the substrate modulus can be estimated by neglecting the brush region of the indentation 
response and fitting the elastic Hertz model only to the deepest indentation data.  Other 
investigators have used a similar approach to examine depth-dependent changes in elastic 
properties of biological samples (7).  This is similar to the Linearized-Hertz approach of Kaushik 
et al. (8), in which bi-layer properties of a soft-on-stiff sample are extracted by neglecting the 
transition zone and selectively fitting the Hertz model to the shallow-indentation and deep-
indentation regimes.  To test the efficacy of this approach compared to HED analysis, the FEM 
was used to simulate AFM indentation using a 25-µm spherical probe, and a bi-layer sample with 
a 3-µm thick top layer in either a SOFT inclusion configuration (1-kPa layer on a 10-kPa 
substrate) or a STIFF inclusion configuration (100-kPa layer on a 10-kPa substrate).  As shown 
in Figure S7A and B, for the SOFT inclusion case, when the Hertz-type model was restricted to 
the initial 10% of the indentation range (0 to 0.3 µm) or the final 10% of the indentation range 
(2.7 to 3.0 µm), the estimated modulus values were Einc = 3.65 kPa and Esub = 7.90 kPa, 
respectively.  Using the same approach for the STIFF inclusion case (Figure S7D and E), the 
estimated modulus values were Einc = 29.50 kPa and Esub = 12.32 kPa.  In comparison, the HED 
analysis yielded Einc = 1.27 kPa and Esub = 9.60 kPa for the SOFT layer configuration (Figure 
S7C), and Einc = 90.66 kPa and Esub = 10.01 kPa for the STIFF layer configuration (Figure S7F).  
Thus, although the modified Hertz approach was able to distinguish the soft-on-stiff from the 
stiff-on-soft heterogeneity configurations, accuracy of the estimated layer-specific modulus 
values was markedly improved using the HED analysis.  

 

Figure S7: Comparison of Hertz-type (A, B, D, E) and HED (C, F) analysis methods for SOFT (A, B, C) and 
STIFF (D, E, F) layer inclusion configurations simulated using FEM (see text for details).  Thick lines and 
symbols represent the FEM data, thin lines represent model fits.  White region in Hertz-type graphs shows 
subregion of data used for fitting. 
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