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 17 

Abstract 18 

Background: The golden apple snail (Pomacea canaliculata) is a worldwide fresh 19 

water snail listed in the top-100 worst invasive species, and a noted agricultural and 20 

quarantine pest causing huge economic loss, characterized with fast growth, strong 21 

stress tolerance, high reproduction rate, and adaptation to a broad range of 22 
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environments.  23 

Results: Here, we used long-read sequencing to produce a 440-Mb high-quality 24 

chromosome level assembly for P. canaliculata genome. In total, 50 Mb (11.4%) 25 

repeat sequences and 21,533 gene models were identified in the genome. Major 26 

findings of this study include the recent explosion of DNA/hAT-Charlie TEs, the 27 

expansion of P450 gene family and the constitution of cellular homeostasis system, 28 

contributing to the ecological plasticity in the stress adaptation. In addition, the 29 

perivitellin gene expansion and high transcriptional level in ovary promote the 30 

function of nutrients supplying and defense ability in the eggs. Furthermore, the gut 31 

metagenome also encodes rich genes for food digestion and xenobiotics degradation.  32 

Conclusions: These findings collectively provide novel insight into the molecular 33 

mechanisms of the ecological plasticity and high invasiveness. Our results not only 34 

strengthen the understanding of molluscs genomics and biological invasion, but also 35 

benefit preventing the invasion of apple snail and transmission of pathogenetic 36 

parasites. 37 

Keywords: golden apple snail, Pomacea canaliculata, genome, adaptive evolution, 38 

stress tolerance, P450, reproduction, perivitelline, metagenome 39 

Background 40 

The golden apple snail Pomacea canaliculata (family Ampullariidae; Order 41 

Architaenioglossa) is a fresh water snail listed in the 100 of the world's worst invasive 42 

species [1], and considered as a noted agricultural and quarantine pest worldwide [2]. 43 
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Native to the tropical and subtropical South American, the P. canaliculata gradually 44 

spread to the non-indigenous region, such as Southeast and East Asia [3], Africa [4], 45 

North America [5], Oceania [6] and even Europe [7], and the successful 46 

biological invasion was due to polyphagous feeding habits [8], voracious appetite [9], 47 

broad environmental adaptability [10] and rapid growth and high rate of reproduction 48 

[11]. Besides the ecological impact, the P. canaliculata ravaged a wide range of crops 49 

including grain, fruit and vegetable [12], causing severe economic loss each year as a 50 

result of yield loss, replanting cost and the funds of control 51 

(https://www.cabi.org/isc/datasheet/68490). More seriously, P. canaliculata has 52 

involved in the transmission of a human fatal disease, Eosinophilic meningitis, that 53 

firstly appeared in East Asia where people take them as food frequently [13]. During 54 

this pathophoresis, P. canaliculata acts as an important intermediate host of 55 

pathogenic parasite Angiostrongyulus cantonensis, and the range of infectious regions 56 

is still expanding, causing great challenge to human health [14, 15].  57 

Molluscs is a highly diverse group and second only to arthropods in species 58 

number [16], and the high biodiversity makes molluscs an excellent model to address 59 

the issues such as biogeography, adaptability and evolution process [17], and the 60 

worldwide invasive P. canaliculata provides valuable potential in these fields [18]. As 61 

a primitive circumtropical species, P. canaliculata possesses strong ecology plasticity 62 

to hold advantage on plenty of aspects, including low temperature resistance [19], 63 

drought tolerance [20], which contributes to succeed in resource acquisition over the 64 

competitive species. Additionally, P. canaliculata is tolerant with heavy metal 65 
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contamination. When living in contaminated water, its gill is enriched of high 66 

concentration of heavy metal and histopathological changes in digestive tract is 67 

detected, however, with extremely low mortality rate [21]. For protection of embryos, 68 

the conspicuous coloration and neurotoxic lectin could confer the eggs a survival 69 

advantage and defense against the potential predator [22]. Moreover, the 70 

immune-neuroendocrine system can also be detected in P. canalicula, demonstrates 71 

by the existence of a specific immune memory after the bacterial challenge [23, 24], 72 

broadening the studies of invertebrate immunology. 73 

During the past years, the genomic features of P. canalicula have been increasingly 74 

studied. After the discovery of 14 pachytene bivalents in the karyotype [25], 75 

molecular markers were identified to investigate the genetic diversity of P. 76 

canaliculata population, including 369 amplified fragment length polymorphism 77 

(AFLP) locis [26], 16,717 simple sequence repeats (SSR) [27, 28] and 15,412 78 

single-nucleotide polymorphisms SNPs [29]. In addition, multiple transcriptome 79 

analyses have been performed to investigate the adaptation, invasion and immune 80 

mechanisms. For instance, Sun et al. reported 128,436 unigenes based on a de novo 81 

assembly of Illumina reads [29], transcriptome changes in response to heat stress and 82 

starving incubation was used to characterize invasive and adaptive abilities [30, 31], a 83 

transcriptome analysis between invasive P. canaliculata and indigenous 84 

Cipangopaludina cahayensis provides insights into biological invasion [28], and 402 85 

immune-related differentially expressed genes (DEGs) by Lipopolysaccharide (LPyS) 86 

challenge were used to explore the mechanisms against pathogens [32]. Furthermore, 87 
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proteomics tools such as Isobaric Tags For Relative, Absolute Quantitation (iTRAQ), 88 

and Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) were also 89 

applied in the study of protein expression for the estivation and oviposition [33, 34], 90 

together providing plentiful omics-data for the functional analysis of P. canalicula. 91 

However, researches at whole genome level in P. canaliculata still lags far behind 92 

other molluscs species, due to the lack of a high-quality reference genome. By far, 93 

multiple draft genomes of molluscs have been published, such as Califonia sea hare 94 

[35], Pacific oyster [36], Pearl oyster [37], owl limpet [38], California two-spot 95 

octopus [39], deep-sea mussel [40], Biomphalaria snails [41], greatly promoting the 96 

research of molluscs genomics. In this study, we present a chromosome-level genome 97 

assembly of P. canalicula with high-quality gene annotation, transcriptome data from 98 

several tissues and under various conditions, as well as the metagenomic data from 99 

the intestinal tracts, all of which were then applied to study the species-specific 100 

invasive characters, such as cellular homeostasis system underlying strong stress, and 101 

color and nutrient of the eggs. Our data will not only strengthen the understanding of 102 

evolutionary mechanisms of molluscs and molecular basis of biological invasion, but 103 

also foster developments to control the invasion of P. canalicula and interrupt the 104 

transmission of pathogenetic nematode parasites. 105 

RESULTS 106 

Complete genome assembly at chromosome level 107 

We generated 26.6 Gb (60.1 X) PacBio SMRT raw reads with average read length 108 
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10.1 Kb, and 291 Gb (652.4 X) Illumina HiSeq paired-end reads with read length 109 

150-250 bp, using DNA extracted from one single adult P. canaliculate (Table S1). 110 

The 24.4 Gb (55.4 X) clean PacBio SMRT reads that passed quality filtering were 111 

assembled by smartdenovo (https://github.com/ruanjue/smartdenovo), giving rise to 112 

an assembly of 1234 raw contigs with total length 473.6 Mb and N50 length 1.0 Mb. 113 

After filtering of alternatively heterozygous contigs, 745 resulting contigs with total 114 

length 440.1 Mb and N50 length 1.1 Mb were taken as the final contigs. Previous 115 

karyotype research shown that haploid P. canaliculate genome consist of 14 116 

chromosomes [25]. Based on Hi-C data, 439.5 Mb (99.9%) final contigs were 117 

anchored and oriented into 14 large scaffolds, each corresponding to a natural 118 

chromosome (Figure 1a and Figure 1b), with the longest 45.4 Mb and shortest 27.2 119 

Mb. This assembly quality is much better than the other published mollucan genomes 120 

so far (Table 1). Besides the length and continuity of assembled sequences, another 121 

important aspect for evaluating genome assembly is the ratio of genome coverage. 122 

With an estimated genome size of 446 Mb based on distribution of k-mer frequency 123 

[42] (Figure S1), ~98.6 % of the genome has been assembled in P. canaliculata. To 124 

further confirm the accuracy and completeness of the assembly, we mapped the 125 

Illumina shotgun reads to the assembled reference genome. Significantly, 97% and 95% 126 

of the genome-derived and transcriptome-derived reads could be aligned to the 127 

reference genome, respectively, suggesting no obvious bias for sequencing and 128 

assembly. Additionally, the mitochondrial genome of P. canaliculata was also 129 

assembled as a single contig with 15,707 bp in length, which has 99.9 % sequence 130 
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identity to the published mitochondrial genome (GenBank: KJ739609.1) (Figure S2). 131 

The high-quality reference genome provides a good foundation for gene annotation. 132 

The protein-coding genes were predicted on the reference genome by EVM, 133 

integrating evidences from de novo prediction, transcriptome and homology data. In 134 

total, 21,533 gene models were predicted as the reference gene set, with coding 135 

regions spanning ~32.2 Mb (7.3 %) of the genome (Table 1 and  Table S2). The 136 

distribution of CDS length in P. canaliculata is similar to the closely related species 137 

(Figure 1c). Overall, 97.5 % of the reference genes were supported by transcriptome 138 

data, and 98.0 % of eukaryote core genes from OrthoDB (http://www.orthodb.org/) 139 

were identified in the reference gene set by BUSCO, comparable to the other 140 

published mollucan genomes (Table 1). For the functional annotation, a total of 141 

19,815 (91.9 %) reference genes were annotated by at least one functional database. 142 

Specifically, 15,662 (72.7 %), 13,769 (63.4 %), 17,081 (79.3 %), 18,847 (87.5 %) and 143 

17,003 (79.9 %) reference genes were annotated with eggNOG, KEGG, NR, Interpro 144 

and Uniprot database, respectively (Figure S3).  145 

Signs of Adaptive Evolution in P. canaliculata Genome 146 

To gain insight into evolutionary perspective of P. canaliculata, the phylogenetic tree 147 

was built based on 471 high-confidence single-copy ortholog genes from seven 148 

related species (P. canaliculata, L. gigantea, A. california, B. glabrata, C. gigas, O. 149 

bimaculoides and L. anatina) by Phyml [43] and the divergence time was estimated 150 

using mcmctree [44]. The result shows that P. canaliculata diverged from the ancestor 151 
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of B. glabrata and A. California 290 million years ago (Mya), and from L. gigantea 152 

415 Mya (Figure 2a). 153 

Then, the molluscan ortholog genes were investigated for adaptive evolution. 154 

Utilizing pairwise protein sequence similarities, the gene family clustering was 155 

conducted by orthfinder [45]. A total of 152,878 reference genes from the seven 156 

species were clustered into 68,942 ortholog groups, amongst which 13,805 ortholog 157 

groups with at least two genes each. In P. canaliculata, we identified 9,626 ortholog 158 

groups, amongst which 117 and 5,462 ortholog groups undergone species-specific 159 

expansion, thus may play important roles in adaption to the environment as an 160 

invasive species. The functions of these orthologous groups are mainly related to 161 

glycan biosynthesis, digestive, endocrine, signal transduction, immune, or 162 

carbohydrate metabolism and so on (Figure S4). 163 

The high-coverage genome assembly enables a comprehensive analysis of the 164 

transposable elements (TEs), which plays multiple roles in driving genome evolution 165 

in eukaryotes [46]. In total, we identified 49.6 Mb TE sequences in the assembled P. 166 

canaliculata genome (Table 1), including 3.4 Mb long terminal repeats (LTR), 27.2 167 

Mb long interspersed elements (LINE), 17.5 Mb DNA transposons and 1.5 Mb short 168 

interspersed elements (SINE). Next, we analyzed the divergence rate of TEs for each 169 

class of TEs among the available sequenced mollusk genomes, interestingly, only the 170 

results of DNA transposons showed a unique peak at ~4% divergence rate for P. 171 

canaliculata and C. gigas (Figure 2b), indicating a recent explosion of DNA 172 

transposons in these two species. More than half of the DNA transposons belong to 173 
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the DNA/hAT-Charlie TE family, which is ~22.7% of total DNA/hAT-Charlie TEs in 174 

the genome. TEs are powerful facilitators of evolution by generating “evolutionary 175 

potential” to introduce small adaptive changes within a lineage, and the importance of 176 

TEs to stress responses and adaptation has been reported in numerous researches [47, 177 

48]. The recent explosion of DNA/hAT-Charlie TEs in P. canaliculata could also play 178 

important roles to promote the potential plasticity in the stress adaptation. 179 

Investigation of Cellular homeostasis system underlying strong stress adaptation 180 

Homeostasis system plays a crucial role in the stress adaptability, providing the 181 

molecular basis in re-establishing the dynamic equilibrium after the challenge of 182 

various environmental stressors, including temperature, air exposure, anthropogenic 183 

pollution and pathogens [49]. In the present study, we addressed three constituent 184 

parts of the cellular homeostasis system, which contributes to the successful 185 

ecological plasticity of P. canaliculata (Figure 3). Transcriptome data of the 186 

hemocytes after stimulus (cold, heat, heavy and air exposure) was also sequenced and 187 

analyzed to address the potential roles of the genes in Cellular homeostasis system.  188 

Unfolded protein response (UPR) system makes the central part of protein 189 

homeostasis [50]. Heat shock proteins (HSPs) acts as molecular chaperones to 190 

maintain the correct folding, and heat shock transcription factor 1 (HSF1) are 191 

responsible for the transcriptional induction of HSPs [51]. In P. canaliculata genome, 192 

13 HSP70s，6 HSP90s, 7 HSP40s and 11 HSFs were identified (Table S3), and the 193 

expression of HSP90s and HSFs were highly induced in response to the stress of heat, 194 
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cold, heavy metal and air exposure (Table S4). Inositol-requiring protein 1 (IRE1), 195 

protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 196 

(ATF6) are three mediators recruited by endoplasmic reticulum (ER) to regulated the 197 

UPR [52]. We found putative coding genes of the three core mediators, their 198 

respective downstream transcription factors, and the corresponding recognition 199 

chaperons in P. canaliculata genome (Table S3). 200 

Xenobiotic biotransformation system helps the mollusc adapt to toxicants, especially 201 

the pesticide in aquatic environments [53]. Manual annotation on this genome 202 

identified 157 cytochrome P450s (CYP450s), 15 flavin-containing monooxygenases 203 

(FMOs), 53 glutathione S-transferases (GSTs) and 105 ATP binding cassette (ABC) 204 

transporters, most of which showed an up-regulation in expression under stress (Table 205 

S3, Table S4). These proteins are evidenced to function in contaminant detecting, 206 

conjugative modification and expulsion for xenobiotic detoxification [54-56]. 207 

Massive production of reactive oxygen species (ROS) and reactive oxygen 208 

intermediates (ROI) induced by stress lead to many pathological conditions, and 209 

antioxidant system protect the organism from superoxide [57]. Four main antioxidant 210 

enzyme classes, namely superoxide dismutase (SOD), catalase (CAT), peroxidase 211 

(Prx), and glutathione peroxidase (GPX), were found in the P. canaliculata with an 212 

elevating global expression in response to stress (Table S3, Table S4). 213 

Apoptosis is a process of cell death when sensing stress and the regulation of 214 

apoptosis maintains the dynamic homeostasis of internal environment. In P. 215 

canaliculata, we propose the existence of both intrinsic and extrinsic apoptotic 216 
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signaling pathways, evidenced by the presence of homologous genes involve in both 217 

pathways. It seems these two pathways could be activated by cytochrome C and 218 

tumor necrosis factor receptor (TNFR), respectively (Table S3). The inhibitors of 219 

apoptosis, such as XIAP, Bcl2 and Bak, are also detected with an increased expression 220 

in response to the stress (Table S4), which are expected to delay the apoptosis process 221 

and the cell death in stress response. 222 

The expansion of P450 gene family contribute to stress tolerance 223 

Cytochromes P450 (CYP) enzymes are a monooxygenase family with highly diverse 224 

structures and functions, broadly identified in all kingdoms of life [58]. P450s 225 

catalyze the reductive scission of molecular oxygen, and are responsible for the 226 

synthesis and metabolism of various molecules, including drugs, hormones, 227 

antibiotics, pesticides, carcinogens and toxins [59]. The synthesized hormones, such 228 

as glucocorticoids, mineralocorticoids, progestins, and sex hormones, are critical to 229 

stress response, growth and reproduction, and the endogenous and exogenous 230 

chemical metabolism helps the host combat with the toxic compounds [60].  231 

We found the P. canaliculata CYP gene family had greater level of expansion 232 

compared to the other molluscs. We identified 157 genes in the genome of P. 233 

canaliculata, and 128, 102, 135, 78, 52 and 94 genes from A. California, B. glabrata, 234 

C. gigas, L. gigantean, O. bimaculoides and P. fucata respectively under the same 235 

standard (Figure 4a). The expansive trend was also observed, compared with the 236 

model species, such as Homo sapiens (57), Mus musculus (102), Dario rerio (94) and 237 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 
 

Drosophila melanogaster (94) [61]. The gene expansion was mainly found in CYP2U 238 

and CYP3A sub-families, and fewer genes expanded in CYP4F. In mammals, CYP2U 239 

plays a role in the metabolism of fatty acid to generate bioactive eicosanoid 240 

derivatives, potentially regulating the development of immune function [62]. In P. 241 

canaliculata, 40 genes forged into the CYP2U clade, mainly expressing in 242 

hepatopancreas (Figure 4b and Table S5_a, Table S5_b). CYP3A acts as a versatile 243 

enzyme metabolizing a wide range of xenobiotics, and the productions promote the 244 

growth of various cell types [63]. The 56 CYP3A genes have comprehensive 245 

expression in hepatopancreas, gill and kidney (Figure 4b and Table S5_a, Table S5_b). 246 

CYP4F possesses epoxygenase activity, metabolizing fatty acid to epoxides to 247 

suppress hypertension, pain perception and inflammation [64]. 20 genes were 248 

identified in CYP4F, and several CYP4F genes present highly induced expression 249 

levels under the stress of cold, heat, heavy metal and air exposure, indicating their 250 

critical roles in the stress tolerance (Figure 4b and Table S5_a, Table S5_b). 251 

The perivitellin gene expansion and high transcriptional level in ovary enhance 252 

reproduction 253 

To adapt to the fast invasion life, besides the strong ability to stress tolerance, the P. 254 

canaliculata possesses a high reproductive rate, and one important contributor is their 255 

distinct eggs characterized with abundant nutrients, reddish or pinkish color, aerial 256 

oviposition and neurotoxic [22, 34]. In most gastropod eggs, Pervitelline Fluid (PVF) 257 

with large amounts of nutrients filled in space between the eggshell and the embryo, 258 

is composed of carbohydrates, lipids and proteins termed perivitellins, which is not 259 
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only responsible for the major supply of material and energy during embryogenesis, 260 

but also provide warning pigment and deadly toxicant against the predators [65]. 261 

Perivitellins of P. canaliculata (Pc) have been verified by proteomics approach and 262 

was further divided into three categories called Pc Ovorubin (PcOvo), PcPV2, PcPV3, 263 

which are all high-density lipoprotein (HDL) [66] (Figure 5a). We totally identified 18 264 

perivitellin genes from the P. canaliculata genome, compared to 2 and 1 perivitellin 265 

genes from A. california and P. fucata respectively, by aligning the seven reference 266 

perivitellin gene sequences (NCBI accession AFQ23940.1, AFQ23939.1, 267 

AFQ23938.1, AFQ23945.1, AFQ23937.1, P0C8G7.2, P0C8G6.2) to each genome 268 

sequences with the same method (blastn e-value 10-20). It is apparent that the copy 269 

number of perivitellin genes was expanded in P. canaliculata, and our orthologous 270 

and paralogous gene family data by orthoFinder confirmed this. Among the 20 271 

perivitellin genes in P. canaliculate, there are 2 PcOvo, 13 PcPV2, and 3 unclassified 272 

PVFs (Figure 5b and Table S6). The PcOvo carotenoprotein is responsible for the red 273 

coloration of the eggs and antioxidant to protect against sun radiation and desiccation 274 

[67, 68], while PcPV2 is reported to be neurotoxin implying lethal effect on rodents 275 

[22]. The expansion of these genes may enhance the underlying functions of nutrition 276 

and protection, offering the eggs an advantage of survival and improve the 277 

reproduction rate. 278 

The expression of 18 P. canaliculata perivitelline genes were detected in 7 tissues, 279 

including embryo, testis, ovary, kidney, gill, hepatopancreas and hemocyte. The 280 

highest expression of each gene concentrated in embryo and two sexual gland testis 281 
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and ovary, especially in the ovary (Figure 5b and Table S7), suggesting that their 282 

decoding proteins might be of importance in germ cell production and embryo 283 

development. Taken together, P. canaliculata distinguish its embryo development 284 

from other seven species on the preponderance of perivitellin gene number and high 285 

expression level, that further promotes corresponding function of nutrients supplying 286 

and defense ability and eventually contribute to reproduction. 287 

Gut microbiome plays important roles in stress resistance and food digestion 288 

The gut microbiome is well known as the second genome of animals, which plays key 289 

roles in food digestion, immune defense, etc that are essential to the animals. To 290 

investigate whether the gut microbiome has influence on the invasive life style, we 291 

collected gut digesta samples from 70 adults of P. canaliculata, and generated 31 Gb 292 

high quality metagenomic data on Illumina HiseqX10 platform. To our knowledge, 293 

this is the first high-depth sequencing of snail gut microbiome. A total of 1,142,095 294 

non-redundant genes were obtained, with an average open reading frame (ORF) 295 

length of 604 bp (Table S8). The taxonomic composition analysis showed that, at the 296 

phylum level, Proteobacteria was the predominant, followed by Verrucomicrobia, 297 

Bacteroidetes, Firmicutes, Spirochaetes, Actinobacteria, etc. (Table S9_a). At the 298 

genus level, the most abundant genera include Aeromonas, Enterobacter, 299 

Desulfovibrio, Citrobacter, Comamonas, Klebsiella and Pseudomonas. (Table S9_b), 300 

most of which were also presented in the snails of Achatina fulica [69, 70].  301 

It is interesting that some of the most abundant genera such as Desulfovibrio, 302 
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Citrobacter and Pseudomonas were reported to have strong abilities of removing 303 

heavy metals, by mechanisms of bioprecipitation and bioabsorption [71-73]. For 304 

example, the sulfur-reducing bacteria Desulfovibrio produced H2S that precipitate 305 

metals, and therefore reduced the toxic effects of dissolving metals [71]. Based on the 306 

KEGG pathway database, the complete sulfate reduction metabolism pathway was 307 

identified in the P. canaliculata gut microbiome. We suggested that the gut microbes 308 

might help P. canaliculata to confront with the environmental stress of heavy metals 309 

in hash conditions. In addition, a large number of genes in pathways of xenobiotics 310 

biodegradation and metabolism were annotated, corresponding to 288 KEGG 311 

orthologous groups (KOs) and 21 pathways (Table S10). As many of the pathways 312 

such as benzoate degradation, toluene degradation, xylene degradation and steroid 313 

degradation could not be identified in the host genome through KO analysis, we 314 

suggested that the microbial detoxification abilities may contribute the P. canaliculata 315 

to resist stresses caused by xenobiotics such as pesticides and environmental 316 

pollutants.  317 

In view of dietary digestion, the gut microbes were directly involved in breakdown of 318 

the cellulose portion, and previous studies have isolated some cellulolytic bacteria and 319 

evaluated the cellulolytic enzyme activities [74]. In our work, a broader range of 320 

carbohydrate active enzymes (CAZymes) were found. Of the 208 annotated CAZyme 321 

families, 99 were Glycoside Hydrolase (GH) families (Table S11). Enzymes that 322 

could be classified as cellulases, endohemicelluloses, debranching enzymes, 323 

oligosaccharide-degrading enzymes were all presented. These findings indicate that 324 
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the gut microbiome give assistance to digest a broad range of food sources, making P. 325 

canaliculata grow fast to adapt to an invasive life style. 326 

Conclusion and discussion 327 

Given its environmental invasiveness, broad stress adaptability and rapid reproduction, 328 

the golden apple snail P. canaliculata has received a vast of attention worldwide. 329 

However, the underlying genetic mechanism has not been comprehensively 330 

uncovered. The chromosome level genome of P. canaliculata presented in this study 331 

sheds first lights into the genomic basis of the ecological plasticity to various stressors. 332 

Major findings of this study include the recent explosion of DNA/hAT-Charlie TEs, 333 

the expansion of P450 gene family and the constitution of Cellular homeostasis 334 

system, contributing to the plasticity in the stress adaptation. Although the defined 335 

function of the recently originated TEs could not be confirmed, the explosion of TEs 336 

is deemed as powerful facilitators in adaptive evolution, indicating its important role 337 

in P. canaliculata’s stress resistance. UPR system, Xenobiotic biotransformation 338 

system and ROS system are major components of the Cellular homeostasis system, 339 

and especially P450s expands with specific functions. In addition, exclusive 340 

perivitellin genes are characterized from the P. canaliculata genome, contributing to 341 

the high reproductive rate and the expansion of habitats. Furthermore, the gut 342 

metagenome encodes rich genes for food digestion and xenobiotics degradation. 343 

These findings collectively provide novel insight into the molecular mechanisms of 344 

the ecological plasticity and high invasiveness. 345 
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The rich phenotypic and genetic diversity of molluscs make them an excellent species 346 

group to address many valuable issues about evolution, ecology and function. 347 

However, the genomic resource of Mollusca is still insufficient compared with other 348 

close phylums, such as Arthropoda and Nematoda, and few molluscs could be 349 

employed as model organism. P. canaliculata possesses potential to be a model 350 

organism of molluscs because of several inherent characters. For example, P. 351 

canaliculata is easy to acquire, for it has a broad global distribution originated from a 352 

primarily circumtropical environment. Due to the high adaptability, rapid growth and 353 

efficient reproduction, P. canaliculata also facilitate the cultivation in laboratory. We 354 

report a fine reference genome of P. canaliculata in the present study, which is the 355 

first chromosome level genome published in Mollusca. As the cellular complexity and 356 

the conservation of pathways, P. canaliculata could be a representative of Mollusca, 357 

so the genome described in this study can be used to advance our understanding of the 358 

molecular mechanisms for various scientific issues in Mollusca. 359 

 360 

Methods 361 

Samples collection and sequencing 362 

Adults of P. canaliculata were collected from a local paddy field in Shenzhen, 363 

Guangdong province, China, and maintained in aerated freshwater at 15 ± 2 °C for a 364 

week before processing. Genomic DNA was extracted from the foot muscles of a 365 

single P. canaliculata for constructing PCR free Illumina 350-bp insert libraries and 366 
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PacBio 20-kb insert library, and sequenced on Illumina HiSeq 2500 and PacBio 367 

SMRT platforms, respectively. The Hi-C library was prepared using the muscle tissue 368 

of another single P. canaliculate by following methods: Nuclear DNA was 369 

cross-linked in situ, extracted, and then digested with a restriction enzyme. The sticky 370 

ends of the digested fragments were biotinylated, diluted, and then ligated to each 371 

other randomly. Biotinylated DNA fragments were enriched and sheared again for 372 

preparing the sequencing library, which was then sequenced on a HiSeq X Ten 373 

platform (Illumina). 374 

Seven tissues including embryos (2 days post fertilization), gill, hemocytes, 375 

hepatopancreas, kidney, ovary and testis from six animals were collected as parallel 376 

samples. Next, animals were cultivated in 37 °C and 10 °C for 24 hours heat and cold 377 

tolerance, in Cr3+(2mg L-1), Cu2+(0.2mg L-1) and Pb2+(1mg L-1) for 24 hours heavy 378 

metal tolerance, and in waterless tank for 7 days air exposure. Then the hemocytes 379 

were harvested and stored, with three replicates for each group. In final, total 380 

messenger RNAs (mRNA) were extracted from the stored tissues of P. canaliculata 381 

materials for constructing cDNA libraries (insert 350-bp), and sequenced on an 382 

Illumina HiSeq 2500 sequencer.  383 

The intestinal digesta from 70 adult snails of P. canaliculata were collected, pooled 384 

into 6 samples and stored at −20 °C until microbial DNA was extracted. A 385 

combination of cell lysis treatments was applied, including five freeze-thaw cycles 386 

(alternating between 65 °C and liquid nitrogen for 5 min), repeated beads-beating in 387 

ASL buffer (cat. no. 19082; Qiagen Inc.), and incubated at 95 °C for 15 min. DNA 388 
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was isolated following the protocol reported protocol [75]. Paired-end libraries of 389 

metagenomic DNA were prepared with an insert size of 350 base pairs (bp) following 390 

the manufacture’s protocol (cat. no. E7645L; New England Biolabs). Sequencing was 391 

performed on Illumina HiSeq X10. 392 

 393 

Genome assembly and annotation 394 

The Illumina raw reads were filtered by trimming the adapter sequence and 395 

low-quality part, resulting in a clean and high-quality reads data with average error 396 

rate < 0.001. For the PacBio raw data, the short subreads (< 2 kb) and low-quality 397 

(error rate > 0.2) subreads were filtered out, and only one representative subread was 398 

retained for each PacBio read. The clean PacBio reads were assembled by the 399 

software samrtdenovo  (https://github.com/ruanjue/smartdenovo), then Illumina 400 

reads were aligned to the contigs by BWA-MEM, and single base errors in the contigs 401 

were corrected by Pilon (v1.16)  with parameters “-fix bases, -nonpf, -minqual 20”. 402 

The P. canaliculata genome is highly heterozygous illustrated by the double peaks on 403 

the distribution curve of K-mer frequency, and current assembly algorithm tends to 404 

collapse homozygous regions and report heterozygous regions in alternative contigs. 405 

To get a haploid reference contigs, we employed a whole-genome alignment (WGA) 406 

strategy by MUMmer v3.23 to recognize and selectively remove alternative 407 

heterozygous contigs, which were characterized by shorter length (less than 200 kb) 408 

and most regions (larger than 50%) can be aligned to another larger contig with 409 
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confident identity (higher than 80%). Next, Hi-C sequencing data were aligned to the 410 

haploid reference contigs by BWA-MEM, and then these contigs were clustered into 411 

chromosomes with LACH-ESIS (http://shendurelab.github.io/LACHESIS/). 412 

The gene models in P. canaliculata genome were predicted by EVidence Modeler 413 

v1.1.1 [76], integrating evidences from ab initio predictions, homology-based 414 

searches and RNA-seq alignments. Then, the protein-coding sequences were mapped 415 

by RNA-seq data and functionally annotated using UniProt and InterProScan 416 

(5.16-55.0) databases [77]. Finally, the gene models were retained if they had at least 417 

one supporting evidence from UniProt database, InterProScan domain and RNA-seq 418 

data. Gene functional annotation was performed by aligning the protein sequences to 419 

NCBI NR, UniProt, COG and KEGG databases with BLASTP v2.3.0+ under E-value 420 

cutoff of 10-5 and choosing the best hit. The pathway analysis and functional 421 

classification were conducted based on KEGG database [78]. InterProScan was used 422 

to assign preliminary GO terms, Pfam domains and IPR domains to the gene models. 423 

A de novo repeat library for P. canaliculata was constructed by RepeatModeler 424 

(v1.0.4; http://www.repeatmasker.org/RepeatModeler.html). TEs in the P. canaliculata 425 

genome were also identified by RepeatMasker (v4.0.6; http://www.repeatmasker.org/) 426 

using both Repbase library and the de novo library. Tandem repeats in the P. 427 

canaliculata genome were predicted using Tandem Repeats Finder v4.07b [79]. The 428 

divergence rates of TEs were calculated between the identified TE elements in the 429 

genome and their consensus sequence at the TE family level.  430 

 431 
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Evolutionary analysis 432 

Orthologous and paralogous groups were assigned from seven species (P. 433 

canaliculata, Lottia gigantea, Aplysia california, Biomphalaria glabrata, Crassostrea 434 

gigas, Octopus bimaculoides and Lingula anatina) by OrthoFinder [45] with default 435 

parameters. Orthologous groups that contain only one gene for each species were 436 

selected to construct the phylogenetic tree. The protein sequences of each gene family 437 

was independently aligned by muscle v3.8.31 [80] and then concatenated into one 438 

super-sequence. The phylogenetic tree was constructed by maximum likelihood (ML) 439 

using PhyML v3.0 [43] with best-fit model (LG+I+G) that was estimated by ProtTest3 440 

[81]. The Bayesian Relaxed Molecular Clock (BRMC) approach was adopted to 441 

estimate the neutral evolutionary rate and species divergence time using the program 442 

MCMCTree, implemented in PAML v4.9 package [44]. The calibration time (fossil 443 

record time) interval (173-398 Mya) of Octopus bimaculoides was adopted from 444 

previous results. 445 

 446 

Transcriptome data analysis 447 

Transcriptome reads were mapped to the reference genome of P. canaliculata using 448 

TopHat (v. 2.1.0) with default settings. The expression level of each reference gene in 449 

terms of FPKM was computed by cufflinks v2.2.1. A gene was considered to be 450 

expressed if its FPKM >0. Differential gene expression analysis was conducted using 451 

cuffdiff v2.2.1.  452 
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 453 

Metagenome data analysis 454 

Raw reads were cleaned to exclude adapter sequences, low quality sequence, as well 455 

as contaminated DNA. The adapter sequence in reads were identified and trimmed by 456 

an ungapped dynamic programming algorithm; the low-quality part (head or tail) of 457 

reads were trimmed off to ensure that the average error rate of the left reads is lower 458 

than 0.001; the reads that mapped to the contaminated DNA by BWA-MEM [82] were 459 

filtered out; finally, shorter reads (length < 75-bp) and unpaired reads were excluded 460 

to form a clean reads data. The BWA database built for cleaning contamination 461 

included genomes of 10 species: P. canaliculata genome, Brassica rapa genome, 462 

Oryza sativa genome, 2 Angiostrongylus cantonensis genomes, Caenorhabditis 463 

elegans genome, schistosoma mansoni genome, clonorchis sinensis genome, fasciola 464 

hepatica genome, Danio rerio genome, and human hg38 genome. 465 

The clean reads were assembled by metaSPAdes (v3.11.1) [83] under pair-end mode 466 

for each sample, then gene prediction was performed on contigs longer than 500 bp 467 

by Prodigal (v2.6.3) [84] with parameter “-p meta”, and gene models with cds length 468 

less than 102 bp were filtered out. A non-redundant (NR) gene set (539,344 genes) 469 

was constructed using the gene models predicted from each samples by cd-hit-est 470 

(v4.6.6) [85] with parameter “-c 0.95 -n 10 -G 0 –a S 0.9”, which adopts a greedy 471 

incremental clustering algorithm and the criteria of identity > 95% and overlap > 90% 472 

of the shorter genes. Then, the clean reads were mapped onto this NR gene set by 473 
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BWA-MEM with the criteria of alignment length ≥ 50bp and identity > 95%. The 474 

unmapped reads from all samples were assembled together, and genes were predicted 475 

again. The newly predicted genes were combined with the previous gene set by 476 

cd-hit-est to get a new NR gene set (1,147,339 genes). After the taxonomic 477 

assignments to the new NR gene set, 5244 genes classified as Eukaryota but not fungi 478 

were removed, and the final NR gene set (1,142,095 genes) was obtained. 479 

Taxonomic assignments for the final NR genes were made on the basis of DIAMOND 480 

[86] protein alignment against the NCBI-NR database by CARMA3 [87]. Functional 481 

annotation was performed by aligning all the protein sequences to the KEGG [88] 482 

database (release 79) using DIAMOND and taking the best hit with the criteria of 483 

E-value < 1e-5. CAZymes were annotated with dbCAN (release 5.0) [89] using 484 

HMMER (v3.0) hmmscan [90] by taking the best hit with E-value < 1e-18 and 485 

coverage > 0.35. 486 

The clean reads from each sample were aligned against the gene catalog (1,142,095 487 

genes) by BWA-MEM with the criteria of alignment length ≥ 50bp and identity > 488 

95%. Sequence-based gene abundance profiling was performed as previously 489 

described [91]. Taxonomic profiles of the samples were calculated by adding the gene 490 

abundance together according to the taxonomic assignment result.  491 
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Abbreviations 494 

P. Canaliculata, Pomacea canaliculata; L. gigantean, Lottia gigantean;  495 

A. California, Aplysia California; B. glabrata, Biomphalaria glabrata; C. gigas, 496 

Crassostrea gigas; O. bimaculoides, Octopus bimaculoides; L. anatine, Lingula 497 

anatine; P. fucata, Pinctada fucata; Hem, hemocyte; Te, testis; Ov, ovary; Kn, kidney; 498 

GI, gill; Hp, hepatopancreas, Em, embryo; SSR, simple sequence repeats; mya, 499 

million years ago; BLAST, basic local alignment search tool; SNP, single nucleotide 500 

polymorphism; PVF, Pervitelline Fluid; Ovo, ovorubin; AFLP, amplified fragment 501 

length polymorphism; DEGs, differentially expressed genes; LPyS, 502 

Lipopolysaccharide; iTRAQ,  Isobaric Tags For Relative, Absolute Quantitation; 503 

LC-MS/MS, Liquid Chromatography-tandem Mass Spectrometry; TEs, transposable 504 

elements; LTR, long terminal repeats; LINE, long interspersed elements; SINE, short 505 

interspersed elements; UPR, Unfolded protein response; HSPs, heat shock proteins; 506 

HSF1, heat shock transcription factor 1; PERK, protein kinase RNA-like ER kinase; 507 

ATF6,activating transcription factor 6; ER, endoplasmic reticulum; CYP450s, 508 

cytochrome P450s; FMOs, flavin-containing monooxygenases; GSTs, glutathione 509 

S-transferases; ABC, ATP binding cassette; ROS, reactive oxygen species; ROI, 510 

reactive oxygen intermediates; SOD, superoxide dismutase; CAT, catalase; Prx, 511 

peroxidase; GPX,  glutathione peroxidase; TNFR, tumor necrosis factor receptor; 512 

NR, non-redundant genes; ORF, open reading frame; Kos, orthologous groups; 513 

CAZymes, carbohydrate active enzymes; GH, Glycoside Hydrolase. 514 
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Legends of Tables and Figures 553 

Tables 554 

Table 1. Summary of assembly and annotation of mollusk genomes 555 
Genome feature P. canaliculata L. gigantea A. california B. glabrata C. gigas O. bimaculoides 
Assembled sequences (bp) 440,071,717  359,505,668  927,310,431  916,377,450  557,735,934  2,3381,887,882 
Contig N50 size (bp) 1,072,857 94,165 9,817 18,978 37,218 5,982 
Contig N90 size (bp) 303,904 10,180 1,626 5,132 11,109 1,606 
Scaffold N50 size (bp) 31,531,291  1,870,055  917,541  48,059  401,685  475,182  
Scaffold N90 size (bp) 23,662,357  74,480  207,390  817  68,181  79,088  
GC content (%) 40.3  33.3  40.3  36.0  33.4  36  
No. of gene models 21,533  23,824  19,909  14,224  28,402  15,814  
Avg. CDS length (bp) 1,497  1,136  1,568  1,066  1,472  1,535  
BUSCO (%) 98.9 98.4 98.7 72.8 99.4 98.7 
Transposable elements (bp) 49,579,006  37,369,817  202,174,499  189,550,886  103,381,274  737,398,096  
Tandem repeat (bp) 873,801  257,674  8,263,822  2,145,821  590,907  62,633,792  

 556 

Figures 557 

Figure 1. The genome characteristics of P. canaliculata. (a) Circos plot showing the 558 

genomic features. Track 1: 14 linkage groups of the genome; Track 2: distribution of 559 

transposon elements in chromosomes; Track 3: protein-coding genes located on 560 

chromosomes; Track 4: distribution of GC contents. (b) A genome-wide contacting 561 

matrix from Hi-C data between each pair of the 14 chromosomes, using 100 kb 562 

window size. The color value means the logarithm of valid reads to base 2 (log2(valid 563 

reads)). (c) Distribution of CDS length in six closely related species. 564 

 565 

Figure 2. Evolutionary genomic analysis between P. canaliculata and other 566 

molluscs. (a) Phylogenetic placement of P. canaliculata within the molluscs dated 567 

tree. The estimated divergence time were shown on each branching point, the species 568 

marked with red color was P. canaliculata. (b) Distribution of divergence rate for the 569 

class of DNA transposons in molluscs genomes. The divergence rate was calculated 570 

by comparing all TE sequences identified in the genome to its corresponding 571 
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consensus sequence in each TE subfamily. The red arrow indicates the P. canaliculata 572 

and C. gigas had a recent explosion of TEs at ~4% divergence rate. 573 

 574 

Figure 3. The cellular homeostasis system in P. canaliculata. Unfolded protein 575 

response (UPR) system included HSPs and HSF in the heat shock response and CNX, 576 

NEF, GRP94, BIP, HSP40, ATF6, IRE1, PERK, COP2, XBP, ATF4, TRAM and 577 

Derlin in the endoplasmic reticulum unfolded-protein response (UPR-ERAD). 578 

Apoptotic pathways included XIAPs, Bcl2, caspases, TNFR, and FADD. The 579 

antioxidant systems included PRX, SOD, CAT and GPX. The xenobiotic 580 

biotransformation system included EPHX3, P450, FMO and ABC transpoter. Gene 581 

boxes for gene families with the filled colors represent the degree of upregulation 582 

(FPKM-stimulus/FPKM-control) by an ovreall result of stress including heat, cold, 583 

heavy metal and air exposure. Pathways and genes were obtained based on KEGG 584 

annotation. 585 

 586 

Figure 4. The expansion of P450 gene family in P. canaliculata. (a) Phylogenetic 587 

tree demonstrating orthologous and paralogous relationships of all P450 genes from 7 588 

species including P. canaliculata, A. california, B. glabrata, C. gigas, L. gigantea, 589 

O.bimaculoides and P. fucata. P450 genes from seven species were obtained based 590 

Pfam annotation (Interpro) with the E-value 10-5. Clades are labeled by P450 591 

subfamily names. The tree was constructed using the Maximum likelihood method in 592 

MEGA7, and branch length scale indicates average residue substitutions per site. (b) 593 

Phylogenetic tree of P450 genes in P. canaliculata, which is a subset of the 594 
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phylogenetic tree for the 7 species, and their heat map of expression (FPKM) in seven 595 

tissues (Hem, hemocyte; Te, testis; Ov, Ovary; Kn, kidney; Gl, gill; Hp, 596 

hepatopancreas; Em, Embryo), and heat map of induced expression 597 

(FPKM-stimulus/FPKM-control) under stress (Con: control; heat; cold; Hm: heavy 598 

metal; Exp: air exposure).  599 

 600 

Figure 5. The P. canaliculata perivitellins composition and expression in different 601 

tissues. (a) Pervitelline Fluid (PVF) is under the eggshell and surrounds the embryo, it 602 

contains carbohydrates, lipids, proteins, and the proteins is also known as perivitellins 603 

and classified into three categories of PcOvo, PcPV2, PcPV3. (b) The shown 604 

expression value is the logarithm of FPKM to base 2 (log2FPKM). The first 3 letters 605 

in each gene ID refer to three classes of perivitellins, uPV means unclassified 606 

perivitellins, PV2 means PcPV2, Ovo means PcOvo. Abbreviations were used for 7 607 

tissues (Hem, hemocyte; Te, testis; Ov, Ovary; Kn, kidney; Gl, gill; Hp, 608 

hepatopancreas; Em, Embryo). 609 

 610 
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Dear Laurie and Scott, 
 
We are delighted to submit our genome paper of golden apple snail to GigaScience. We appreciate 
any of your advices.  
 
It was 8 years ago that I worked on the panda genome project in BGI, and I have always been 
grateful for Laurie’s kind revision of that manuscript published in Nature. It was 6 years ago that I 
wrote a review paper on the sequence assembly algorithm, and I was in debt to Scott for helping 
me revise that manuscript later published on Briefings in Functional Genomics. Now I am 
working at Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, being a 
PI researcher in agricultural genomics, and focusing mainly in pest animals and microbiome.  
 
The golden apple snail is an important worldwide invasive animal, listed in the top-100 worst 
invasive species. It has become a major pest in the rice field, causing huge economic loss each 
year but lack of efficient preventing approaches. By PacBio sequencing and Hi-C technology, we 
have assembled the genome into 14 chromosomes, which is the best available genome sequence in 
Molluscs. Key findings include the recent explosion of DNA/hAT-Charlie TEs, the expansion of 
P450 gene family and the constitution of cellular homeostasis system, contributing to the 
ecological plasticity in the stress adaptation, as well as the perivitellin gene expansion and high 
transcriptional level in ovary that promotes the function of nutrients supplying and defense ability 
in the eggs. We also analyzed the gut metagenome and found rich genes for food digestion and 
xenobiotics degradation. The golden apple snail possesses potential to be a model organism of 
molluscs, and we believe that with a high-quality reference genome, it will become more 
important in molluscs researches. 
 
Thank you for your consideration. We would really appreciate if you could accelerate the 
processing of our manuscript given a highly competitive situation.  
 
Best wishes, 
 
Wei Fan 
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