

**Figure S1: Overview of LPS and LOS structure.** (*A*) A cartoon representation of the LOS and LPS structure of Gram-negative bacteria. The lipid A anchor, the core-oligosaccaride, and the O-antigen domains are indicated. Rough-LPS or R-LPS are LPS molecules lacking the O-antigen, as produced by *E. coli* K-12 strains. Organisms that synthesize LOS, such as *A. baumannii*, lack the machinery to produce the O-antigen polysaccharide. (*B*) The chemical structure of the lipid A moiety from either *E. coli* K-12 or *A. baumannii*. Isolates that are polymyxin resistant can modify their lipid A with additional moieties (not shown).



**Figure S2: Populations remain LOS-deficient after evolution experiment**. SDS-PAGE gels of proteinase K-treated cell lysates were stained for LPS using the ProQ-emerald 300 LPS staining kit. *E. coli* K-12 produces a LPS variant that is exclusively lipid A plus core sugars. *S. enterica* produces a full-length O-antigen, resulting in the characteristic banding pattern. *A. baumannii* produce LOS, which has a few additional sugars relative to *E. coli* K-12, causing it to run slightly higher (indicated by black arrow). For evolved status: A, ancestor and E, evolved.



**Figure S3: Populations do not produce lipid A after evolution experiment.** TLC analysis of lipid A extracted from populations before and after evolution experiment. In each case, LOS-deficient populations do not produce any detectable radiolabeled lipid A. The four spots present in *A. baumannii* preps that do produce lipid A represent the four main lipid A species that are produced in a wild-type cell (*43*). The arrow indicates the major lipid A species for *E. coli* K-12. *E. coli* K-12 controls were run on the same TLC plate as *A. baumannii* samples.



Figure S4: Phase microscopy shows that altered morphologies are independent of *mla* and *pldA*. (*A*) Phase microscopy of wild-type, population 2 LOS-deficient ancestor, and population 2 LOS-deficient evolved show that while the LOS-deficient ancestor exhibits a wide array of morphologies that drastically differ from wild-type, the evolved population 2 LOS-deficient strain exhibits a relatively uniform morphology. (*B*) Phase microscopy of the 19606  $\Delta mlaE/\Delta pldA$  double mutant LOS-deficient strain exhibits clear morphological defects relative to its isogenic, LOS<sup>+</sup> parent. Scale bars are 5 µm. Representative images of biological replicates are shown. We noticed cells with both atypical morphology (white arrow) and irregular division (green arrow).



**Figure S5:** The  $\Delta m la E |\Delta p l d A$  LOS-deficient strain lacks LOS and lipid A. (*A*) SDS-PAGE separation and staining of proteinase-K treated lysate reveals that the LOS-deficient double mutant does not produce LOS. (*B*) TLC analysis of radiolabeled lipid A extractions confirm that the LOS-deficient, 19606  $\Delta m la E |\Delta p l d A$  double mutant does not produce lipid A.



**Figure S6: Differentially regulated genes largely encode for proteins of unknown function.** Upregulated (*A*) and downregulated (*B*) genes in the evolved LOS<sup>-</sup> versus LOS<sup>+</sup> distributed by COG category. A large number of both up- and down-regulated genes have no predicted function. The two COG categories with a higher frequency of genes assigned to it are lipid metabolism and cell envelope biogenesis.



Figure S7: Gene expression for lipoproteins, lipoprotein transport, PNAG biosynthesis, and *baeRS* is decreased after evolution. (*A*) The expression of five lipoproteins which have been shown to be a conserved response to LOS-deficiency in *A. baumannii*. After evolution, the evolved LOS<sup>-</sup> bacteria show a decrease in overall expression relative to LOS<sup>+</sup> cells; however, these lipoproteins are still expressed. HMPREF0010\_01944, HMPREF0010\_01945, and HMPREF0010\_02739 have been shown to be cell surface exposed (*26*). (*B*) The expression of genes involved in PNAG biosynthesis. After the evolution experiment, the evolved LOS<sup>-</sup> no longer upregulate any *pga* genes. Similar trends were observed for the lipoprotein transport pathway (*C*) and *baeRS* two-component system (*D*). In (*A-D*), the x-axis is  $\log_2$  fold change. Green bars indicate expression for ancestor LOS<sup>+</sup> and blue bars indicate expression for evolved LOS<sup>-</sup> (evolved LOS<sup>+</sup>).



**Figure S8: A 19606**  $\Delta$ *mlaE* LOS- has a unique set of genes that are differentially regulated. A Venn-Diagram showing unique or conserved responses to LOS-deficiency between wild-type and a  $\Delta$ *mlaE* mutant. All genes in the Venn-Diagram had fold-change values log<sub>2</sub> of ± 2.

|            |        | Evolution     |              |             |             |             |
|------------|--------|---------------|--------------|-------------|-------------|-------------|
| Population | Strain | Status        | Polymyxin B* | Vancomycin* | Daptomycin* | Bacitracin* |
|            |        | Ancestor LOS- | 32           | 0.25        | 2           | 0.38        |
| 1          | 5075   | Evolved LOS-  | 1024         | 3           | 96          | 6           |
|            |        | Fold Change   | 32           | 12          | 48          | 15          |
|            |        | Ancestor LOS- | 128          | 0.25        | 3           | 0.75        |
| 5          | AYE    | Evolved LOS-  | 512          | 4           | 24          | 3           |
|            |        | Fold Change   | 4            | 16.0        | 8           | 4           |
|            |        | Ancestor LOS- | 256          | 0.38        | 3           | 0.5         |
| 8          | 19606  | Evolved LOS-  | 1024         | 4           | 96          | 6           |
|            |        | Fold Change   | 4            | 10.5        | 32          | 12          |

 Table S1. Antibiotic resistance profiles for additional populations

\* All units are in µg/mL

| Evolution/LOS<br>Status | Strain | Population       | Locus            | Gene        | Mutation                                       | Sequence          | Impact*       | Frequency† |
|-------------------------|--------|------------------|------------------|-------------|------------------------------------------------|-------------------|---------------|------------|
|                         |        | Denulation       | ABUW_0289        | PBP1A       | Insertion                                      | CTTGGTGA          | Val349fs      | 97.89      |
|                         |        |                  | ABUW_3259        | mlaA        | Insertion                                      | CCAGCTAATT        | GIn136fs      | 98.91      |
|                         |        | 1                | ABUW_1745        | <i>IpxA</i> | SNP                                            | C>T               | Gln255stop    | 100        |
|                         |        |                  | ABUW_0384        | mlaE        | Deletion                                       | C519              | Leu175fs      | 99.93      |
|                         |        |                  | ABUW_1199        | smr/mutS2   | SNP                                            | A>T               | Gln162Leu     | 99.89      |
|                         |        | Population       | ABUW_1664 <>     |             | Incortion                                      | CTTCCAC           |               | 00.42      |
|                         |        | 2                | ABUW_1666        |             | Insertion                                      | GIICGAG           |               | 99.4Z      |
|                         |        |                  | ABUW_1803        | pldA        | Replacement                                    | TT>AAAG           | Leu22fs       | 90.34      |
|                         | 5075   |                  | ABUW_0152        | IpxC        | Large In:                                      | sertion Confirmed | by Sanger Seq | uencing    |
|                         | 3073   |                  | ABUW_0385        | mlaD        | Insertion                                      | Т                 | lle161fs      | 100        |
|                         |        | Population       | ABUW_1199        | smr/mutS2   | SNP                                            | A>T               | Gln162Leu     | 100        |
|                         |        | r opulation<br>3 | ABUW_1803        | pldA        | Deletion                                       | T84               | Tyr28fs       | 95.65      |
|                         |        | 5                | ABUW_3566        | pgsA        | SNP                                            | C>T               | Ala56Val      | 87.69      |
|                         |        |                  | ABUW_0152        | IpxC        | Insertion                                      | ATTT              | Gly108fs      | 90         |
|                         |        | Population<br>4  | ABUW_0289        | PBP1A       | Deletion                                       | T2007             | Asn669fs      | 100        |
| Evolved LOS             |        |                  | ABUW_1803        | pldA        | Deletion                                       | 731T              | Val246fs      | 100        |
| Evolved LOS-            |        |                  | ABUW_3566        | pgsA        | SNP                                            | G>T               | Ala108Asp     | 100        |
|                         |        |                  | ABUW_0152        | lpxC        | Large Ins                                      | sertion Confirmed | by Sanger Seq | uencing    |
|                         |        | Population       | ABAYE0388        | mlaC        | Deletion                                       | 363T              | Tyr122fs      | 94.3       |
|                         |        | 5                | ABAYE1587        | lpxA        | Large Insertion Confirmed by Sanger Sequencing |                   |               |            |
|                         |        | Population       | ABAYE0388        | mlaC        | Deletion                                       | 363T              | Tyr122fs      | 100        |
|                         | AYE    | 6                | ABAYE1587        | lpxA        | Large Insertion Confirmed by Sanger Sequencing |                   |               | uencing    |
|                         |        | Population       | ABAYE0388        | mlaC        | Deletion                                       | 272C              | Thr91fs       | 100        |
|                         |        | 7                | ABAYE3503        | H-NS        | SNP                                            | G>A               | Arg91His      | 100        |
|                         |        | 1                | ABAYE1587        | lpxA        | Large Ins                                      | sertion Confirmed | by Sanger Seq | uencing    |
|                         |        |                  | HMPREF0010_00357 | IpxA        | SNP                                            | C>T               | Gln72stop     | 99.94      |
|                         |        | Population       | HMPREF0010_00206 |             |                                                |                   |               |            |
|                         |        | 8                | <>               |             | Insertion                                      | Т                 |               | 100        |
|                         |        |                  | HMPREF0010_00207 | _           |                                                |                   |               |            |
|                         |        | Population       | HMPREF0010_02485 | ompR        | SNP                                            | C>T               | Arg31Cys      | 100        |
|                         | 19606  | 9                | HMPREF0010_02484 | ompR        | SNP                                            | C>A               | Pro10Tyr      | 100        |
|                         |        |                  | HMPREF0010_00357 | IpxA        | SNP                                            | C>T               | GIn72stop     | 98.39      |
|                         |        | Population       | HMPREF0010_02484 | envZ        | SNP                                            | G>T               | Met264IIe     | 100        |
|                         |        | 10               | HMPREF0010_02484 | envZ        | SNP                                            | C>A               | synonymous    | 98.53      |
|                         |        |                  | HMPREF0010_02607 | mlaC        | Deletion                                       | 363-364 TT        | Tyr122fs      | 100        |

 Table S2: All mutations accumulated in evolved LOS<sup>-</sup> populations

| Evolution/LOS<br>Status | Strain | Population       | Locus            | Gene | Mutation | Sequence          | Impact*       | Frequency† |
|-------------------------|--------|------------------|------------------|------|----------|-------------------|---------------|------------|
| Evolved LOS-            | 19606  | Population<br>10 | HMPREF0010_03503 | lpxC | Large In | sertion Confirmed | by Sanger Sec | quencing   |

\*fs refers to frame shift

† Frequency refers to the number of times the SNP was identified relative to the total number of reads available for that sequence.

| Evolution/LOS<br>Status | Strain | Population | Locus                                       | Gene         | Mutation                                       | Sequence       | Impact*         | Frequency† |
|-------------------------|--------|------------|---------------------------------------------|--------------|------------------------------------------------|----------------|-----------------|------------|
|                         |        | Population | ABUW_1745                                   | lpxA         | SNP                                            | C>T            | Gln255stop      | 100        |
|                         |        | 1          | ABUW_3827                                   | hypothetical | Insertion                                      | 462A           | Gln155fs        | 88.64      |
|                         |        |            | ABUW_0384                                   | mlaE         | Deletion                                       | 519C           | Leu175fs        | 99.82      |
|                         |        | Dopulation | ABUW_1199                                   | smr/mutS2    | SNP                                            | A>T            | Gln162Leu       | 99.71      |
|                         |        |            | ABUW_1664 <>                                |              |                                                |                |                 |            |
|                         |        | 2          | ABUW_1666                                   |              | Insertion                                      | GTTCGAG        |                 | 99.72      |
|                         | 5075   |            | ABUW_0152                                   | lpxC         | Large Inse                                     | ertion Confirm | ed by Sanger Se | equencing  |
|                         |        | Population | ABUW_1199                                   | smr/mutS2    | SNP                                            | A>T            | Gln162Leu       | 100        |
|                         |        | 3          | ABUW_0152                                   | lpxC         | Insertion                                      | ATTT           | Gly108fs        | 90         |
|                         |        |            | ABUW_1199                                   | smr/mutS2    | SNP                                            | A>T            | Gln162Leu       | 100        |
|                         |        | Population | ABUW_1664 <>                                |              |                                                |                |                 |            |
|                         |        | 4          | ABUW_1666                                   |              | Insertion                                      | GTTCGAG        |                 | 100        |
| Ancestor LOS-           |        |            | ABUW_0152 IpxC Large Insertion Confirmed b  |              | ed by Sanger Se                                | equencing      |                 |            |
|                         |        | Population | ABAYE0388                                   | mlaC         | Deletion                                       | 363T           | Tyr122fs        | 94.3       |
|                         |        | 5          | ABAYE1587 IpxA Large Insertion Confirmed by |              | ed by Sanger Se                                | equencing      |                 |            |
|                         | AYE    | Population | ABAYE0388                                   | mlaC         | Deletion                                       | 363T           | Tyr122fs        | 91.18      |
|                         |        | 6          | ABAYE1587                                   | lpxA         | Large Insertion Confirmed by Sanger Sequencing |                |                 |            |
|                         |        | Population | ABAYE0388                                   | mlaC         | Deletion                                       | 272C           | Thr91fs         | 100        |
|                         |        | 7          | ABAYE1587                                   | lpxA         | Large Insertion Confirmed by Sanger Sequencing |                |                 |            |
|                         |        | Population |                                             |              |                                                |                |                 |            |
|                         |        | 8          | HMPREF0010_00357                            | lpxA         | SNP                                            | C>T            | Gln72stop       | 99.94      |
|                         | 19606  | Population |                                             |              |                                                |                |                 |            |
|                         | 19000  | 9          | HMPREF0010_00357                            | lpxA         | SNP                                            | C>T            | Gln72stop       | 100        |
|                         |        | Population |                                             |              |                                                |                |                 |            |
|                         |        | 10         | HMPREF0010_003502                           | lpxC         | Large Inse                                     | ertion Confirm | ed by Sanger Se | equencing  |
|                         |        | Population |                                             |              |                                                |                |                 |            |
| Ancestor LOS+           | 5075   | 1          |                                             |              |                                                |                |                 |            |
|                         |        | Population |                                             |              |                                                |                |                 |            |
|                         |        | 2          | ABUW_2146                                   | rnd          | Insertion                                      | 493TA          | Lys165fs        | 96.99      |

 Table S3: All mutations accumulated in ancestor and evolved populations

| Evolution/LOS<br>Status | Strain | Population      | Locus        | Gene      | Mutation  | Sequence | Impact*   | Frequency†     |
|-------------------------|--------|-----------------|--------------|-----------|-----------|----------|-----------|----------------|
|                         |        | Population      |              |           |           |          |           |                |
|                         | 5075   | 3               | ABUW_2146    | rnd       | Insertion | 493TA    | Lys165fs  | 96.99          |
|                         |        | Population      |              |           |           |          |           |                |
|                         |        | 4               | ABUW_2146    | rnd       | Insertion | 493TA    | Lys165fs  | 96.99          |
|                         |        | Population      |              |           |           |          |           |                |
|                         |        | 5               |              |           |           |          |           |                |
|                         | ΔVF    | Population      |              |           |           |          |           |                |
|                         |        | 6               |              |           |           |          |           |                |
|                         |        | Population      |              |           |           |          |           |                |
|                         |        | 7               |              |           |           |          |           |                |
|                         |        | Population      |              |           |           |          |           |                |
|                         |        | 8               |              |           |           |          |           |                |
|                         | 19606  | Population      |              |           |           |          |           |                |
|                         |        | 9               |              |           |           |          |           |                |
|                         |        | Population      |              |           |           |          |           |                |
|                         |        | 10              |              |           |           |          |           |                |
|                         |        |                 | ABUW_1199    | smr/mutS2 | SNP       | A>1      | GIn162Leu | 99.17          |
|                         |        | Population<br>1 | ABUW_1664 <> |           | 1         | CACTTA   |           | 100            |
|                         |        |                 | ABUW_1666    |           | Insertion | GAGIIIA  |           | 100            |
|                         |        |                 | ABUW_24/1    | dcaF      | SNP       | (>1      | Pro44Leu  | 99.52          |
|                         |        |                 | ABUW_0913    | рскы      | SNP       | G>A      | Arg15/His | 99.71          |
|                         |        | Population      | ABUW_1199    | smr/mutS2 | SNP       | (>1      | GIn162Leu | 99.82          |
| Evelve du OC i          | 5075   | 2               | ABUW_1664 <> |           | 1         | CTTCCAC  |           | 00 F           |
| Evolved LUS+            | 5075   |                 | ABUW_1666    |           | Insertion | GIICGAG  |           | 99.5           |
|                         |        | Denvilation     | ABUW_0913    | рско      | SNP       | G>A      | Arg15/His | 99.71          |
|                         |        | Population      | ABUW_1199    | smr/mutS2 | SNP       | (>1      | GIN162Leu | 99.82          |
|                         |        | 3               | ABUW_1664 <> |           | lucoution | CTTCCAC  |           | 00 5           |
|                         |        |                 | ABUW_1666    |           | Insertion | GIICGAG  |           | 99.5           |
|                         |        | Dopulation      | ABUW_0913    |           |           |          | AIg15/HIS | 99./1<br>00.92 |
|                         |        | Population      | ABUW 1004 5  | smr/mutS2 | SINP      | (>1      | GINI6ZLEU | 99.82          |
|                         |        | 4               | ABUW_1664 <> |           | Incontion | CTTCCAC  |           | 00 F           |
|                         |        |                 | AROM_1000    |           | insertion | GIICGAG  |           | 99.5           |

| Evolution/LOS<br>Status | Strain | Population | Locus            | Gene | Mutation  | Sequence | Impact* | Frequency† |
|-------------------------|--------|------------|------------------|------|-----------|----------|---------|------------|
|                         | AYF    | Population |                  |      |           |          |         |            |
|                         | ,      | 5          |                  |      |           |          |         |            |
|                         | AVE    | Population |                  |      |           |          |         |            |
|                         |        | 6          |                  |      |           |          |         |            |
|                         | AVE    | Population |                  |      |           |          |         |            |
|                         | ATE    | 7          |                  |      |           |          |         |            |
|                         | 19606  |            | HMPREF0010_00206 |      |           |          |         |            |
|                         |        | Population | <>               |      |           |          |         |            |
| Evolved LOS+            |        | 8          | HMPREF0010_00207 |      | Insertion | Т        |         | 100        |
|                         |        |            | HMPREF0010_00206 |      |           |          |         |            |
|                         | 19606  | Population | <>               |      |           |          |         |            |
| -                       |        | 9          | HMPREF0010_00207 |      | Insertion | Т        |         | 100        |
|                         |        |            | HMPREF0010_00206 |      |           |          |         |            |
|                         | 19606  | Population | <>               |      |           |          |         |            |
|                         |        | 10         | HMPREF0010_00207 |      | Insertion | Т        |         | 100        |

\* fs refers to frameshift

<sup>†</sup> Frequency refers to the number of times the SNP was identified relative to the total number of reads available for that sequence.

|        | Mla-Independent Fo                    | ld Changes                 |
|--------|---------------------------------------|----------------------------|
| Locus* | WT LOS <sup>-</sup> /LOS <sup>+</sup> | $m la E LOS^{-} / LOS^{+}$ |
| 03356  | 10.42                                 | 9.64                       |
| 02733  | 9.51                                  | 9.13                       |
| 00185  | 7.94                                  | 7.84                       |
| 02739  | 8.49                                  | 7.8                        |
| 03654  | 8.58                                  | 7.06                       |
| 00186  | 8.15                                  | 6.98                       |
| 104195 | 5.52                                  | 6.04                       |
| 01945  | 6.77                                  | 5.45                       |
| macA   | 5.95                                  | 5.1                        |
| IolA   | 5.84                                  | 5.01                       |
| 01944  | 4.83                                  | 4.95                       |
| 03355  | 5.14                                  | 4.92                       |
| 00247  | 3.25                                  | 4.68                       |
| macB   | 5.68                                  | 4.47                       |
| 02727  | 4.16                                  | 4.4                        |
| 02568  | 5.39                                  | 4.36                       |
| 02579  | 5.02                                  | 4.05                       |
| 03182  | 4.46                                  | 4.05                       |
| macC   | 5.45                                  | 3.93                       |
| ompW   | 3.3                                   | 3.88                       |
| 02249  | 3.88                                  | 3.85                       |
| 00385  | 2.63                                  | 3.71                       |
| 00069  | 4.15                                  | 3.69                       |
| IolB   | 4.32                                  | 3.66                       |
| 02797  | 3.23                                  | 3.51                       |
| 02675  | 3.76                                  | 3.47                       |
| 00266  | 3.28                                  | 3.42                       |
| mlaB   | 3.98                                  | 3.1                        |
| argA   | 3.4                                   | 3.1                        |
| 02025  | 3.34                                  | 3.07                       |
| kynU   | 3.67                                  | 2.83                       |
| 00694  | 3.36                                  | 2.83                       |
| baeS   | 3.37                                  | 2.81                       |
| mlaC   | 3.4                                   | 2.7                        |
| 02248  | 2.42                                  | 2.67                       |
| dsbA   | 3.95                                  | 2.66                       |

Table S4: Transcriptomic fold changes for the Mla-independent gene set

| 02071  | 3.35  | 2.64  |
|--------|-------|-------|
| 03516  | 2.87  | 2.64  |
| 02462  | 3.41  | 2.63  |
| 00184  | 2.78  | 2.55  |
| 01616  | 2.25  | 2.55  |
| 03111  | 2.04  | 2.43  |
| 03519  | 2.09  | 2.38  |
| 03113  | 2.03  | 2.27  |
| 03145  | 3.08  | 2.26  |
| 01939  | 2.49  | 2.25  |
| 02269  | 2.97  | 2.22  |
| proY   | 2.53  | 2.2   |
| 00792  | 3.17  | 2.13  |
| 03727  | 2.27  | 2.1   |
| 00990  | 2.69  | 2.07  |
| csgG   | -2.53 | -2.14 |
| 00606  | -4.31 | -2.16 |
| 03013  | -2.68 | -2.21 |
| 03661  | -2.08 | -2.31 |
| rhtB   | -3.17 | -2.37 |
| 104360 | -3.62 | -2.42 |
| pgpB   | -2.48 | -2.43 |
| 03531  | -3.47 | -2.68 |
| 03347  | -3.19 | -2.82 |
| 00516  | -3.05 | -2.88 |
| 00599  | -2.41 | -3.42 |
| 03348  | -4.47 | -4.96 |
| 00597  | -2.74 | -5.08 |
| 00598  | -3.49 | -5.38 |

\*Locus is preceded by HMPREF0010\_ for unannotated genes

| Mla-dependent Fold Changes |              |                |  |  |
|----------------------------|--------------|----------------|--|--|
| Locus*                     | WT LOS⁻/LOS⁺ | mlaE LOS⁻/LOS⁺ |  |  |
| 00466                      | -0.68        | 7.67           |  |  |
| 00467                      | -1.49        | 7.1            |  |  |
| 00468                      | -0.93        | 6.73           |  |  |
| 00469                      | -1.63        | 6.51           |  |  |
| 00470                      | -0.62        | 5.7            |  |  |
| 00471                      | -0.24        | 5.16           |  |  |
| 00472                      | 0.31         | 4.66           |  |  |
| 01245                      | -0.15        | 4.46           |  |  |
| 00194                      | -1.32        | 4.24           |  |  |
| acoA                       | -1.17        | 4.11           |  |  |
| 00473                      | -0.11        | 4.1            |  |  |
| 104260                     | 1.57         | 4.1            |  |  |
| 00463                      | -0.45        | 4.09           |  |  |
| benA                       | 1.39         | 4.02           |  |  |
| acoB                       | -1.39        | 3.94           |  |  |
| aroP3                      | -1.71        | 3.94           |  |  |
| benB                       | 0.78         | 3.92           |  |  |
| 00193                      | -2.16        | 3.77           |  |  |
| 00192                      | -2.53        | 3.76           |  |  |
| atoE                       | -1.47        | 3.73           |  |  |
| acoC                       | -1.34        | 3.71           |  |  |
| 00474                      | 0.49         | 3.7            |  |  |
| lipA2                      | -1.22        | 3.69           |  |  |
| 104270                     | -1.69        | 3.5            |  |  |
| 02254                      | -1.64        | 3.48           |  |  |
| lpdA2                      | -1.15        | 3.46           |  |  |
| 104275                     | -1.88        | 3.45           |  |  |
| 00637                      | -1.81        | 3.4            |  |  |
| 104765                     | 0            | 3.35           |  |  |
| mmsA                       | -1.16        | 3.33           |  |  |
| 00396                      | 1.89         | 3.26           |  |  |
| budC                       | -0.57        | 3.25           |  |  |
| mmsB                       | -0.97        | 3.18           |  |  |
| paaF                       | -2.14        | 3.15           |  |  |
| paaJ                       | -2.17        | 3.12           |  |  |

 Table S5: Transcriptomic fold changes for the Mla-independent gene set

|       | 1     |      |
|-------|-------|------|
| caiD  | -1.63 | 3.03 |
| bdhA  | -1.57 | 3    |
| 00673 | -0.25 | 2.98 |
| 00680 | 0.24  | 2.94 |
| 00646 | -1.15 | 2.88 |
| paaE  | -1.98 | 2.83 |
| paal  | -2.17 | 2.81 |
| benC  | 0.13  | 2.77 |
| 01003 | -1.84 | 2.75 |
| 01101 | -0.51 | 2.75 |
| рааХ  | -2.15 | 2.73 |
| 03117 | 1.42  | 2.7  |
| paaB  | -1.98 | 2.69 |
| paaK  | -2.09 | 2.69 |
| 03057 | 1.17  | 2.68 |
| 03231 | -0.22 | 2.68 |
| paaC  | -2.13 | 2.65 |
| paal  | -2.36 | 2.64 |
| 03725 | 1.14  | 2.62 |
| vanK  | 0.68  | 2.58 |
| paaH  | -1.88 | 2.55 |
| pobA  | -0.11 | 2.47 |
| 02778 | -0.44 | 2.45 |
| 03058 | 1.28  | 2.43 |
| 03115 | 1.58  | 2.42 |
| 03131 | 1.54  | 2.42 |
| 01007 | -1.84 | 2.41 |
| 02800 | -0.83 | 2.4  |
| paaY  | -1.9  | 2.36 |
| 01142 | 1.91  | 2.36 |
| mgh   | -2.12 | 2.31 |
| 02412 | 0.7   | 2.29 |
| vanA  | 0.52  | 2.29 |
| acsA  | 0.72  | 2.29 |
| 02936 | 1.9   | 2.28 |
| 01005 | -1.92 | 2.27 |
| 01008 | -2.03 | 2.27 |
| 00005 | 0.15  | 2.26 |
| 03119 | 1.83  | 2.26 |

| 03121  | 1.66  | 2.25  |
|--------|-------|-------|
| 03533  | 0.49  | 2.25  |
| 01010  | -2.25 | 2.24  |
| 03112  | 1.95  | 2.23  |
| pcaT   | -0.08 | 2.22  |
| 01011  | -2.1  | 2.22  |
| 23485  | 0.88  | 2.21  |
| paaZ   | -1.58 | 2.2   |
| 03724  | 1.11  | 2.2   |
| 01271  | 1.05  | 2.18  |
| 00635  | -0.27 | 2.16  |
| 01006  | -0.74 | 2.16  |
| 02419  | 0.66  | 2.16  |
| 03110  | 1.65  | 2.16  |
| 02411  | 0.85  | 2.14  |
| 00275  | 1.73  | 2.12  |
| benP1  | 0.56  | 2.12  |
| actP   | -0.13 | 2.12  |
| 00272  | 1.35  | 2.09  |
| 01002  | -0.8  | 2.08  |
| 02329  | 1.11  | 2.08  |
| 03118  | 1.82  | 2.08  |
| 03120  | 1.58  | 2.08  |
| 00267  | 1.13  | 2.07  |
| 02252  | -0.92 | 2.06  |
| 02409  | 0.54  | 2.03  |
| 00013  | 0.32  | 2.02  |
| 00985  | 0.58  | 2.01  |
| clpV   | -1.6  | -2    |
| gltD   | -0.78 | -2    |
| 01112  | -1.45 | -2.01 |
| 01115  | -1.04 | -2.04 |
| 01111  | -1.51 | -2.07 |
| 01116  | -1.2  | -2.09 |
| icmF   | -1.53 | -2.09 |
| 00650  | -1.88 | -2.19 |
| 01117  | -1.59 | -2.19 |
| 104310 | -1.51 | -2.26 |
| 00579  | -0.68 | -2.3  |

| -1.74 | -2.31                                                     |
|-------|-----------------------------------------------------------|
| -1.9  | -2.39                                                     |
| -0.47 | -2.42                                                     |
| -0.68 | -2.48                                                     |
| -1.87 | -2.61                                                     |
| -1.67 | -2.7                                                      |
| 1.88  | -2.84                                                     |
|       | -1.74<br>-1.9<br>-0.47<br>-0.68<br>-1.87<br>-1.67<br>1.88 |

\*Locus is preceded by HMPREF0010\_ for unannotated genes

## **Table S6: Strains and Plasmids**

| Strain                                         | Genotype                                                 | Reference                                     |
|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|
| E. coli W3110                                  | Wild type, F- λ-, <i>rph-1 IN(rrnD,</i><br><i>rrnE)1</i> | <i>E. coli</i> Genetic Stock<br>Center (Yale) |
| A. baumannii ATCC19606                         | Wild type                                                | ATCC                                          |
| A. baumannii 5075                              | Wild type                                                | ATCC                                          |
| A. baumannii AYE                               | Wild type                                                | ATCC                                          |
| A. baumannii ATCC19606                         | $\Delta m$ laE, $\Delta p$ ldA                           | This Study                                    |
| A. baumannii ATCC19606, LOS-                   | $\Delta m$ laE, $\Delta p$ ldA                           | This Study                                    |
| A. baumannii ATCC19606, LOS+                   | $\Delta m la E$                                          | This Study                                    |
| A. baumannii ATCC19606, LOS-                   | $\Delta m$ la $E$                                        | This Study                                    |
| A. baumannii ATCC19606, LOS+                   | Δ <i>mlaE, ΔpldA,</i> pMMB67EHKn-<br><i>mlaE</i>         | This Study                                    |
| A. baumannii ATCC19606, LOS-                   | Δ <i>mlaE, ΔpldA,</i> pMMB67EHKn-<br><i>mlaE</i>         | This Study                                    |
| A. baumannii 5075 LOS- Ancestor Pop<br>1       | See Table S3                                             | This Study                                    |
| A. baumannii 5075 LOS- Ancestor Pop<br>2       | See Table S3                                             | This Study                                    |
| A. baumannii 5075 LOS- Ancestor Pop<br>3       | See Table S3                                             | This Study                                    |
| A. baumannii 5075 LOS- Ancestor Pop<br>4       | See Table S3                                             | This Study                                    |
| <i>A. baumannii</i> AYE LOS- Ancestor Pop<br>5 | See Table S3                                             | This Study                                    |
| A. baumannii AYE LOS- Ancestor Pop<br>6        | See Table S3                                             | This Study                                    |
| <i>A. baumannii</i> AYE LOS- Ancestor Pop<br>7 | See Table S3                                             | This Study                                    |
| A. baumannii ATCC19606 LOS-<br>Ancestor Pop 8  | See Table S3                                             | This Study                                    |
| A. baumannii ATCC19606 LOS-<br>Ancestor Pop 9  | See Table S3                                             | This Study                                    |
| A. baumannii ATCC19606 LOS-<br>Ancestor Pop 10 | See Table S3                                             | This Study                                    |
| A.baumannii 5075 LOS+ Evolved Pop<br>1         | See Table S3                                             | This Study                                    |
| A.baumannii 5075 LOS+ Evolved Pop<br>2         | See Table S3                                             | This Study                                    |
| A.baumannii 5075 LOS+ Evolved Pop<br>3         | See Table S3                                             | This Study                                    |
| A.baumannii 5075 LOS+ Evolved Pop<br>4         | See Table S3                                             | This Study                                    |
| A. baumannii AYE LOS+ Evolved Pop<br>5         | See Table S3                                             | This Study                                    |
| A. baumannii AYE LOS+ Evolved Pop<br>6         | See Table S3                                             | This Study                                    |

| A. baumannii AYE LOS+ Evolved Pop<br>7        | See Table S3                                                | This Study |
|-----------------------------------------------|-------------------------------------------------------------|------------|
| A. baumannii ATCC19606 LOS+<br>Evolved Pop 8  | See Table S3                                                | This Study |
| A. baumannii ATCC19606 LOS+<br>Evolved Pop 9  | See Table S3                                                | This Study |
| A. baumannii ATCC19606 LOS+<br>Evolved Pop 10 | See Table S3                                                | This Study |
| A.baumannii 5075 LOS- Evolved Pop<br>1        | See Table S2                                                | This Study |
| A.baumannii 5075 LOS- Evolved Pop<br>2        | See Table S2                                                | This Study |
| A.baumannii 5075 LOS- Evolved Pop<br>3        | See Table S2                                                | This Study |
| A.baumannii 5075 LOS- Evolved Pop<br>4        | See Table S2                                                | This Study |
| A. baumannii AYE LOS- Evolved Pop<br>5        | See Table S2                                                | This Study |
| A. baumannii AYE LOS- Evolved Pop<br>6        | See Table S2                                                | This Study |
| A. baumannii AYE LOS- Evolved Pop<br>7        | See Table S2                                                | This Study |
| A. baumannii ATCC19606 LOS-<br>Evolved Pop 8  | See Table S2                                                | This Study |
| A. baumannii ATCC19606 LOS-<br>Evolved Pop 9  | See Table S2                                                | This Study |
| A. baumannii ATCC19606 LOS-<br>Evolved Pop 10 | See Table S2                                                | This Study |
| Plasmid                                       | Description                                                 | Reference  |
| pMMB67EHKn                                    | pMMB67EH with Kan <sup>R</sup>                              | 30         |
| pMMB67EHKn- <i>mlaE</i>                       | pMMB67EH with <i>mlaE</i>                                   | This Study |
| pRecABtet                                     | pMMB67EH with REC <sub>AB</sub><br>system, tet <sup>R</sup> | 44         |
| pFLPtet                                       | pMMB67EH with FLP<br>recombinase, tet <sup>R</sup>          | 44         |
| pKD4                                          | FRT-flanked Kan <sup>R</sup>                                | 44         |

## **Table S7: Primers**

| Primer                        | Sequence                                                                                                                                                                                               |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Recombineering_F_ <i>pldA</i> | 5'-<br>TAAGTTTGACCTATAAAAATGCCGCTTTTACAGCGGCTTTT<br>TTATTAACCAATTTGAATATTGGCTTGAGGGGTGTTTGAGAC<br>GGCTTTTTTTAGGAGTAGCAATTAAATAGGCGAGTGTTAA<br>GGGGCCTAAACGGCCTGCAAACATAAGTATATCCTCCTTA<br>GTTCCTATTCCG |  |
| Recombineering_R_ <i>pldA</i> | 5'-<br>TTTAGAAGATTTAAAACGTGTTGCACGTCAATATTTAATTG<br>AACAAACACCTGTAAAAGCTGTCGTTGCACCTTTTGCAAAA<br>CGTGATGAATTGCAACAACTGGGCTTTACGATCAAACAAG<br>TTAATTAAAATAAAA                                           |  |
| Recombineering_F_ <i>mlaE</i> | 5'-<br>GGTACACCTGAGCAACTCAAGGCACATGCTTCTCCATTTG<br>TAAAACAGTTCTTAACCGGTTCGGTAGAAGGTCCGGTTGA<br>ATATCAGTTTAGCCACCAAGCTTATTTAGATAACGAGGTTC<br>GTCCTATATCCTCCTTAGTTCCTATTCCG                              |  |
| Recombineering_R_ <i>mlaE</i> | 5'-<br>GGTGTAGCCATCGCTCAAGTTCGTGCCCACTAAACCACTC<br>ACTTTCATTGCTAAAAAGAATAAAGCGATACCGAAGATAAT<br>GACAAAGATACCTACGGCCAGCTCACTAGTACGTGATTTC<br>ACAGCGATTGTGTAGGCTGGAGCTGCTTCG                             |  |
| Promoter_ <i>mlaA</i> _F      | 5'- CAAATAAACTTCGAGTAATTTAAAC                                                                                                                                                                          |  |
| Coding Region_ <i>mlaA</i> _R | 5'- TTTTTCGGTTTTATCAGTGTTATC                                                                                                                                                                           |  |
| pMMB67EHKn- <i>mlaE</i> _F    | 5'- CCGGAATTCATGAATACGATTGCCTGG*                                                                                                                                                                       |  |
| pMMB67EHKn- <i>mlaE</i> _R    | 5'- CGCGGATCCTTAAATCCCTCCGAACATG*                                                                                                                                                                      |  |