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SI video1 (tracking on experimental videos)

This video is included to illustrate neural network tracking results for experimental test
videos, showing a range of challenging conditions. The tracking indicator overlays (red)
show locations of particle centers recognized by the neural network tracker.

SI video2 (tracking on synthetic test videos)

This video is included to illustrate neural network tracking results for synthetic test videos.
The tracking indicator overlays (red) show locations of particle centers recognized by the
neural network tracker.

Simulated videos

The goal of our simulated videos is to approximate the appearance of real videos for training
and testing. These videos are not intended to be accurate simulations of particle videos
rooted in optical physics. As such, they do not expose physical parameters like wavelength,
pixel size, refractive index, numerical apature, etc. Instead, we postulate a general form that
approximates the shape, with a number of parameters that we can use to randomize over a
wide range of possible conditions. The goal is for the neural network to recognize patterns,
independent of the precise details of the optics, particles, and camera used.

Given a particle located at ξ = (0, 0, 0), the observed particle point spread function (PSF)
used to generate simulated videos is given by

ψ(x, y, z) = I1(1 + 0.1(2h1 − 1))

(
1− γ

∣∣∣∣tanh(
z

z∗
)

∣∣∣∣){2 exp(− r4

64a2
)

+(1− h42)

[
exp(− (r − z)4

a4
) + 0.75h3χ[r < z] sin2(

(
πr

z∗

)3/2

)

]}
, (1)

where r =
√
x2 + y2. Here, I1 > 0 sets the intensity scale, z∗ determines how the PSF

fades as the particle moves in z, and a determines the PSF radius scale. The parameters hj ,
j = 1, 2, 3, are values between zero and one, and are intended to randomize the PSF shape
and appearance.
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Inter-User Variations in Particle Traces 

Figure 1: The need for supervision in particle tracking, and inter-user variations in
supervised tracking data. Data represents the average of 4 movies of muco-inert 200 nm
PEGylated polystyrene beads in human cervicovaginal mucus. Data from human supervised
tracking (Supervised), which includes manually inspecting paths to remove false positives
and minimize false negatives, is compared to results generated under default conditions of the
tracking software (Default) and conditions manually adjusted by the user (Adj) to improve
tracking accuracy. (A) average frames per particle; (B) ensemble-averaged geometric mean
square displacements (〈MSD〉) vs. time scale. Error bars represent standard error of the
mean. * indicates statistically significant difference compared to ‘Standard’ (p < 0.05). (C-
E) Inter-user variations in particle tracking. Different tracking software users were asked to
analyze the same video of 200 nm bead in human cervicovaginal mucus. (A) Total particles
tracked; (B) average frames tracked per particle; and (C) ensemble-averaged geometric mean
square displacements (〈MSD〉) at a time scale (τ) of 1s.

A number N of random Brownian particle paths (xn(t), yn(t), zn(t)) are generated (using
Euler’s method) to serve as ground truth. Then, the image volume at time t is given by

I(x, y, z, t) =

N∑
n=1

ψ(x− xn(t), y − yn(t), z − zn(t)) +B(x, y, z) + κΘ(x, y, z, t), (2)

where B(x, y, z) is a random background intensity, κ > 0 scales the noise, and Θ(x, y, z, t)
is comprised of i.i.d normal random variables with mean zero and unit variance. Note that
after generating the video using (2), we rounded the output to the nearest integer to more
closely represent the integer valued image data most often encountered in experiments. For
randomized background we used

B(x, y) = IbackI1 sin(
6π

Nx

√
g1(x− g2Nx)2 + g3(y − g4Ny)2), (3)

where Iback scales the background intensity relative to the PSF and gj are uniform random
variables.

Neural network architecture

Let the video to be processed by the network be given by I(x, y, z, t), where each dimensional
variable is interpreted as indexing discrete pixels (for x, y), slices (for z), and frames (for t).
The video dimensions are (Ny, Nx, Nz, Nt).

The CNN input is a single image frame from a video:

Input = I(·, ·, z, t), (4)
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Figure 2: Sample frames from four different synthetic test videos.

for fixed z-axis slice. The input is normalized in order to cope a wide range of possible
image intensity values. The image frame I(·, ·, z, t) is normalized to have zero mean and unit
variance.

Figure 3: The network architecture of the neural network tracker.

The architecture of the neural network (see Fig. 3) was designed to manage the number
of computationally expensive elements, while maintaining prediction accuracy. We used the
fully-convolutional segmentation network in Ref. [1] as a starting point for our design. Our
first priority was accuracy, followed by evaluation speed. Evaluation time is largely taken
up by convolutions. Some remaining constraints we considered were training speed, and
memory usage.

The CNN is comprised of three convolutional layers and one recurrent layer. All of the
convolution kernels are 4-dimensional arrays whose values are trainable parameters. The
sizes of the kernels used for each layer are

• Layer 1: (9, 9, 1, 3), (5, 5, 1, 3), and (3, 3, 1, 3) mapping input images to 3 features each
(9 total)

• Layer 2: (7, 7, 9, 6), (3, 3, 9, 6) mapping 9 features to 6 features each (12 total)

• Layer RNN: (7, 7, 6, 6) mapping 6 features to 6 features (this kernel is applied twice
successively to the output of kernel 1 of layer 2)

• Layer 3.: (5, 5, 18, 2) mapping 18 features to the final two output log likelihoods (bi-
linear interpolation is used to upsample to the original image resolution)

The first layer kernels are applied with a stride of two pixels (except for the kernel 3,
to which max pooling is applied) so that the layer 1 output has half the x, y resolution as
the input (i.e., the layer 2 input tensor has size (Ny/2, Nx/2, 9)). In order to maintain a
large receptive field with as few trainable parameters as possible, layers 2 and the RNN
layer use atrous convolution with a rate of 2 (i.e., they are applied with a stride of 1, but
the convolution kernel is applied to a downsampled local patch of the input). The output
of the RNN layer is carried forward to the next frame (t + 1) and concatenated with the
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output of layer 2 of frame (t+ 1). The combined 18 features are input into layer 3. Bilinear
interpolation is applied after layer 3 to resample the image to its original resolution.

Nonlinearities are applied after each convolution, using

output = F (
∑
x′,y′

K(x′, y′)input(x+ x′, y + y′)− b), F (u) = log(eu + 1). (5)

Each layer has a separate trainable bias b for each output feature.
Let the output of the interpolation layer be denoted as Ln(x, y) for n = 0, 1. These

outputs are regarded as log likelihoods, at pixel position x, y, for background (n = 0) and
the presence of a nearby particle (n = 1). The final output of the network is the detection
probabilities

p(x, y, z, t) =
eL1(x,y)

eL0(x,y) + eL1(x,y)
, (6)

Hence, the neural network output, after processing a full video, has the same size and
dimension as the video (it may take up more memory since each element is a 32 bit floating
point number and videos are typically comprised of 16 bit integers).

Neural network training

Cross entropy is (up to an additive constant that depends on p) a measure of how far
the approximated distribution q is from the true distribution p. When q = p, the cross
entropy reduces to the entropy of the true distribution p. Since p never changes for a given
training video, our goal is to minimize H[p, q] with respect to q over the entire training set of
videos. At each iteration of the training procedure, a randomly generated training image is
processed by the network, the error H[p, q] is computed, and all of the trainable parameters
are altered by a small amount (using the gradient decent method explained below) to reduce
the observed error. This training procedure is repeated thousands of times until the error is
minimized.

Suppose that all of the trainable parameters are arranged into the vector θ. The pa-
rameters are adjusted at the end of each training iteration t by computing the gradient of
gt = ∇θH[pt, qt]. The gradient vector points in the direction of steepest rate of increase in
the error, so the error can be reduced with θt+1 = θt− rgt, where r > 0 is a predefined step
size.

Generation of training images was performed in Python and training of the neural network
was performed using Google’s open source software package, Tensorflow [2]. Training was
performed using stochastic gradient descent, with learning rate 0.16. The learning rate was
decayed exponentially with decay factor 0.95. Each iteration of training processed a full
256 × 256 resolution frame from a randomly generated synthetic video, each of which was
used for no more than two training iterations. The training was stopped at 100,000 training
iterations.

After training, the neural network is deployed using Tensorflow, which executes the most
computationally costly elements of the neural net tracker in highly optimized C++ code.
Tensorflow can be easily adapted to use multiple cores of a CPU or GPU, depending on
available hardware.

Particle path linking

From the neural net output, we extract candidate particles along with their probabilities
through thresholding the detection probabilities qijk, where ijk are the indices for each
pixel of a single video frame. The threshold of q = 0.5 represents a maximum likelihood
classification: everything above q = 0.5 represents pixels corresponding to the presence
of a nearby particle, and everything below this threshold is most likely part of the image
background. The pixels above threshold are grouped into candidate particles using the
method of connected components [3]. Connected sets of nearest neighbor pixels Pn above the
threshold are collected as candidate particles. That is, Pn is a connected set and qijk ≥ 0.5
for all qijk ∈ Pn.

Each candidate particle is assigned the largest detection probability from its constituent
detection probabilities within the connected component, i.e., ρn = maxPn. The position of
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each candidate particle is taken to be the center of mass given by, xn =

∑
qijk∈Pn

(j,i,k)qijk∑
qijk∈Pn

pijk
.

Note that there are alternative particle localization methods [4] that may increase accuracy.
We have found that the center of mass method yields consistent sub-pixel accuracy of 0.6
pixels on average, which is sufficient for tracking tasks that require high accuracy such as
micro-rheology. The next stage is to link candidate particles from one frame to the next.

Let Lt denote the set of linked particle pairs (xt,xt+1) together with their probabilities
(ρt, ρt+1) in frame t to t+ 1. We must also consider the possibility that a given particle has
just entered or is about to leave the image. Let N±t be the set of probabilities for particles
in frame t that are not linked to a particle in frame t ± 1. Then, the log likelihood cost of
the link assignments (or lack of assignment) from frame t to frame t+ 1 is given by

Lt = −
∑

xt,xt+1∈Lt

‖xt − xt+1‖2

2σ2
+

∑
ρt,ρt+1∈Lt

[log ρt + log ρt+1]

−
∑

ρt∈N+
t

log(1− ρt)−
∑

ρt+1∈N−t+1

log(1− ρt+1).
(7)

The standard deviation σ is a user-specified parameter. Maximization of (7) can be for-
mulated as a linear programming problem, which we solve using the Hungarian-Munkres
algorithm [5].

Note that we have made a slight modification to the adaptive linking method developed
in [5], where we have made use of the detection probabilities. The standard (non adaptive)
approach is to assign a penalty for not assigning a link to a particle, based on a fixed cutoff
distance. Our adaptive scheme uses the detection probabilities as a variable cost for not
assigning a link to a particle. The lower the detection probability for a particle (due to faint
signal or absence in past or future frames), the lower the cost of failing to assign it a link.

We note that σ is the only parameter in our tracking method (there are no adjustable pa-
rameters in the neural network localizer). It is reasonable to be concerned about automation
when the method contains an adjustable parameter. Because of the adaptive nature of our
linking algorithm, which is armed with certainty estimates from the neural network, we have
found that in practice, σ rarely needs to be adjusted. In fact, every one of the ∼600 videos
tracked for testing purposes in this paper used the same value of this parameter (σ = 20). In
the future, it may be possible to eliminate this parameter completely using a more sophis-
ticated linking algorithm, such as a ’particle filter’ [6], which is a Bayesian framework that
is compatible with the neural network. Moreover, noise in particle localizations can arise
from many factors, including low SNR image conditions. Kalman filters have been applied
to path linking to reconstruct more accurate paths from noisy localization [7].

Parameter values for tracking software used in the synthetic video tests

Sample frames of the synthetic test videos can be seen in Fig. 2. All of the 2D and 3D
videos were tracked using the same set of parameter values. The neural net tracker uses
one parameter in its linking method (for collecting particle localizations into paths). The
standard deviation for particle displacements was set to σ = 20.

No method was used with default parameter values. Through experimentation, testing
10-15 parameter sets for each method on the full data set, we chose parameter values that
showed the best performance overall. There was no objectively optimal parameter set since
we needed to balance false positives and false negatives. We chose parameter sets so that
the trackers extracted a reasonable fraction of the particle tracks, while maintaining the
lowest possible false postive rate. In practice, paramter values can be tuned to decrease false
positives at the expense of fewer extracted tracks.

For Mosaic, we used a custom ImageJ macro to batch process the test videos. The
particle detection parameters were

radius = 8, cutoff = 0, percentile = 0.8

For ICY, we used a custom javascript script for batch processing, which only required pa-
rameter values for its partical localization method (the particle linking method is fully au-
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tomated). The particle detection parameters were

scale1 = 0, scale2 = 0, scale3 = 50, scale4 = 100

For linking, we specified that particles with PSF radius < 2 (the minimum size in the test
videos) be filtered, and that the ICY linker should assume all particles move by standard
Brownian motion.

Evaluation against experimental videos
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Figure 4: Comparison of human tracked (assisted by the commercially available
software package IDL) and neural network tracked output. Ensemble-averaged
geometric mean square displacements (〈MSD〉) at a time scale (τ) of (A) 0.267s and (B) 1s.
(C) alpha value (D) percentage of false positives normalized by path-length (E) number of
particles tracked (F) average path duration per particle. The error bars in (C) represent
standard error of the mean. The box plot in (D) shows symbols for the outliers above the
80th percentile of observations. The data set includes 20 different movies encompassing
muco-inert 200 nm PEGylated polystyrene beads 200 nm carboxylated beads, HIV virus-
like particles and herpes simplex virus in human cervicovaginal mucous. Further details
regarding the experimental conditions for the videos used in the test can be found in the
Methods Section.

HIV, HSV and nanoparticles were prepared as previously described [8, 9, 10]. Briefly,
replication-defective HIV-1, internally labeled with an mCherry-Gag construct to avoid al-
teration of the viral surface, was prepared by transfection of 293T cells with plasmids en-
coding NL4-3Luc Vpr-Env-, Gag-mCherry, and YU2 Env in a 4:1:1 ratio [8]. Mucoinert
nanoparticles were prepared by conjugating 2 kDa of amine-modified polyethylene glycol to
carboxyl-modified nanoparticles via a carboxyl-amine reaction; PEG-grafting was verified
using the fluorogenic compound 1-pyrenyldiazomethane (PDAM) to quantify residual un-
modified carboxyl groups on the nanoparticles [11]. HSV encoding a VP22-GFP tegument
protein packaged into HSV-1 at relatively high copy numbers are produced as previously
described [9]. Fluorescent virions or nanoparticles (∼1× 108 - 1× 109 particles per mL)
were mixed at 5% vďilution into ∼20 µL of fresh human cervicovaginal mucus collected as
previously described [9], sealed within a custom-made glass chamber. The translational mo-
tions of the particles were recorded using an EMCCD camera (Evolve 512; Photometrics,
Tucson, AZ) mounted on an inverted epifluorescence microscope (AxioObserver D1; Zeiss,
Thornwood, NY), equipped with an Alpha Plan-Apo 100/1.46 NA objective, environmental
(temperature and CO2) control chamber, and an LED light source (Lumencor Light En-

6



gine DAPI/GFP/543/623/690). Videos (512x512, 16-bit image depth) were captured with
MetaMorph

imaging software (Molecular Devices, Sunnyvale, CA) at a temporal resolution of 66.7 ms
and spatial resolution of 10 nm (nominal pixel resolution 0.156 mm per pixel) for 20 s. Sub-
pixel tracking resolution was obtained by determining the precise location of the particle
centroid by light-intensity-weighted averaging of neighboring pixels. Trajectories were an-
alyzed using “frame-by-frame” weighting [12] in which mean squared displacements (MSD)
and effective diffusivities (Deff) are first calculated for individual particle traces. Averages
and distributions are then calculated at each frame based on only the particles present in
that frame before averaging across all frames in the movie. This approach minimizes bias
toward faster-moving particle subpopulations.
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