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Figure S2

A Dynamics Turnover B Cell Cycle effect
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Figure S3

A

Copy Number from patient dataset (Input Shallow-Seq)
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Figure S4

Copy Number vs. Sharing Index
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Figure S6
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Figure S7
A

H3K27ac vs. RNA expression
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Figure S8

Imputed TF analysis (Sl specific)
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Figure S10
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Figure S11

YY expression PAN CANCER TCGA
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Figure S12
A

MCF7 ChIP-seq :transcriptionally inactive genes
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Figure S13
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Figure S14
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Figure S15
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Figure S16
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Figure S17

SLCQA3R1 expression normal tissue
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Supplementary Computational Methods

Targeted-Seq Cancer panel.

Targeted capture was performed using NEB Cancer Hotspot panel modified to include
ESR1 ligand binding domain (NEB E7000X). Sonicated Input material from ChIP-seq
analysis (frozen tissues) was used as an input (minimum 50ng) as specified by the
manufacturer. Sequencing was performed on a NextSeq Illumina machine by
multiplexing 24 samples per lane in two lanes (Single End 75bp flow cell). Single-end
75-base pairs reads were aligned to the hg38 human reference genome using bwa’
version 0.7.15 (parameters: -q 0). Samtools (PMID: 19505943) version 1.3.1 was then
used to obtain indexed bam files. Aligned reads from each captured sample were pre-
processed using Picard (http://broadinstitute.github.io/picard) version 2.6.0, applying
functions  AddOrReplaceReadGroups (parameters: RGID=1 RGLB=lib1
RGPL=illumina RGPU=unit1 RGSM=1) and sortSam (parameters:
SORT_ORDER=coordinate). GATK ? version 3.6 was then used for variant
identification. PCR duplicates were marked using the MarkDuplicates function from
Picard (parameters REMOVE_DUPLICATES=False AS=True). Re-alignment around
indels was performed using functions RealignerTargetCreator and IndelRealigner
from GATK (known indels from the GATK bundle:
Mills_and_1000G_gold_standard.indels.hg38.vcf). This step was followed by base
quality score recalibration (GTAK BaseRecalibrator). Mutect2 (part of GATK v3.6) was

finally run separately on each capture, without control samples. The identified variants
were then annotated to known SNPs (1000G_phase1.snps.high_confidence.hg38.vcf
in the GATK bundle) and to COSMIC 2 version 34 (hg38). Variants showing alternate
allele frequency lower than 1% were excluded from further analyses. Those supported
by evidence from both alleles and covered by ten or more reads were retained.
Variants overlapping known SNPs were excluded. Among the remaining variants, only
those previously reported in COSMIC were kept. As a final step, those protein-coding

variants predicted as “Neutral” by FATHMM “were filtered out.

ChlIP-Seq data processing. Reads were quality controlled with FastQC v0.11.5 and
aligned to the human hg38 reference using bowtie v1.1.2 > with default parameters.

The generated sequence alignments were converted into binary files (BAM), then



sorted and indexed using the SAMtools v1.3. H3K27ac peaks were called with MACS2
v2.1.1® (command-line parameters: -callpeak --format AUTO -B --SPMR --call-
summits -q 0.01) using matched input DNA as a control. Samples showing either less
than 2K or more than 200K H3K27ac peaks were not considered for further analysis.

Functional characterization of the peaks. The identification of promoter and
enhancer peaks was performed using an in-house pipeline based on BEDTOOLS
v2.25.0 ®and custom BASH scripts. A promoter annotation which classifies the
promoter as the region 1kb upstream of the transcription-start site (TSS) was
generated using UCSC table browser (PMID 27899642) (assembly: hg38; groups:
Genes and Gene predictions; track: GENCODE v24) ’.

Peaks were then intersected using BEDTOOLS intersect (default parameters) to
identify the promoter specific peaks. Annotated promoters which were not overlapping
with the patient signal were considered inactive. In order to produce a master list of
active core promoters, a multiple intersection between the promoter peaks was
performed using BEDTOOLS multiinter to identify the common overlapping signal. The
book-ended regions from the core signal file were merged using BEDTOOLS merge,
then intersected with the original peak calls and sorted. All those peaks showing no
overlap with the promoter annotation were considered enhancers. The procedure
used to derive active core promoters (outlined in the previous paragraph) was applied
to these signals to generate a master list of active enhancers.

Assessment of the level of heterogeneity. Active promoters and enhancers were
further processed in order to reveal whether the available dataset achieves a high
genomic coverage. The saturation analysis was performed with ACT
SaturationPlotCreator® with default parameters. The frequency distribution and the
average peak size distribution of each regulatory region was calculated intersecting
the peaks from each individual with the master lists of active promoters and enhancers
and then plotted using BASH and R in-house scripts. The size of each peak was
extracted from the MACS2 output files (_peaks.xIs) and the peaks binned by sharing

index.



Sharing Index. Sharing Index (Sl) is a discrete metric introduced for measuring the
usage of enhancer and promoter across the tumor samples. Sl was calculated as the
number of individual samples in which a regulatory region overlaps the master list with
a coverage of at least 40% of its bases. This way, a discrete Sl score was assigned to
all promoters and enhancers in the master list. To add further significance to the
accuracy of this metric, we compared it to a quantile normalized continuous equivalent
of Sl, calculated as follows. The number of deduplicated reads overlapping each
regulatory region in the master list was calculated using BEDTOOLS Multicov with
default parameters. A matrix showing the read count of each tumor sample across all
the regions was derived and quantile normalized after Voom transformation (LIMMA °
package available in Bioconductor ). In addition, data were scaled (z-score) and

compressed with (arcsinh) transformation.

Ranking Index. The level of enrichment of each regulatory region in the tumor sample
dataset is scored using the Ranking Index (RI) metric. RIs were assigned to each
called peak. Duplicated reads from the ChIP-Seq treatment files were filtered out using
PICARD v2.1.1 MarkDuplicates (REMOVE_DUPLICATES=true) and only the
uniquely mapped reads were retained for further analyses. Peak read count was
obtained using BEDTOOLS Muilticov function and this value was normalized using the
following equation: Nscore= ((peak read count / peak size)-10°))* 10° /total mapped
reads (FPKM).

Peak calls in each sample were categorized as promoter or enhancer as described in
the previous paragraph, then sorted by their FPKM and assigned to their respective
intra-sample percentile score where 1 is highest enrichment and 100 is the lowest.
The peak calls were then intersected with the sets of active promoters and enhancers
set and the average RI for each promoter and enhancer was calculated.

Ranking approach in cancer cell line and normal tissue epigenomes. We re-
analysed ChlP-seq data of H3K27ac profile across 33 cell lines from ENCODE *° and
37 tissues from the Epigenomic Roadmap?!, for a total of 337 epigenomic profiles. We
downloaded matching .bam and .bed profiles from ENCODE and matching raw reads
of input and ChIP from Epigenomic Roadmap. The epigenomic profiles of ENCODE
cell lines from human hg19 reference genome were lifted to the human hg38 assembly



using CrossMap v0.2.3!2. Peaks from the Epigenomic Roadmap samples were called
following the procedure above. The BC active promoter and enhancer sets were
intersected with all the epigenomic profiles and the RI calculation of each peak was
repeated as above.

Transcription factor profiling. The profile of the BC cistrome was imputed by taking
all the potential accessible regions encoded in the active promoter and enhancer set.
H3K27ac ChlP-Seq provides the location of the enriched histones while the
transcription factors bind the accessible regions in the nucleosome-free region (NFR).
NFRs were putatively characterized by the analysis of DNasel-hypersensitivity site
(DHS)  from 220 different ENCODE cell lines available at:
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeUwDnase/

and

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeOpenChro

mDnase/; DHS profiles were generated using MACS2 with the following parameters:
--format AUTO --nomodel --shift -100 --extsize 200 -B --SPMR --call-summits -q 0.01
and lifted to the human hg38 assembly. After that, all the DHS peaks were
concatenated into one sorted BED file. NFRs were identified as the regions between
two sub-peaks at a distance of +- 71bps from the subpeak summit and the region
between two broad-peaks distant at the most 500bps. DHS signals overlapping the
NFRs were retained for the analysis. The retained DHS sites were sorted and
elongated using BEDTOOLS merge to have a unique DHS signal for all the NFRs.
Motif enrichment analysis was carried out separately on promoter and enhancer
specific DHS signals in the BC datasets using the HOMER function
findMotifsGenome.pl with parameters: -size given -preparse. The highest 50 ranked
TFs in the two groups were selected and graphed in polar histograms with a custom
R script.

We then binned promoters and enhancers by Sl, overlapped the NFRs identified
above and ran the motif enrichment analysis separately on each promoter and
enhancer bin (in the same way described above). The motif enrichment results were
filtered for statistical significance (g-value <= 0.05) and integrated with the
observed/expected ratio (OEr) of each TF with a custom R script. Two heatmaps (one
for promoters and one for enhancers) showing the OEr across the bins were generated



using heatmap.2 from the ggplot2 R library®? In order to highlight the most significant
results from the enhancer heatmap, we computed a differential analysis between the
2 clades of the heatmap (S| 1-21 and S| 22-44). We calculated the mean of OEr for
each TF between the 2 clades and counted the number of significant enrichments in
each clade. Then, we computed a weighted score specific to each TF multiplying the
relative clade mean x number of significant clade enrichments. Furthermore, we
calculated the log of the ratio, ranked and plot it. DHS regions imputed using the
procedure outlined in this paragraph were compared to ENCODE Honey Badger DHS

(https://personal.broadinstitute.org/meuleman/reg2map/) and found to be highly

comparable.

Variant Set Enrichment VSE. We downloaded 1000 Genomes Project genotypes
data (Phase 3 release 20130502) and excluded any genotype calls in individuals of
non-European ancestry. We then ran PLINK (v1.90b3.46)* on the filtered genotypes
data and a list of 66 CEU BC risk variants to retrieve 1000 Genomes variants in LD
with each BC variant. We defined LD variants as those within 500KB of a BC variant
and having an allele count squared correlation >=0.8 with that variant. We also ran
PLINK with the same settings on a list of 20 CEU CRC risk variants to obtain their LD
information. The PLINK output files were then converted into BED format to be used
in downstream analyses by VSE R library (v0.99).

We ran VSE separately for BC and CRC variant sets to assess the enrichment of those
variants in the following list of genomic features on hg19: 5’ and 3’ UTR, Refseq gene
TSS, Refseq gene introns, Refseq gene exons, active BC promoters, active BC
enhancers with Sl =1, active BC enhancers with SI between 1 and 21 exclusive, and
active BC enhancers with SI >=21. Active BC promoters and enhancers were
converted from hg38 to hg19 using liftOver prior to running VSE. During each VSE
analysis, an associated variant set (AVS) was constructed using LD block information
from PLINK-generated variant lists. 1000 matched random variant sets (MRVS) from
1000 Genome Project Phase lll data were then generated. The final step was to
compute the enrichment of AVS in the set of previously described genomic features
compared to the null distribution (MRVS). Enrichment results are shown in Figure 1F
with Bonferroni adjusted p-value < 0.05 marked in red. We also generated a heatmap



(Figure 1E) showing the overlaps between BC risk variants as well as variants in LD
and the genomic features of interest.

Footprint analysis. Footprints within the chromatin accessible regions in MCF7 were
obtained using Wellington4*> with parameters -fdr 0.01 -pv -5,-10,-20,-30,-50,-100.
We identified the active regions in MCF7 and intersected them with the patients
signals, which are broader then the single narrow peaks defined by MACS, and allow
the identification of all the NFRs. The number footprints within each active regulatory
region was calculated, and then normalized by the region size. The RI for eacg
promoter and enhancer in MCF7 calls was calculated and plot in function of the
number of footprints.

Estimation of somatic Copy Number Alterations (sCNA). Input BAM files from
ChlP-seq experiment of tumor samples and cell lines were processed to estimate the
chromosomal losses and gains in each tumor sample dataset. After removal of
duplicated reads, the input BAM files were processed to detect sCNA using
QDNAseq'® and CNVkit tools.” QDNAseq data processing involve genome binning,
correction for GC-content and mappability, and normalization. The hg38 genome was
binned in 15kb and 100kb sized windows and copy numbers were inferred applying
the standard procedure (https://cnvkit.readthedocs.io/en/stable/pipeline.html) (with
default parameters. CNVkit was run with the default parameters of the batch command
after creating a flat reference genome as suggested in the manual using the command

reference.

Assessment of dinucleotide composition. The impact of possible sequence
artifacts driving the Sl scores has been assessed by a complete evaluation of the
dinucleotide frequencies in each Sl bin. We obtained the expected dinucleotide
frequencies by processing the input BAM files of tumor samples in the dataset.
Deduplicated Input BAM files from all patients were merged, sorted and indexed using
SAMtools. The merged bam was then converted to FASTA. The frequencies of the 16
dinucleotides were computed using the compseq module of EMBOSS #with

parameter “-word 2”. The frequencies of dinucleotides in the bins were obtained by



coupling BEDTOOLS get fasta to convert the coordinates of regulatory regions in fasta
format and EMBOSS compseq -word 2 to calculate the actual frequencies by bin.

Enrichment scores. Overlap for ERa (in vivo) vs enhancers and promoters were
calculated by BEDTOOLS intersect. The percentage overlap was calculated on the
total number of regulatory regions within each bin against the concatenate ERa
binding set (all ERa in all patients). For YY1, FOXA1 and ERa in MCF7, intersections
were calculated using Cistrome®. YY1 BED files were defined as the consensus
narrow peaks of two biological replicates. FOXA1 ChlP-seq data and ERa were
obtained in house®. The core ERa BED file was obtained by lifting a published dataset
21to hg19 coordinates. The private ERa. BED file was obtained by iterative processing

of the ERa binding sites unique to single patients prior to concatenation into a single
file. Overlap represent the fraction of the original datasets (first dataset) overlapping
with core ERa (second dataset). The TCGA luminal signature was obtained from?2.
Each gene was extended for 20Kb upstream keeping in consideration the direction of
transcription. A null gene list was generated by subtracting the TCGA luminal signature
from a genome-wide gene list. Genes from the null list were extended in a similar way
and enrichment was calculated by comparing the fraction of TCGA gene list with
nearby binding vs. the null list. A list of estrogen target genes that do not respond to
Tamoxifen was obtained from 2. Each gene was extended for 20Kb upstream keeping
in consideration the direction of transcription. A null gene list was generated by
subtracting the signature from a genome-wide gene list. Genes from the null list were
extended in a similar way and enrichment was calculated by comparing the fraction of

TAM resistant estrogen dependent gene list with nearby binding vs. the null list.

CRISPR/Cas9 Enhancer Knockout. Four sgRNAs were designed using the
CRISPR-DO software?*, two at either end of the putative YY1 regulating Enhancer A
and cloned into a gRNA expression vector (Church’s lab, Addgene plasmid # 41824)
using the Gibson Assembly Kit (NEB). Properly constructed plasmids were confirmed
through Sanger sequencing. All gRNA vectors were simultaneously co-transfected
with a pCas9-GFP plasmid (Musunuru’s lab, Addgene plasmid # 44719) at a 1:1,
gRNA to Cas9-GFP ratio into MCF7 cells using the 4D-Nucleofector system and
Amaxa Cell Line Kit V (Lonza). 48 hours after transfection cells were sorted for GFP



expression using flow cytometry (Imperial Medical Research Council Flow Cytometry

Facility). Sorted cells were plated at low density in 15 cm dishes to allow growth before

full isolation using cloning discs (Sigma-Aldrich). Isolated clones were screened for

successful enhancer knockout through PCR amplification and Sanger sequencing.

sgRNA and PCR primes used are shown in the table

YY1 Full primer Target sequence
Enhancer A
gRNAs

Upstream TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA | ctggtcgcggggctcacgeegg
gRNA1 CCGctggtcgcggggctcacge

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAA
ACgcgtgagccccgegaccagC

Upstream TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA | aaatagttggctggtcgcgggg
gRNA2 CCGaaatagttggctggtcgeg

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAA
ACcgcgaccagccaactatttC

Downstream | TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA | gaccagaccacctcaccggtgg
gRNA3 CCGgaccagaccacctcaccgg

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAA
ACccggtgaggtggtctggtcC

Downstream | TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA | tgtatattaaaactcacggagg
gRNA4 CCGtgtatattaaaactcacgg

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAA
ACccgtgagttttaatatacaC

YY1 Enhancer PCR amplification primers
Forward TTTTCTCTCTTTCCTTCTGCAA
Reverse CCTGAGAGAAACAGGCTTGA

YY1 Enhancer sequencing primers
Forward GCTCACTGCAGCCTTGACTT

Reverse TATCATTGCCTCACCGAACC

Loci

chr14:100680137-
100680166

chr14:100680147-
100680176

chr14:100682121-
100682150

chr14:100682225-
100682254
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