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Abstract

Learning in biologically relevant neural-network models usually relies on Hebb learning
rules. The typical implementations of these rules change the synaptic strength on the
basis of the co-occurrence of the neural events taking place at a certain time in the
pre- and post-synaptic neurons. Differential Hebbian learning (DHL) rules, instead,
are able to update the synapse by taking into account the temporal relation, captured
with derivatives, between the neural events happening in the recent past. The few
DHL rules proposed so far can update the synaptic weights only in few ways: this is a
limitation for the study of dynamical neurons and neural-network models. Moreover,
empirical evidence on brain spike-timing-dependent plasticity (STDP) shows that
different neurons express a surprisingly rich repertoire of different learning processes
going far beyond existing DHL rules. This opens up a second problem of how
capturing such processes with DHL rules. Here we propose a general DHL (G-DHL)
rule generating the existing rules and many others. The rule has a high expressiveness
as it combines in different ways the pre- and post- synaptic neuron signals and
derivatives. The rule flexibility is shown by applying it to various signals of artificial
neurons and by fitting several different STDP experimental data sets. To these
purposes, we propose techniques to pre-process the neural signals and capture the
temporal relations between the neural events of interest. We also propose a procedure
to automatically identify the rule components and parameters that best fit different
STDP data sets, and show how the identified components might be used to
heuristically guide the search of the biophysical mechanisms underlying STDP.
Overall, the results show that the G-DHL rule represents a useful means to study
time-sensitive learning processes in both artificial neural networks and brain.

Author Summary

Which learning rules can be used to capture the temporal relations between activation
events involving pairs of neurons in artificial neural networks? Previous computational
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research proposed various differential Hebbian learning (DHL) rules that rely on the
activation of neurons and time derivatives of their activations to capture specific
temporal relations between neural events. However, empirical research of brain
plasticity, in particular plasticity depending on sequences of pairs of spikes involving
the pre- and the post synaptic neurons, i.e., spike-timing-dependent plasticity
(STDP), shows that the brain uses a surprisingly wide variety of different learning
mechanisms that cannot be captured by the DHL rules proposed so far. Here we
propose a general differential Hebbian learning (G-DHL) rule able to generate all
existing DHL rules and many others. We show various examples of how the rule can
be used to update the synapse in many different ways based on the temporal relation
between neural events in pairs of artificial neurons. Moreover, we show the flexibility
of the G-DHL rule by applying it to successfully fit several different STDP processes
recorded in the brain. Overall, the G-DHL rule represents a new tool for conducting
research on learning processes that depend on the timing of signal events.

S1 Supporting Information

This document presents the Supporting Information of the article: Zappacosta S.,
Mannella F., Mirolli M., Baldassarre G. (2018), General Differential Hebbian
Learning: Capturing Temporal Relations between Events in Neural Networks and the
Brain, Plos Computational Biology.

1 G-DHL and the systematisation of DHL rules

This section presents additional figures related to the Section ‘G-DHL and the
systematisation of DHL’ in the main article.

1.1 Existing differential Hebbian learning rules

Fig. 1 shows the ‘dynamical’ continuous-time formulation of Hebb rule:

ẇ = (1/τ) · u2 · u1 (1)

where u1 is the pre-synaptic neuron activation, u2 is the post-synaptic neuron
activation, and ẇ is the instantaneous change of the connection weight.

Fig. 2 shows Kosko learning rule:

ẇ = (1/τ) · u̇2 · u̇1 (2)

Fig. 3 shows Porr and Wörgötter learning rule:

ẇ = (1/τ) · u̇2 · u1 (3)

1.2 The three key elements for the computation of DHL rules
and G-DHL: event, event derivative positive part, and event
derivative negative part

An event is intended in the paper as a portion of the signal, lasting for a relatively
short time, characterised by a monotonically increasing value followed by a
monotonically decreasing value. Events are important for G-DHL because it uses the
increasing part and the decreasing part of each event, captured through a first order
derivative, to extract information on the temporal relation between the pre- and
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Figure 1. Hebb learning rule. Top: three examples of different possible temporal
ordering of transient activation of two neurons. The non-zero activation part of the
signal was obtained with a cosine function receiving input values ranging in (−π, π):
the output of this function was mapped onto (0.5, 1.5) for the bold-curve signal, and
onto (0.0, 1.0), (0.5, 1.5), and (1.0, 2.0) for the thin-curve signal in respectively the
three graphs. Bottom: weight update resulting from the application of Eq. 1 to the
corresponding top graphs. The connection weight at a certain time T , given by

w(T ) =
∫ T
−∞(1/τ)u2u1 dt in continuous time, was computed in discrete time as

ΣTt=0(dt/τ)u2,tu1,t with dt = 0.001 and τ = 1 (t = 0 could be used in place of t = −∞
as in the example the weight does not change before t = 0).

post-synaptic events. Indeed, the increasing part of an event marks its starting early
portion whereas its decreasing part marks its ending late portion, as shown in Fig. 4.
The time overlap between the increasing and decreasing parts of the pre- and
post-synaptic events thus allows the DHL rules to detect their temporal relation.

1.3 G-DHL: numerical equations and learning kernels with
symmetric and asymmetric events

Fig. 5 shows the learning kernels produced by the eight G-DHL components using a
symmetric event, in this case a cosine function. For completeness, the figure also
shows the Hebb rule. Note how the learning kernels of some components have the
same shape due to the symmetry in time of the cosine event considered (symmetry
with respect to the vertical axis passing on the maximum of the cosine event) .

Fig. 6, presented in the main article but also reported here for ease of reference,
shows all the learning kernels for the symmetric cosine events plotted together. Some
of the kernels overlap due to the symmetry of the events considered, but they still
form a set of basis functions that cover in a regular fashion the inter-event interval
around the critical value of zero.

Fig. 7 shows the learning kernels of the G-DHL components using an asymmetric
event given by an α-function. This figure, when compared with Fig. 5, shows what
happens when the shape of the events is asymmetric in time. The first component,
considering the derivative positive parts of both events, has now a spike-like shape
because, contrary to cosine events, the α-function events start with a non-zero positive
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Figure 2. Kosko DHL rule. Top: first-order derivatives of the activation of two
neurons (as those shown in Fig. 1, top) considered by the Kosko learning rule [1]. The
step-by-step value of the derivatives, u̇t, was numerically computed at discrete times
as u̇t = (ut − ut−1)/∆t. Bottom: weight update resulting from the application of the
Kosko learning rule of Eq. 2 on the basis of the derivatives shown in the corresponding
top graphs. The connection weight at a certain time T was computed with the same
procedure and parameters used for Fig. 1.

Figure 3. Porr-Wörgötter learning rule. Top: each graph shows the elements
considered by the Porr-Wörgötter DHL rule [2], in particular the pre-synaptic neuron
activation (bold curves) and the first derivative of the post-synaptic neuron activation
(thin curves; the activation of both neurons was as the one in Fig. 1, top). Bottom:
weight update resulting from the application of Porr-Wörgötter learning rule of Eq. 3
on the basis of the signals shown in the corresponding top graphs. The connection
weight at a certain time T was computed with the same procedure and parameters
used for Fig. 1.
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Figure 4. The three key elements used by the G-DHL rule: the event and
its increasing and decreasing parts. An event involves a transient increase
followed by a transient decrease of a neural signal in time. Here the event of the neural
signal was generated with a cosine function as done in Fig. 1, starting at 0.5 sec and
ending at 1.5 sec. The increasing part of the event, captured with the positive-part
function of the neural signal derivative [u̇]

+
, starts at 0.5 sec and terminates at 1.0 sec.

The decreasing part of the event, captured with the negative-part function [u̇]
−

, starts
at 1.0 sec and terminates at 1.5 sec. Recall that the function [.]− changes the sign of
its argument, so both the positive and negative parts of the derivative are always
positive or null. Thus, when also the signal is positive (or null), as in many
neural-network models, all the three elements are also positive (or null).

derivative.
Fig. 8 shows the same learning kernels for asymmetric events plotted in the same

graph. The figure highlights how the kernels do not overlap and form a very regular set
of learning basis functions that cover the inter-event time in a rather regular fashion
around the zero value. With the α-function events, the Hebbian kernel overlaps (after
rescaling) with the component based on the derivative negative parts of both events.

2 Methods: modelling STDP with G-DHL

This section presents the derivation of the explicit formulas presented in the
Section ‘Using G-DHL to fit STDP data sets’ in the main article, related to the
synaptic update resulting from the application of the eight components of the G-DHL
rule to a pair of pre- and post-synaptic spikes. If the G-DHL rule is applied to events
that have a tractable mathematical form, then it is possible to compute such explicit
formulas. This section illustrates this by presenting the formulas that refer to a
specific spike representation, the commonly used Dirac δ-function, and a specific
eligibility trace formula, the α-function often used in the literature to represent the
effect of a spike on the post-synaptic neuron membrane potential (‘evoked
post-synaptic spike potential’ – EPSP). The formulas are computed for both the case
where the τ coefficients of the pre- and post-synaptic neurons are different and for the
case where they are the same. The section also reports the formulas for the
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Figure 5. The learning kernels generated by the G-DHL rule components
with symmetric events. The signals involved events generated with cosine functions
as done in Fig. 1. The kernels are indicated with pairs of letters, for example ‘PP’,
where the first letter refers to the pre-synaptic neuron and the second letter to the
post-synaptic neuron. P stands for positive part of the first derivative of the neural
signal; S stands for neural signal; and N stands for absolute value of the negative part
of the first derivative of the neural signal. For completeness the figure also shows the
learning kernel of the non-differential Hebb learning component (SS kernel).

computation of the ∆t time interval that produces the maximum synaptic change, and
the value of the latter. Finally, the section also reports the formulas for computing the
integral of the learning kernels of the G-DHL rule components, indicating the overall
tendency of the kernels to strengthen or weaken the synapse.

2.1 Computation of the explicit formulas of G-DHL applied to
spikes

To apply the G-DHL rule to spiking neurons, we considered the spikes of the pre- and
post-synaptic neurons as the target events causing the synaptic change. As often done
in the literature [3, 4], we modelled a spike as a Dirac δ-function (in continuous time,
this function can be conceived as the limit of an infinitely narrow function with an
integral of 1, e.g. a standard normal function with a decreasing width; in discrete
time, the function is implemented with a signal having a value of 1 for one specific
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Figure 6. Superposition of learning kernels of the G-DHL rule applied to
symmetric events. The learning kernels are those considered in Fig. 5.

time step and 0 otherwise [5]).
As we have seen, the G-DHL rule can capture time relations involving events only

if these overlap in time. Voltage changes related to each neuron spike last few
milliseconds, but empirical data on STDP show that the synaptic changes can be
caused by pre- and post-synaptic spikes separated by several milliseconds. This
implies that the first occurring spike must leave some electrical or chemical trace that
overlaps with the second occurring spike or with a second trace depending on it.

Here we modelled each trace with an α-function as this is commonly used to
capture the excitatory post-synaptic potentials (EPSP) evoked by a pre-synaptic
spike [3, 4]. We also used it to mimic possible electrochemical events that might be
caused by the post-synaptic spike, for example the back-propagating action potential
(BAP) affecting the post-synaptic neuron [6]. The α-function actually represents a
family of functions of the type x · exp(−x). Here we employed a commonly used form
of the function based on a double application of the leaky integrator filter: (a) a first
application creates the trace in time and forms the descending part of the event after
the spike; (b) a second application creates the increasing part of the event. The two
filters are mathematically expressed as follows:

τav̇(t) = −v(t) + κ s(t) , τbu̇(t) = −u(t) + v(t) , (4)

where s(t) is the initial signal containing the spike, v(t) is the output of the first filter,
u(t) is the output of the second filter, τa and τb are time constants, and κ is an
amplification parameter. If we assume that the two filters have the same time
constants (τa = τb = τ) then they can be combined to obtain a single filter (this is done
by computing v(t) from the second equation and by substituting it in the first one):

τ2ü(t) = −2τ u̇(t)− u(t) + κ s(t) . (5)

Assuming different decay constants of the two leaky integrator filters allow the
independent regulation of the duration of the ascending and descending part of the
event. This might be useful in some applications but is not further investigated here
where we assume a unique τ for each neuron. However, we will assume a possibly
different τ for the pre- and post- neurons as this allows the regulation of the temporal
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Figure 7. The learning kernels generated by the G-DHL rule components
with non-symmetric events. The signals and kernels were computed as in Fig. 1
but they involved events that were formed by an α-function with equation
u = 10 · t · exp(−t/0.1).

window over which the G-DHL components operate: this is important as such
parameters can be automatically estimated when fitting real data on STDP. The
parameter κ (also possibly estimated in an automatic fashion) allows the amplification
of the output of the filter as the leaky integrator filters tend to produce a signal with
very low amplitude.

The formula used to form the events determines if the computation of the G-DHL
synaptic update can be computed only numerically or both numerically and
analytically. If the formula has a tractable mathematical form then we can compute
the analytic form of the synaptic change produced by the G-DHL rule components.
The form is tractable when it allows the computation of the finite integrals, and their
ranges, generated by the application of the G-DHL components. We now show this by
obtaining the formula of the G-DHL synaptic update when the α-function (Eq. 5) is
used to generate the eligibility traces (events) caused by the pre- and post-synaptic
spikes.

The pre- and post-synaptic spikes are assumed to take place at times ti, with
i = 1, 2, so they are separated by a time delay ∆t = t2 − t1 (note how a positive ∆t
implies that the pre-synaptic spike occurs before the post-synaptic one). The solution
of the second order nonhomogeneous differential equation of the trace (Eq. 5) for each
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Figure 8. Superposition of learning kernels of the G-DHL rule appied to
non-symmetric events. The learning kernels are those considered in Fig. 7.

of the two Dirac δ-function spikes gives the following explicit formula, expressing the
spike-related events on which the G-DHL rule is applied:

ui(t) =

{
κ t−tiτi

e
− t−tiτi if t ≥ ti

0 if t < ti
(6)

where the constant τi differs for the two neurons i (i = 1, 2). Note that in this formula
the index i of ui refers to both parameters τi and ti on which ui depends. To avoid
confusion, also notice that for the first neuron τa = τb = τ1 and for the second neuron
τa = τb = τ2.

Fig. 9a shows a neuron activation with one spike and the signals returned by
applying the two leaky integral filters to it. The event signal has its maximum, equal
to κe−1, at the time step ti + τi. Below we show how this time step, at which the
event stops increasing and starts decreasing, is important for the computation of the
definite integrals needed for the analytic computation of the G-DHL synaptic update.

The G-DHL rule detects the increasing and decreasing parts of the signals ui on
the basis of the positive part [u̇i]

+
and negative part [u̇i]

−
of their derivative signals

(Fig. 9b). The derivative applied to the event signal of Eq. (6) is:

u̇i(t) =

{
κ
τi

e
− t−tiτi

(
1− t−ti

τi

)
if t ≥ ti

0 if t < ti .
(7)

We now compute the explicit formulas of the synaptic changes caused by the
different G-DHL rule components as a function of the time ∆t between the spikes, if
one considers events as in Eq. (6) (see Fig. 10). What is relevant for applying the
G-DHL rule is the time relation between the two events, namely ∆t = t2 − t1, and not
the absolute values of t1 and t2, so in the following we assume t1 = 0 and t2 = ∆t
without loss of generality. The synaptic change can be obtained integrating, over the
time of one trial, the product forming each G-DHL component. For each component,
the definite integrals of such product, covering different portion of the time line,
depend on the overlaps in time of the event signals or the positive/negative part of the
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Figure 9. Spike, α-function, events, and their derivative positive/negative
parts. (a) From top to bottom: a spike signal h(t); the output v(t) of a first leaky
accumulator filter applied to the spike signal; the output u(t) of a second leaky
accumulator filter applied to v(t). (b) From top to bottom: example of two event
pre-synaptic and post-synaptic signals ui(t) characterised by τ1 = τ2 and obtained, as
done in ‘a’, from two spikes happening respectively at t1 = 0 and t2 = ∆t; their
derivatives u̇i(t); and the positive parts [u̇i]

+ and negative parts [u̇i]
− of such

derivatives needed to compute the G-DHL rule components.

event signal derivatives of the two neurons. Such overlaps can be defined on the basis
of τ1, τ2 and ∆t. Indeed, the derivative signal of each event is divided into the positive
and a negative part by the time of the maximum of the event signal, corresponding to
respectively τ1 and τ2 + ∆t for the two neurons. Below we consider the case τ1 ≥ τ2 as
the case τ1 < τ2 involves similar computations. Moreover we assume that ui with the
smaller τi starts at ti = 0, and ui with the larger τi starts at ti = ∆t. The integrals
related to all other possible conditions are computed in a similar way.
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Figure 10. Elements of the computation of the G-DHL components related
to two spiking signals. In this example, the two spike signals s1 and s2 happen at
respectively t1 and t2 = t1 + ∆t and have τ1 = τ2. (a) Differential components of the
G-DHL rule. The positive and negative parts of the event derivatives (Eq. (7)) used
by each component are highlighted with lined areas. Recall that [.]− returns positive
values when applied to the negative values of the derivatives. (b) Mixed components
of the rule. The event (Eq. (6)) and the positive/negative parts of the event
derivatives (Eq. (7)) used by each component are highlighted with lined areas. Notice
how the different elements of the components can overlap in time, leading to a
synaptic update, depending on ∆t, τ1, and τ2 + ∆t.
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The definite integrals of the four G-DHL differential components are hence:

∆wpp(∆t) =


∫ τ2+∆t

0
u̇1(s)u̇2(s) ds if − τ2 < ∆t ≤ 0∫ τ2+∆t

∆t
u̇1(s)u̇2(s) ds if 0 < ∆t ≤ τ1 − τ2∫ τ1

∆t
u̇1(s)u̇2(s) ds if τ1 − τ2 < ∆t ≤ τ1

0 elsewhere

(8)

∆wnn(∆t) =

{∫∞
τ1
u̇1(s)u̇2(s) ds if ∆t ≤ τ1 − τ2∫∞

∆t+τ2
u̇1(s)u̇2(s) ds if ∆t > τ1 − τ2

(9)

∆wnp(∆t) =


−
∫∆t+τ2
τ1

u̇1(s)u̇2(s) ds if τ1 − τ2 < ∆t ≤ τ1
−
∫∆t+τ2

∆t
u̇1(s)u̇2(s) ds if ∆t > τ1

0 elsewhere

(10)

∆wpn(∆t) =


−
∫ τ1

0
u̇1(s)u̇2(s) ds if ∆t ≤ −τ2

−
∫ τ1

∆t+τ2
u̇1(s)u̇2(s) ds if − τ2 < ∆t ≤ τ1 − τ2

0 elsewhere ,

(11)

where ∆wpp(∆t), ∆wnn(∆t), ∆wnp(∆t), and ∆wpn(∆t) are the synaptic changes due
to the four components, with ‘p’ and ‘n’ indicating respectively the positive and
negative parts of the onset-signal derivatives.

The integrals of the four G-DHL mixed components are as follows:

∆wsp(∆t) =


∫ τ2+∆t

0
u1(s)u̇2(s) ds if − τ2 < ∆t ≤ 0∫ τ2+∆t

∆t
u1(s)u̇2(s) ds if ∆t > 0

0 elsewhere

(12)

∆wps(∆t) =


∫ τ1

0
u̇1(s)u2(s) ds if ∆t ≤ 0∫ τ1

∆t
u̇1(s)u2(s) ds if 0 < ∆t ≤ τ1

0 elsewhere

(13)

∆wsn(∆t) =


−
∫∞

0
u1(s)u̇2(s) ds if ∆t ≤ −τ2

−
∫∞

∆t+τ2
u1(s)u̇2(s) ds if ∆t > −τ2

0 elsewhere

(14)

∆wns(∆t) =


−
∫∞
τ1
u̇1(s)u2(s) ds if ∆t ≤ τ1

−
∫∞

∆t
u̇1(s)u2(s) ds if ∆t > τ1

0 elsewhere ,

(15)

where ∆wsp(∆t), ∆wps(∆t), ∆wsn(∆t), and ∆wns(∆t) are the synaptic changes due
to the four mixed components, with ‘s’ indicating the onset signals.

2.2 Explicit equations of the G-DHL components when τ1 6= τ2

The G-DHL rule presented in the main article is a function that returns the instant
synaptic change based on the value of the input signals and the positive and negative
parts of their derivatives. Eq. (8)–(11) and (12)–15 return the synaptic changes caused
by each component of the rule on the basis of the definite integral of the component
computed over t ∈ (−∞,+∞). In turn, the definite integral of each component is a
sum of proper and improper integrals depending on the overlaps of the events and their
positive/negative derivative parts. The explicit formulas of these proper/improper
integrals have been computed with Maxima, an open-source computer algebra system.
These formula can be used to directly compute the synaptic change caused by the
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different components given the parameters ∆t, τ1, τ2, and κ. The G-DHL rule then
linearly combines such values on the basis of the σ and η parameters.

Given the following short notations:

ρ = τ2/τ1 σ1 = e
∆t
ρ τ1

+ ∆t
τ1

+ρ+1 σ2 = eρ+1

σ3 = e
∆t
ρ τ1

+ ∆t
τ1 σ4 = e

1
ρ+1 σ5 = e

∆t
ρ τ1

+ ∆t
τ1

+ρ

σ6 = e
1
ρ σ7 = e

−τ1 (ρ2+ρ+1)−∆t ρ

τ1 ρ σ8 = e
−τ1 (ρ2+ρ+1)−∆t ρ

τ1 ρ

the explicit formulas related to the differential components of the G-DHL rule are
as follows:

∆wpp(∆t) =



−
κ2

(
τ1 ρ

(
ρ2−2 σ1 ρ+2 ρ−1

)
+∆t (ρ+1) (ρ−σ1)

)
e
− τ1 (ρ+1)+∆t

τ1

τ2
1 ρ (ρ+1)3

if − τ2 < ∆t ≤ 0

−
κ2

(
τ1

(
ρ2−2 σ2 ρ+2 ρ−1

)
+∆t (ρ+1) (σ2 ρ+1)

)
e
− τ1 (ρ+1)+∆t

τ1

τ2
1 (ρ+1)3

if 0 < ∆t ≤ τ1 − ρτ1

−
κ2

(
∆t (ρ+1) (σ4 ρ−σ3)−τ1

(
σ3 ρ

2+2 σ4 ρ−2 σ3 ρ−σ3

))
e
− τ1 (ρ+1)+∆t ρ

τ1 ρ

τ2
1 (ρ+1)3

if τ1 − ρτ1 < ∆t ≤ τ1

0 elsewhere

(16)

∆wnn(∆t) =


−
κ2

(
τ1 ρ

2−τ1 (2 ρ+1)+∆t ρ+∆t
)
e

∆t
τ1 ρ

− 1
ρ
−1

τ2
1 (ρ+1)3

if ∆t ≤ τ1 − ρτ1

κ2
(
τ1 ρ

2+τ1 (2 ρ−1)+∆t ρ+∆t
)
e
−ρ− ∆t

τ1
−1

τ2
1 (ρ+1)3

if ∆t > τ1 − ρτ1

(17)

∆wnp(∆t) =



σ7 κ
2
(
τ1

(
σ6 ρ

2+σ5 ρ
2+2 σ6 ρ−2 σ5 ρ−σ6−σ5

)
+(σ6+σ5) ∆t (ρ+1)

)
τ2
1 (ρ+1)3

if τ1 − ρτ1 < ∆t ≤ τ1

κ2
(
τ1

(
ρ2−2 σ2 ρ+2 ρ−1

)
+∆t (ρ+1) (σ2 ρ+1)

)
e
− τ1 (ρ+1)+∆t

τ1

τ2
1 (ρ+1)3

if ∆t > τ1

0 elsewhere

(18)

∆wpn(∆t) =



−
κ2

(
τ1 ρ

(
ρ2+2 σ4 ρ−2 ρ−1

)
+∆t (ρ+1) (ρ+σ4)

)
e
− τ1 (ρ+1)−∆t

τ1 ρ

τ2
1 ρ (ρ+1)3

if ∆t ≤ −ρτ1

−
σ8 κ

2
(
τ1

(
σ6 ρ

2+σ5 ρ
2+2 σ6 ρ−2 σ5 ρ−σ6−σ5

)
+(σ6+σ5) ∆t (ρ+1)

)
τ2
1 (ρ+1)3

if − ρτ1 < ∆t ≤ τ1 − ρτ1

0 elsewhere

(19)

The synaptic changes resulting from these integrals are plotted in a figure in the
main article.

The explicit equations related to the mixed components of the G-DHL rule are as
follows:

∆wsp(∆t) =



κ2 (ρ (τ1 (ρ−σ1+3)+σ1 τ1 ρ+σ1 ∆t+∆t)+(σ1+1) ∆t) e
−ρ− ∆t

τ1
−1

τ1 (ρ+1)3
if − ρτ1 < ∆t ≤ 0

κ2 (ρ (τ1 (ρ−σ2+3)+σ2 ∆t ρ+τ1 σ2 ρ+σ2 ∆t+∆t)+∆t) e
−ρ− ∆t

τ1
−1

τ1 (ρ+1)3
if∆t > 0

0 elsewhere

(20)

∆wps(∆t) =



−κ2 (ρ (−τ1 (3 ρ+σ4+1)+∆t ρ+τ1 σ4 ρ+σ4 ∆t+∆t)+σ4 ∆t) e

∆t
τ1 ρ

− 1
ρ
−1

τ1 (ρ+1)3
if∆t ≤ 0

−κ2 ρ (τ1 (σ4 ρ−3 σ3 ρ−σ4−σ3)+(σ4+σ3) ∆t (ρ+1)) e
− τ1 (ρ+1)+∆t ρ

τ1 ρ

τ1 (ρ+1)3
if 0 < ∆t ≤ τ1

0 elsewhere

(21)

∆wsn(∆t) =


−κ2 ((τ1 (ρ−1)+∆t) ρ+∆t) e

∆t
τ1 ρ

τ1 (ρ+1)3
if ∆t ≤ −ρτ1

κ2 (ρ (τ1 (ρ+3)+∆t)+∆t) e
−ρ− ∆t

τ1
−1

τ1 (ρ+1)3
if ∆t > −ρτ1

(22)

∆wns(∆t) =


−κ2 ρ (∆t (ρ+1)−τ1 (3 ρ+1)) e

∆t
τ1 ρ

− 1
ρ
−1

τ1 (ρ+1)3
if ∆t ≤ τ1

e
− ∆t
τ1 κ2 ρ (∆t (ρ+1)+τ1 (ρ−1))

τ1 (ρ+1)3
if ∆t > τ1

(23)

The synaptic changes resulting from these integrals are plotted in a figure in the main
article.
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2.3 Maxima of the synaptic change

The components of the G-DHL rule have different learning kernels. For each kernel it
is thus interesting to know the maximum synaptic change, and the ∆t that causes it,
in relation to the parameters of the α-function of the pre- and post-synaptic neurons
(τ1, τ2, κ). This knowledge can be used for various purposes, for example to tune by
hand the desired synaptic change in computational models using the formula.

The pair of values M , respectively indicating the maximum of the kernel and the
corresponding ∆t, are as follows for the differential components (the formulas use the
short notations used in the previous section):

Mpp =

−
κ2 (ρ (ρ − 2 σ2 + 2) − 1)

τ1 σ2 (ρ + 1)3

 (24)

Mnn =

κ2 e
− 2
ρ+1

−1

τ1 (ρ + 1)2

 (25)

Mnp =


κ2 (σ2 ρ + 1) e

−
σ2 ρ

(
ρ2+3 ρ+4

)
+ρ+3

(ρ+1) (σ2 ρ+1)

τ1 (ρ + 1)2

 (26)

Mpn =


κ2 (ρ + σ4) e

−
σ4

(
4 ρ2+3 ρ+1

)
+ρ2 (3 ρ+1)

ρ (ρ+1) (ρ+σ4)

τ1 (ρ + 1)2

 (27)

Notice how the kernel maximum values change for different τ1 if the ratio ρ
between τ1 and τ2 is kept constant. In this case, the formulas show that all maximum
values have τ1 at the denominator, so the maximum synaptic change decreases with
the increase of τ1 and τ2.

Regarding the values of the ∆t that produce the maximum values of the
components, it is important to notice when they are positive, zero, or negative as this
marks the LTP/LTD nature of the component. Thus: (a) for Mpp: the maximum is
always on ∆t = 0; (b) for Mnn: the maximum is at the left of ∆t = 0 for τ1 < τ2, on it
for τ1 = τ2, and on its right for τ1 > τ2; (c) for Mnp: the maximum is always on the
positive semi-axis of ∆t and when τ1 gets larger it decreases with an inverse
proportionality while ∆t increases with a direct proportionality: this implies that the
point follows a hyperbolic curve; (d) for Mpn: the maximum is always on the negative
semi-axis of ∆t and when τ1 gets larger it decreases with an inverse proportionality
together with ∆t: this implies that the point follows a hyperbolic curve.

For the mixed components of the G-DHL rule, the maximum values and the related
∆t are as follows:

Msp =


κ2 (σ2 ρ + 1) e

−
σ2 ρ

(
ρ2+2 ρ+3

)
+2

(ρ+1) (σ2 ρ+1)

(ρ + 1)2

 (28)

Mps =


κ2 ρ (ρ + σ4) e

−
2 ρ3+σ4

(
3 ρ2+2 ρ+1

)
ρ (ρ+1) (ρ+σ4)

(ρ + 1)2

 (29)

Msn =

κ2 e
− 2
ρ+1

(ρ + 1)2

 (30)

Mns =

κ2 ρ e
− 2
ρ+1

(ρ + 1)2

 (31)

In this case the formulas show that the maximum value does not depend on the
value of a specific time constant, but only on their ratio ρ: if this ratio is kept constant
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the maximum does not change. Instead, the ∆t corresponding to the maximum
changes as follows for an increasing τ1: (a) Msp: the value shifts to the right; (b) Mps:
the value shifts to the left; (c) Msn: the value shifts to the left; (d) Mns: the value
shifts to the right;

2.4 Synaptic change when τ1 = τ2

In the case of equal time constants of the neurons, τ1 = τ2 = τ (hence ρ = 1), the
formulas for the synapse update, illustrated in Section 2.2, become much simpler:

∆wpp(∆t) =


κ2e

∆t
τ

e2−e−
∆t
τ

4e2τ2 (τ + ∆t) if − τ < ∆t ≤ 0

κ2e−
∆t
τ

e2−e
∆t
τ

4e2τ2 (τ −∆t) if 0 < ∆t ≤ τ
0 elsewhere

(32)

∆wpn(∆t) =


κ2e

∆t
τ
−∆t−e2∆t+τ−e2τ

4e2τ2 if ∆t ≤ −τ
κ2−∆t cosh ∆t

τ +τ sinh ∆t
τ

2e2τ2 if − τ < ∆t ≤ 0

0 if ∆t > 0

(33)

∆wnp(∆t) =


0 if ∆t ≤ 0

κ2 ∆t cosh ∆t
τ −τ sinh ∆t

τ

2e2τ2 if 0 < ∆t ≤ τ
κ2e−

∆t
τ

∆t+e2∆t+τ−e2τ
4e2τ2 if ∆t > τ

(34)

∆wnn(∆t) =

{
κ2e

∆t
τ
τ−∆t
4e2τ2 if ∆t ≤ 0

κ2e−
∆t
τ
τ+∆t
4e2τ2 if ∆t > 0

(35)

∆wsp(∆t) =

{
κ2e−

∆t
τ

∆t+e2+ 2∆t
τ ∆t+2τ

4e2τ if − τ < ∆t ≤ 0

κ2e−
∆t
τ

∆t+e2∆t+2τ
4e2τ if ∆t > 0

(36)

∆wsn(∆t) =

{
−κ2e

∆t
τ

∆t
4τ if ∆t ≤ −τ

κ2e−
∆t
τ

∆t+2τ
4e2τ if ∆t > −τ

(37)

∆wps(∆t) =

{
−κ2e

∆t
τ

e2∆t+∆t−2τ
4e2τ if ∆t ≤ 0

−κ2e
∆t
τ

e2∆t+e
2∆t
τ (∆t−2τ)

4e2τ if 0 < ∆t ≤ τ
(38)

∆wns(∆t) =

{
κ2e

∆t
τ

2τ−∆t
4e2τ if ∆t ≤ τ

κ2e−
∆t
τ

∆t
4τ if ∆t > τ

(39)
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2.5 Maxima when τ1 = τ2

When τ1 = τ2 the formulas of the maximum values of the kernels, and the ∆t causing
them, are as follows (note how they are much simpler with respect to case of τ1 6= τ2):

Mp,p =

(
0, κ2 e2 − 1

4e2τ

)
(40)

Mn,n =

(
0, κ2 1

4e2τ

)
(41)

Mn,p =

 2e2τ

1 + e2
, κ2 e

− 2e2

1+e2 (1 + e2)

4e2τ

 (42)

Mp,n =

 2e2τ

1 + e2
, κ2 e

− 2e2

1+e2 (1 + e2)

4e2τ

 (43)

Ms,p =

(
τ

e2 − 1

e2 + 1
,
κ2

4
e
− 1+3e2

e2+1 (1 + e2)

)
(44)

Mp,s =

(
−τ e2 − 1

e2 + 1
,
κ2

4
e
− 1+3e2

e2+1 (1 + e2)

)
(45)

Ms,n =

(
−τ, κ2 1

4e

)
(46)

Mn,s =

(
τ, κ2 1

4e

)
. (47)

2.6 The integrals of the synaptic changes over all ∆t

The overall effect of each G-DHL rule component over the entire range of ∆t can be
computed with an integral computed over all values of component learning kernel.
This information is relevant to characterise the total amount of enhancement or
depression caused by each component when ∆t is a stochastic variable with a flat
distribution. This can be used to have a broad indication of the strength with which a
G-DHL component, or a given combination of them, tend to cause a progressive drift
of the synapse towards positive or negative values when ∆t values vary, as it is
normally the case in neural networks.

Interestingly, these integrals have a very simple form that depends only on κ for
the differential components, and on κ and either τ1 or τ2 for the mixed components:

∫ ∞
−∞

∆wpp(∆t) d ∆t =

∫ ∞
−∞

∆wnn(∆t) d ∆t =
κ2

e2
(48)∫ ∞

−∞
∆wnp(∆t) d ∆t =

∫ ∞
−∞

∆wpn(∆t) d ∆t =
κ2

e2
(49)∫ ∞

−∞
∆wsp(∆t) d ∆t =

∫ ∞
−∞

∆wsn(∆t) d ∆t =
κτ1
e

(50)∫ ∞
−∞

∆wps(∆t) d ∆t =

∫ ∞
−∞

∆wns(∆t) d ∆t =
κτ2
e

. (51)

2.7 Automatic search of the G-DHL rule components

The best G-DHL model to fit a target STDP data set can be found through an
automatic procedure searching the best combination of the rule components, their
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parameters σ and η, and the parameters κ, τ1, and τ2. We illustrate the approach
used here to do this but other approaches are possible. To find the optimal
combination of the G-DHL components for each target STDP data set we used a
model comparison technique based on the Bayesian Information Criterion (BIC; [7]).
This technique selects the best model based on a principled trade-off between (a) a
low number of parameters used and (b) a low residual variance unexplained by the
model after the fit. In particular, for each target STDP data set the automatic
procedure runs all possible regressions of the target data set using a certain number c
of components (1 ≤ c ≤ 8). Then for each combination of components, the regression
procedure estimates: (a) the σs and ηs parameters of the selected components of the
G-DHL rule, establishing the shape of the learning kernel; (b) the τ1 and τ1 time
constants of the pre- and post-synaptic neurons establishing the horizontal size of the
kernel; (c) the amplification parameter κ (Eq. (5)) establishing the vertical size of the
kernel. Thus the number of the estimated parameters is k = c+ 3, hence 4 ≤ k ≤ 11.

Regarding the specific technique used to perform the regression, it is important to
notice that although the G-DHL rule is linear in its components the needed regression
is non-linear due to the interactions between the σs and ηs parameters, on one side,
and the κ, τ1, and τ2 parameters, on the other. Any non-linear regression approach
could be used to this purpose. Here we used a technique based on genetic
algorithms [8] due to its simplicity, computational power, and availability of software
(the genetic algorithm used here is explained in detail in Section 2.8).

For each data set, the best model (i.e., the best G-DHL rule combination of
components and parameters) was considered the one minimising the BIC index:

BIC = n · ln

(
1

n

n∑
i=1

(∆wi(∆t)−∆wpi (∆t))
2

)
+ k · ln (n) (52)

where n is the number of data points, ln(.) is the natural logarithm, ∆wi(∆t) is the i
experimental data point corresponding to the synaptic change measured at ∆t,
∆wpi (∆t) is the corresponding synaptic change predicted by the model for ∆t, and k is
the number of estimated parameters of the model. Having the minimum BIC, the best
found model has a low residual variance and at the same time a low number of free
parameters.

Although the whole procedure involves a non-linear regression it tends to not fall
into local minima, a desirable features typical of linear optimisation techniques. The
reasons are that: (a) for each data set, the procedure runs a separated regression for
each possible component combination, thus excluding the possibility of getting trapped
into a particular combination as a local minimum; (b) the specific regression for each
combination tends to not fall into local minima as the curves to be fit generally
present few synapse strengthening/weakening peaks (one to three); local minima can
also be easily excluded by direct inspection after getting the results of the search.

After finding the best model for each STDP data set, its capacity to accurately fit
the data was measured as fraction of variance unexplained (FVU):

FV U = 1−R2 = 1−
∑
i (∆wi(∆t)−∆wpi (∆t)))

2∑
i (∆wi(∆t)−∆w̄)

2 , (53)

where R2 is the determination coefficient, capturing the quality of the fit, and ∆w̄ is
the mean of all data points.

2.8 Genetic algorithm to fit STDP data

To search for the parameters producing the best fit of each given data set we used a
genetic algorithm optimisation technique [9, 10]. Genetic algorithms [8, 11–13] are a
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popular optimisation methods and have been successfully used to estimate the
parameters of non-linear models applied to a variety of biological data, including data
on brain (e.g., [14–18]). The optimisation was here performed using the Genetic
Algorithm Toolbox of MatlabTM . The range of the parameters was normalised in [0, 1].
Each GA was run for 100 ‘generations’ and individuals were reproduced with a 0.1
probability of crossover. The mutation was set to ‘mutationadaptfeasible’ (this chooses
mutations that respect parameter boundaries) and the selection to ‘selectionuniform’.
The initial population of the GA used for one regression was chosen so that the
individuals covered the space of the chosen parameters as much as possible in a
uniform way.

The genetic algorithm was used in combination with a model comparison technique
based on the Bayesian Information Criterion (BIC; [7]) described in Section 1.7. In
particular, for each target STDP data set we considered all possible combinations of c
(1 ≤ c ≤ 8) G-DHL components having coefficients σ and η different from zero: for
each combination, these parameters were then optimised with the genetic algorithm.
To face the problem of possible local minima affecting non-linear optimisations, for
each of such combinations we ran ten different independent regressions using different
seeds of the random number generator, and chose the parameter set from the ten
repetitions that produced the best fit in terms of minimum FVU (fraction of variance
unexplained, see main article). We repeated this process for all combinations of
parameters corresponding to a given c, and selected the best model among them.
Finally, we selected the best model among those corresponding to different c on the
basis of the BIC model comparison procedure. The overall number of GA regressions
run for each experimental data set was therefore 2550 (see table 1).

Table 1. The number of regressions run for each data set organised for groups, where
each group involved c components of the rule (c = {1, . . . , 8}) combined in all possible
ways. For each combination of components the regression was repeated 10 times.

Number of components: 1 2 3 4 5 6 7 8
Number of combinations: 8 28 56 70 56 28 8 1
Number of simulations: 80 280 560 700 560 280 80 10 Tot: 2550

3 Results: STDP regressions

The following figures show the details of the regressions reported in the main article
for the different STDP data sets.
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Figure 11. Results of the regression performed with the model selected
with the BIC model comparison procedure applied to the STDP data
from [19]. (a) Left column: number of components used by the best G-DHL-based
regression; FVU (fraction of variance unexplained); values of the amplification
parameter κ and of the pre/post-synaptic τs of the onset function (Eq. 13). Top-right
graph: BIC values obtained using a number of G-DHL components from 1 to 8 and
considering the best component combination for each number (the little triangle
indicates the model used in the shown regression). Bottom-right graph: identity and
size of the parameters found by the optimisation. (b) Left graph: data and
exponential regression model from [19] (reprinted with permission). Right graph:
fitting curve using the parameters reported in ‘a’.
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Figure 12. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [20] (the left graph
reported in ‘b’ is reprinted with permission). Data plotted as in Fig. 11.
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Figure 13. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [21] (the left graph
reported in ‘b’ was reproduced based on data and the original figure). Data plotted as
in Fig. 11. Note that the graph at the top-right shows low BIC values for the
regressions with 1 and 2 components: the regression with 1 component (little circle)
has the minimum BIC value but the regression with 2 components (little triangle) was
used as its BIC value is basically as the other but has a higher fitting power.
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Figure 14. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [22] (the left graph
reported in ‘b’ was reproduced based on data and the original figure). Data plotted as
in Fig. 11.

PLOS 22/28



Figure 15. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [23] (the left graph
reported in ‘b’ is reprinted with permission). Data plotted as in Fig. 11.
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Figure 16. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [24] (the left graph
reported in ‘b’ is reprinted with permission). Data plotted as in Fig. 11.
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Figure 17. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [25] (the left graph
reported in ‘b’ was reproduced based on data). Data plotted as in Fig. 11.
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Figure 18. Results of the best G-DHL regression, selected with the BIC
model comparison, applied to the STDP data from [26] (the left graph
reported in ‘b’ was reproduced based on data and the original figure). Data plotted as
in Fig. 11.
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