
Article
A Statistical Description o
f Plant Shoot Architecture
Highlights
d We analyzed 557 3D plant architectures to study how

branches distribute in space

d Branch density was separable, self-similar, and described by

a truncated Gaussian

d These three properties are shared by dendritic and axonal

morphologies in the brain
Conn et al., 2017, Current Biology 27, 2078–2088
July 24, 2017 ª 2017 Elsevier Ltd.
http://dx.doi.org/10.1016/j.cub.2017.06.009
Authors

Adam Conn, Ullas V. Pedmale,

Joanne Chory, Charles F. Stevens,

Saket Navlakha

Correspondence
navlakha@salk.edu

In Brief

Conn et al. analyze 557 3D plant shoot

architectures and discover that the

distribution of branches in space is well

approximated by a truncated 3D

Gaussian density function. This result

highlights a new principle guiding growth

and adaptation of plants, and it raises

new questions about the molecular

mechanisms driving pattern formation.

mailto:navlakha@salk.edu
http://dx.doi.org/10.1016/j.cub.2017.06.009
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cub.2017.06.009&domain=pdf


Current Biology

Article
A Statistical Description
of Plant Shoot Architecture
Adam Conn,1 Ullas V. Pedmale,2,4 Joanne Chory,2 Charles F. Stevens,3 and Saket Navlakha1,5,*
1Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
2Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
3Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
4Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
5Lead Contact

*Correspondence: navlakha@salk.edu

http://dx.doi.org/10.1016/j.cub.2017.06.009
SUMMARY

Plant architectures can be characterized statistically
by their spatial density function, which specifies the
probability of finding a branch at each location in
the territory occupied by a plant. Using high-preci-
sion 3D scanning, we analyzed 557 plant shoot archi-
tectures, representing three species, grown across
three to five environmental conditions, and through
20–30 developmental time points. We found two
elegant properties in the spatial density functions of
these architectures: all functions could be nearly
modified in one direction without affecting the den-
sity in orthogonal directions (called ‘‘separability’’),
and all functions shared the same underlying shape,
aside from stretching and compression (called ‘‘self-
similarity’’). Surprisingly, despite their striking visual
diversity, we discovered that all architectures could
be described as variations on a single underlying
function: a Gaussian density function truncated at
roughly two SDs. We also observed systematic vari-
ation in the spatial density functions across species,
growth conditions, and time, which suggests func-
tional specialization despite following the same gen-
eral design form.

INTRODUCTION

One central challenge in plant biology is to identify general prin-

ciples guiding growth and adaptation of plant architectures [1].

Plant architectures are highly complex, developing meticulously

over time and constantly adjusting to challenges from the envi-

ronment [2]. These adjustments include modulation of growth

rates, the size and number of branching elements and leaves,

and flowering times [3, 4]. Growth strategies also vary across

species in terms of the number of seed leaves generated, the

presence of secondary growth, and leaf patterning [5].

Over the last several decades, many principles describing

plant form have been discovered [6], including phyllotaxis

(spatial arrangement of leaves) [7], bifurcation planarity [8],

fractal branching [9–11], and allometric scaling of several other

plant properties, including plant height, stem diameter, and
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leaf biomass [12–15]. These insights have led to many models

of plant architectures, including Lindenmayer systems [16] and

its many variants [17–19], the metabolic theory of ecology [20],

and functional-structural models [21–25], used to simulate how

different physiological or ecological factors influence plant struc-

ture. These models have had wide applications in agriculture

[26], plant engineering [27, 28], and computer graphics [16, 29].

Here, we study the spatial density function of plant architec-

tures and ask, for each point in the 3D territory or volumetric

space occupied by a plant (defined as the convex hull of the

cloud points representing the plant’s architecture), what is the

probability of finding a branch at that point? The spatial density

function characterizes how plants distribute branches in space

and can reveal growth strategies that may not be apparent by

eye. Indeed, it is not clear a priori how many different forms of

the density function are used. For example, the functional form

may be class specific (monocots versus dicots), species spe-

cific, or even condition specific; the form may even depend on

growth and developmental timing. Understanding which forms

are used and in what context may help guide plant biologists

studying similarities and differences in the biological mecha-

nisms that produce these structures, including how they may

have evolved.

Our goals here are to characterize plant spatial density func-

tions using statistical moments, to test these functions for two

mathematical properties (separability and self-similarity), and

to determine the form of the density function. ‘‘Separability’’

means that branch density is independent in the x, y, and z direc-

tions. ‘‘Self-similarity’’ means that architectures of different sizes

have the same underlying shape, modulo compression and

stretching along one or more directions. The form of the function

is not designed to be used to reconstruct an individual plant’s

architecture but rather to highlight statistical properties shared

by a large collection of architectures.

Compared to prior work, we offer the following contributions:

(1) Analysis of an extensive dataset of 557 juvenile plant 3D

architectures from three species, scanned across various

growth conditions for the same species, and several early

developmental time points for the same individual plant.

(2) Quantification of separability and self-similarity of plant

spatial density functions. Whereas fractal branching

has long been appreciated by mathematical biologists

[9–11], there has been little formal analysis of the degree
td.

mailto:navlakha@salk.edu
http://dx.doi.org/10.1016/j.cub.2017.06.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2017.06.009&domain=pdf


to which this property applies to a population of whole-

plant architectures and how it varies across environ-

mental conditions and through development. Moreover,

our quantification is done using a statistical test [30],

which critically does not rely on template matching or a

priori assumptions about the number of functional forms

for architectures. Prior work has also quantified the de-

gree of self-nestedness for trees based on measures of

graph compression [31, 32], though no claim is made by

these works to general validity across all plants.

(3) Derivation of a single functional form to describe all plant

spatial density functions. We applied the methodology

developed by Snider et al. [30] and discovered that all den-

sity functions can be approximated by a 3DGaussian trun-

cated at a boundary of roughly two SDs from the center.

Thismeans that only four parameters areneeded tospecify

statistically any architecture’s size and shape: its total

branch length and the SDs of the Gaussian in the three

orthogonal directions. This provides a very simple and

compact description of a large diversity of architectures.

We conclude by discussing potential benefits and limitations

of these properties, implications for studying their molecular ba-

sis, and their analogs in branching dendritic and axonal morphol-

ogies in the brain.

RESULTS

Generating a Diverse Dataset of Plant Architectures
We performed 3D laser scanning of plant shoot architectures

across three species (tomato, tobacco, and sorghum), three to

five growth conditions (ambient light, shade, high heat, high light,

and drought), and through 20–30 days of development. Overall,

we performed 557 scans (311 tomato, 105 tobacco, and 141 sor-

ghum) summed across species, conditions, and time points

(STAR Methods).

From each scan, we extracted the 3D coordinates of each

branch point for the dicots (tomato and tobacco) and each leaf

point for the monocot (sorghum; Figures 1A–1C). These points

were used as input to the analysis described in the next section.

We observed a wide range of architectures, with the number of

branch points, the number of leaves, and the territory volume

occupied by the plants varying by several orders of magnitude

(Table 1). Thus, this dataset represents a good benchmark for

testing the generality of any property of plant architectures.

Our goal here is to provide a compact, statistical description of

the spatial density function of a large collection of plant architec-

tures. We analyze ‘‘skeletonized’’ plant architectures, evaluating

their spatial density function based only on length measure-

ments. Overall, we discovered a universal property shared

by all plants studied here; their spatial density functions can

be described using a single functional form: a truncated 3D

Gaussian (Figure 1D). This, asopposed to having several different

functional forms for different species, condition, or time points,

was an unexpected finding that we substantiate in detail below.

Using Moments to Describe Plant Architectures
To characterize how the branches of a plant are distributed in

space, we study the plant’s spatial density function (Figure 1D).
This function describes the density of points in the volumetric

territory occupied by the plant, and it determines what architec-

tures can possibly be formed. General properties of architec-

tures can be understood by comparing this function across

plants. For tomato and tobacco, we study the spatial density

function of only branches (leaves and the hypocotyl are ignored).

For sorghum, we study the spatial density function of the leaves,

which represent the full architecture, because there are techni-

cally no branches.

One conventional approach to compute the spatial density

function would be to place a regular k3k3k grid over the plant

and to count the density (sum) of points in each 3D voxel. This

approach, however, suffers from two limitations. First, grid count-

ingdefines density as a local property of the architecture (the total

sum of points in each voxel), which can be highly sensitive to

noise. Second, grid counting requires an arbitrary selection of

the value of k. Large values of k will not provide sufficient spatial

resolution, and small values will result in very sparse functions.

To overcome these limitations, we follow the approach devel-

oped by Snider et al. [30] and define the spatial density function

by its statistical ‘‘moments’’ [33]. Knowing all of themoments of a

probability distribution is exactly equal to knowing the function

that generates the distribution, with the resolution of the descrip-

tion increasing with the number of moments calculated (ranging

from 0 toN; it is impossible in practice to compute all of the mo-

ments because of their magnitude; in this study, we could only

reasonably compute up to the 20th moment, which was roughly

10250). For a probability distribution, lower-order moments

correspond to common named properties of distributions [34],

including the mean (first moment), variance (second moment),

skewness (third moment), and kurtosis (fourth moment). Simi-

larly, for a density function, lower-order moments correspond

to the total mass (zeroth moment) and the center of mass (first

moment divided by the total mass), etc. In general, higher-order

moments capture finer details of the architecture, including non-

linearities in branching patterns and the shape of individual

branches. Unlike grid counts, moments are global parameters,

where each moment calculated depends on the entire structure

of the architecture.

To calculate plant moments, we start with the skeletonized ar-

chitecture, with nodes corresponding to branch points (for the

dicots) or leaf points (for the monocot), and with edges between

pairs of successive points selected along the manually traced

architecture. Each edge is split into ten equal-length segments

to increase spatial resolution. For each segment i, we store

two quantities: its lengthwi and its position pi = ðxi; yi; ziÞ, defined
as the mid-point of its two end points. Let n equal the total num-

ber of segments over all edges of the plant. Then, the total length

of the plant (i.e., its zerothmoment, denotedm0) is the sum of the

lengths of all its segments:

m0 =
Xn

i = 1

wi:

Let k equal the moment order. Following standard probability

theory, the kth ‘‘product moment,’’ mk , is defined as

mk =
Xn

i = 1

ðxi � xÞkðyi � yÞkðzi � zÞkwi; (1)
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Figure 1. 3D Plant Scans and Illustrative Spatial Density Functions

(A–C) Example scans of three plants on their 20th developmental day: (A) tomato; (B) sorghum; and (C) tobacco. Grey dots correspond to themid-points of edges

at the shown ðx; y; zÞ location and are used to compute the spatial density function for each plant. Only visible points are shown.

(D) Illustrations of Gaussian spatial density functions in different conditions and time points. Our analysis focuses on the branching architecture above the hy-

pocotyl. The brown cloud denotes the spatial density of the branching architecture. The higher the brown intensity of a point, the higher the probability of finding a

branch at that point. The length-to-width ratio of the ellipse reflects differences in density in each direction. The distribution curves on top of the ellipses show

examples of the Gaussian density function along one direction.

See also Figure S4.
where x denotes the center of mass of the plant in the x direction

(i.e., the mean of the x coordinates of each segment).

Our first goal is to use these moments to test for the following

two properties:

(1) Separability:Areall density functions independent in thex,y,

and z directions? For example, if a plant is separable, then

any growth in the north-south direction would not necessi-

tate a change in growth in the other two orthogonal direc-

tions. On the other hand, if the plant is not separable, then

any change in thenorth-south directionwould forcea corre-

sponding change in at least one other orthogonal direction.
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(2) Self-similarity: Do all density functions have the same

shape, modulo stretching and compression? For

example, if both a small plant and a large plant have the

same density function, then if they were both scaled to

be of the same size, their architectures would exactly

overlap. On the other hand, if the two plants have different

density functions, they would not well superimpose. The

term ‘‘self-similarity’’ is commonly associated with being

fractal, i.e., having the property that if a single structure

is magnified, then it looks similar at all scales. Our defini-

tion of self-similarity considers not a single structure but

rather a population of structures and asks whether all of



Table 1. Architecture Statistics for Our Benchmark Dataset

Species Environment Time No. Branch Points No. Leaves Log(Volume) ðmm3Þ
Tomato ambient D00 2:00±0:00 2:00±0:00 3:14±0:03

Tomato ambient D10 7:00±0:24 9:00±0:37 4:77±0:01

Tomato ambient D20 16:20±0:36 17:00±0:35 5:75±0:02

Tomato shade D00 2:00±0:00 2:00±0:00 3:21±0:03

Tomato shade D10 5:33±0:00 2:00±0:00 4:53±0:05

Tomato shade D20 11:50±0:35 13:5±1:06 5:34±0:15

Tomato high heat D00 2:00±0:00 2:00±0:00 3:16±0:04

Tomato high heat D10 2:00±0:00 4:67±0:38 3:71±0:04

Tomato high heat D20 3:00±0:00 6:00±0:00 4:11±0:06

Tomato high light D00 2:00±0:00 2:00±0:00 3:15±0:02

Tomato high light D10 8:67±0:38 10:33±0:38 4:79±0:02

Tomato high light D20 19:33±1:02 20:66±0:84 5:82±0:01

Tomato drought D00 2:00±0:00 2:00±0:00 3:07±0:04

Tomato drought D10 6:00±0:33 8:00±0:00 4:44±0:03

Tomato drought D20 11:67±0:69 12:67±0:69 5:12±0:04

Tobacco ambient D00 2:33±0:19 3:33±0:19 2:79±0:01

Tobacco ambient D10 5:67±0:19 6:67±0:19 4:29±0:04

Tobacco ambient D20 8:67±0:19 9:67±0:19 5:51±0:07

Tobacco shade D00 2:00±0:00 3:00±0:00 2:78±0:02

Tobacco shade D10 5:00±0:00 6:00±0:00 4:09±0:03

Tobacco shade D20 7:00±0:00 8:00±0:00 4:82±0:01

Tobacco high heat D00 2:00±0:00 3:00±0:00 2:81±0:02

Tobacco high heat D10 7:00±0:00 8:00±0:00 4:23±0:06

Tobacco high heat D20 11:00±0:00 12:00±0:00 5:27±0:02

Sorghum ambient D00 2:00±0:00 1:33±0:19 2:22±0:06

Sorghum ambient D10 6:33±0:19 3:33±0:19 5:34±0:03

Sorghum ambient D20 10:33±0:38 5:67±0:19 6:04±0:05

Sorghum shade D00 2:00±0:00 1:00±0:00 2:18±0:03

Sorghum shade D10 6:00±0:00 3:00±0:00 5:15±0:02

Sorghum shade D20 7:33±0:51 4:00±0:33 5:62±0:09

Sorghum high heat D00 2:00±0:00 1:00±0:00 2:39±0:01

Sorghum high heat D10 7:00±0:67 4:00±0:33 5:39±0:01

Sorghum high heat D20 10:00±0:58 5:67±0:19 5:56±0:03

Sorghum high light D00 2:00±0:00 1:00±0:00 2:42±0:07

Sorghum high light D10 8:00±0:00 4:00±0:00 5:38±0:04

Sorghum high light D20 11:33±0:38 5:67±0:19 6:03±0:04

For each species and environment, example architectural features are listed for three time points: D00 (the first day of scanning), D10, and D20. For

each row, we show the average number of branch points and leaves and the total volume occupied by the plant. The number of leaves includes leaflets

and cotyledons. The volume is expressed as the log10 of the convex hull of the cloud points for the scanned plant. All error values represent SE across

two to five replicates. See also Figure S6 and Table S1.
them can be viewed as variations (via stretching or

compression) of a single form.
Testing for Separability
Theory

Separability means that the density function can change in one

directionwithout affecting the shape of the function in orthogonal

directions. Mathematically, a function of three independent vari-

ables is defined to be separable if it can be expressed as a prod-
uct of three functions, each depending on only one of the vari-

ables (STAR Methods).

To test whether a plant spatial density function is separable,

we need to determine whether its product moment can be de-

composed into the product of individual components for each di-

rection (called ‘‘separated moments’’). A separated moment is

equivalent to projecting the 3Ddensity function onto a chosen di-

rection and calculating moments in that direction. The other two

directions do provide information about the total length of the

segment (w); however, they do not provide any information about
Current Biology 27, 2078–2088, July 24, 2017 2081



A B Figure 2. Separability of Plant Architectures

(A) Log-log plot of the product moments ðmkÞ versus
the product of the separatedmoments ðmk;xmk;ymk;zÞ
for even values of k between 0 and 20. There is one

dot per moment order per plant scan (557

architectures311 moment orders= 6127 total dots).

The blue line shows the least-squares fit to the data

with slope of 0:959±0:002, computed using all

values of k plotted together. The red line indicates

exact separability with a slope of 1. Plant architec-

tures are nearly, but not exactly, separable.

(B) Frequency histogram of the separability slope

calculated for each individual plant over all its

moment orders (i.e., 557 slopes; one slope calcu-

lated per plant). The average slope was 0.946 with

SD of 0.044.

See also Figure S1.
the shape of the function in that direction. In other words, the

density function can be translated or rotated in the other two di-

rections without changing the moments in the chosen direction.

For each k, the equations for calculating the separated moments

mk;x;mk;y ;mk;z are described in the STAR Methods.

To test separability, we need to test whethermk =mk;xmk;ymk;z

for all moment orders, k. If the function is exactly separable,

then the slope of the plot of mk versus mk;xmk;ymk;z will equal

exactly 1. The difference between 1 and the actual slope indi-

cates how far the function is from exact separability. Because

higher-order moments can be gigantic (m20 is almost 10250 for

the largest plant), we plot all moments on a log-log scale.

Analysis

We used our benchmark dataset to quantify separability for all

557 architectures. All plants analyzed together (i.e., one slope

for all plants) achieved near-exact separability, with a slope of

0:959±0:002 (Figure 2A). The observed departure from exact

separability (0.959 versus 1.00) is what would be expected

by a Gaussian function that is truncated at two SDs (STAR

Methods; Figure S1A). That is, the plant spatial density function

must be truncated at some boundary. Assuming plants have a

spherical boundary, such truncation destroys true separability,

and thus, plants cannot be exactly separable. However, the de-

parture from true separability that we observed for plants is

consistent with the separability of a truncated Gaussian func-

tion. An untruncated Gaussian function is well known to be

exactly separable.

Separability slightly increased when analyzed indepen-

dently in each pairwise direction: separability in ðx; yÞ was

0:971±0:002; in ðx; zÞ was 0:962±0:002; and in ðy; zÞ was

0:976±0:001. This suggests that the density function is only

z1%more coupled in three dimensions than in two dimensions.

To test the robustness of this observation, we calculated the

separability for each plant separately (i.e., 557 slopes, one per

plant). This produced a similar mean slope of 0:946±0:044 (Fig-

ure 2B). When slopes were grouped by species (Figures S1B–

S1D) and conditions (Figures S1E–S1I), we observed a similar

range of separability. For example, tobacco plants across

all conditions had a separability of 0:949±0:038, whereas

plants grown in shade (across all species) had a separability of

0:946±0:050. Thus, separability does not appear to be a spe-

cies- or condition-specific property. Separability was also time

invariant; the analysis above included both young plants, with
2082 Current Biology 27, 2078–2088, July 24, 2017
only one or two branches and leaves, and more mature plants,

with numerous leaves and branches (Table 1).

Overall, this suggests that plant architectures have highly,

though not exactly, decoupled density functions and that sepa-

rability is maintained even in early development.

Testing for Self-Similarity
Theory

Self-similarity means that different plant spatial density functions

can be ‘‘morphed’’ into one another by expansion or contraction

along orthogonal spatial dimensions. Mathematically, a function

fðxÞ is defined to be self-similar if the relationship between x and

fðxÞ can be described by a power function [35, 36], such

as fðxÞ= cxk , where c and k are constants. In our case, the func-

tion fðxÞ represents the spatial density function of a plant

(approximated via its moments) with size x. To measure size,

we used the SD sxyz of the architecture in all directions (STAR

Methods; Figure 3A).

There is a two-step procedure to quantify the degree to

which plant spatial density functions are self-similar. The first

step is to plot mk=m0 versus sxyz for each architecture and

for various values of k. The term mk=m0 corresponds to the

function fðxÞ normalized to unit length, and sxyz equals the

size of the architecture. If, for each value of k, there is a linear

relationship between the two on a log-log plot (with a different

slope for each k), then the architectures share the same self-

similar function. The second step is to plot the slope of the lines

generated in the first step versus the moment order (k). The dif-

ference between the slope of this line and 1 denotes the degree

of self-similarity. See Snider et al. [30] for a formal derivation of

why each moment order k has a slope of k for a self-similar

function.

Even if plants are self-similar, however, they may belong to

different classes of self-similar functions. Such functions can

include a uniform, a Gaussian, or an exponential spatial density.

The assignment of architectures to classes may also be species

or condition specific. This test can determine the number of clas-

ses of self-similar functions required to describe the plant archi-

tectures because architectures from one class will fall on one line

and architectures for another class will fall on a second line for

the same moment order. Thus, this test determines the degree

to which architectures are self-similar and the number of classes

of architectures. Our dataset includes architectures that vary in
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Figure 3. Self-Similarity of Plant Architectures

(A) Log-log plot showing the high correlation of plant architecture size, measured using the convex hull volume (y axis) versus the SDs in the three directions

(x axis). Correlation coefficient of the red regression line is shown in the legend.

(B) First step of the self-similarity test, plotting logðmk=m0Þ (y axis) versus logðsxyzÞ (x axis) for all 557 plant architectures for k = 0; 2;.;20. Each architecture

contributes one dot per k. Straight lines depict least-squares fit to the data for each k.

(C) Second step of the self-similarity test, plotting the slopes of the regression lines in (B) for eachmoment order. For eachmoment order, error bars correspond to

99% confidence intervals, computed using bootstrapping, for each corresponding regression line in (B). Most confidence intervals are less than the diameter of

the plotting symbol. Error in the legend indicates the least-squares error of the regression line in (C).

See also Figure S2.
size by four orders of magnitude (Table 1), which represents a

broad scale to test this theory.

Analysis

Following the first test for self-similarity described above, we

plotted logðmk=m0Þ versus logðsxyzÞ for k = 0; 2;.;20 for all

557 architectures (Figure 3B). We computed a least-squares

regression line for each moment order; each line closely approx-

imated the data (R2 > 0:99 for all 11 regression lines), even as

moment values ranged over 250 orders of magnitude. Thus,

the first test passes.

For the second test, we plotted the slopes of the lines calcu-

lated in the first test versus k, the moment order (Figure 3C).

The slope of the line was 1:014± 0:001, which is very close

to 1, as would be required by true self-similarity.

To again determine the robustness of this observation, we

repeated the first and second tests of self-similarity on architec-

tures grouped by each species and environmental condition

separately (Figures S2 and S3). All three species exhibited close

self-similarity (slopes of 1.013, 1.011, and 1.009, respectively, for

tomato, tobacco, and sorghum).When grouped by condition, we

observed a similar range of slopes: 1.001 for drought; 1.011 for

high light; 1.011 for control; 1.013 for shade; and 1.021 for high

heat. We also performed the two tests of self-similarity using

both odd and even moments together and observed no change

in our conclusions (Figures S3I and S3J).

Together, these tests show that plant shoot architectures

deviate only 1% or 2% from true self-similarity. Moreover, these

architectures share a single density function because all archi-

tectures lie on a single set of lines, one for each moment order.

Deriving a Functional Form of Plant Architectures
The results from the self-similarity test (Figure 3) suggest that a

single self-similar function can describe the density of all of the

plant architectures. But this does not specify the actual form of

the density function. Going from the moments of a function to

the exact function itself is a notoriously difficult problem that

theoretically requires computing an infinite number of moments
[37]. Whereas some methods have been proposed to approxi-

mate a function’s form from its moments, these require addi-

tional assumptions (e.g., maximum entropy [38], space filling

[39], and mass minimization) that may not always hold invariant.

Here, we seek to find a simple function with few parameters

that provides an adequate statistical description of plant spatial

density functions. There are an infinite number of self-similar

functions, and for each, the ‘‘slope of the slopes’’ (Figure 3C)

will be 1; the remaining parameter of the line (the intercepts) en-

codes the functional form of the function because different self-

similar functions must have different intercepts. Thus, to deter-

mine a functional form from the first 20 moments, we compared

the intercepts of the lines in Figure 3B with those intercepts pro-

duced by two common density functions: a 3D uniform density

(constant density inside a spherical boundary and zero density

outside) and a 3D Gaussian density truncated at a spherical

boundary. We chose a Gaussian density because it is the only

3D function that is spherically symmetric and separable in Carte-

sian coordinates [33], and at least some plants have approxi-

mately spherically symmetric densities. For both functions, the

boundary corresponds to the edge of the territory occupied by

the plant in physical space.

Unexpectedly, we found that all architectures can be

described by a single density function: a 3D Gaussian truncated

at roughly two SDs from the center of mass (Figure 4A). This

means that only four parameters are needed to specify how plant

architectures distribute branches in space: the center of mass

and the SDs in the three orthogonal directions. We can test the

goodness of fit of this function by comparing the plant’s inter-

cepts versus the intercepts of a uniform density function and

versus a Gaussian density truncated at one additional SD.

Both of these result in a poor fit (Figure 4A); for the latter, this sug-

gests that a relatively small change in the density function (one

additional SD) is significant. We also observed species-specific

differences in the best truncation parameter, but in all cases,

the functional form did not change (Figures 4B–4D). Figure 1D il-

lustrates a few example spatial density functions for plants.
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A All plants B Tomato

C Tobacco D Sorghum

Figure 4. Plant Gaussian Spatial Density

Functions

Plots of the intercepts of the self-similarity lines in

Figure 3B versus moment order for (A) all plants

together, (B) tomato only, (C) tobacco only, and (D)

sorghum only. Each panel depicts the intercepts of

the plants (solid brown line) with those of a closely

matched function (solid black line), as well as a uni-

form density, and a Gaussian with a larger SD. Error

bars denote 99% confidence intervals. Intercepts for

the uniform and Gaussian densities for various trun-

cations were computed analytically [30]. Intercepts

for k = 0 and k = 2 are both equal to logð1Þ= 0 due to

normalization to unit length and unit variance. See

also Figure S3.
Overall, we derived a compact, statistical description of all 557

architectures. The plant moments are consistent with a trun-

cated 3D Gaussian density function. This description is almost

as simple as it can possibly be.

Deviation in Growth Strategies across Time, Conditions,
and Species
Despite the overall similarity in the shape of the plant spatial

density functions, there were architectures scattered above

and below the regression lines for each moment order (Fig-

ure 3B). Is this noise, or are there systematic differences in

this scatter?

To explore this, we focused on scatter for the total length of the

plant ðm0Þ plotted versus the volume of the plant ðsxyzÞ. Because
these showed a linear relationship on a log-log plot (Figures 5A

and 5B), these two variables were related as VolumefLengtha,

indicating that, as total length increases, the volumetric territory

occupied by the plant increases in accordance with a power law

[12]. However, plants that lie below the log-log regression line

have a shorter total length for the same volume occupied and

vice versa. This means that branch density (length per unit vol-

ume) is systematically lower for plants below the line versus for

those above the line.

First, we sought differences in the length-to-volume relation-

ship across species and conditions. For tomato plants grown

in drought conditions, 81.5% of the plants lay below the line,

whereas for tobacco in high heat, 78.6% of plants lay above

the line (Figures 5C and 5D; p < 0.05 for both). Figure S4 shows

visually how much less volume tobacco grown in high heat oc-

cupies compared to tobacco grown in control conditions. This

difference has a known biological basis [40, 41]: in high heat, to-

bacco leaves curl upward to reduce moisture loss through evap-

oration—a classical stress response—and the leaves bunch
2084 Current Biology 27, 2078–2088, July 24, 2017
together, occupying less volume. This strat-

egy increases self-shading and reduces leaf

surface area exposed to light, effectively

acting as a cooling effect. We also charac-

terized how plant volume scales with a

higher-order moment ðm10Þ and found

similar differences in the same species-con-

dition pairs (Figure S5), suggesting that

these differences extend beyond just simple

length-to-volume measurements.
Second, we sought systematic differences in the length-to-

volume relationship across time and found that young tomato

and tobacco plants occupy more volume than young sorghum

plants for the same length (STAR Methods).

Overall, these results further challenge previous hypotheses

that branching architectures of plants are always volume filling

[39]. Variation in length-to-volume relationships represents one

type of ‘‘knob’’ that plants can use to tune their architectures

to specific environmental challenges, while still obeying the

same general growth rule. Moreover, whereas length-to-volume

relationships have long been studied in the literature, character-

izing these differences as they vary across environmental condi-

tions for the same species, and across time for the same plant, is

to our knowledge novel.

DISCUSSION

We studied the probabilistic shape of plant architectures and

found that all architectures share two fundamental properties:

their spatial density functions are nearly separable and self-

similar. Separability means that spatial density functions are

decoupled across the x, y, and z directions. This suggests

that the same growth logic can be applied without needing to

‘‘rewrite the code’’ in each direction separately. This may be

desirable because the optimal growth direction is highly unpre-

dictable and dependent on light or competition that can come

from any direction. Self-similarity means that different plant

spatial density functions can be morphed into one another

by stretching or compressing along orthogonal directions.

Together, these two properties suggest a type of biological

modularity [42, 43], where regulating a few parameters may

be sufficient to generate a large diversity of architectures. We

also found that a single density function, a 3D Gaussian



A Length-to-volume by species B Length-to-volume by condition

C Tomato Drought
P < 0.001

 18.5%81.5% 

D Tobacco High-heat
P = 0.028

 78.6%21.4% 

E Sorghum Control
P = 0.332

 57.1%42.9% 

Figure 5. Length versus Volume Comparison

(A and B) Log-log plots of total length (y axis) versus total volume (x axis) of the architecture, grouped by (A) species and (B) condition. Regression line is shown in

black. Analysis includes all plants day 8 and higher.

(C–E) Histograms showing the number of plants in three different species-condition pairs— (C) tomato drought, (D) tobacco high-heat, and (E) sorghum control—

that lie above or below the regression line, shown as to the right or left, respectively, of the red line. For example, 78.6% of tobacco plants grown in high heat lie

significantly above the regression line, i.e., they occupy a smaller volume for the same length compared to the average. Sorghum plants are split evenly above and

below the regression line.

See also Figure S5.
truncated at roughly two SDs, is capable of describing a large

diversity of architectures.

There are four ways in which our work may be used in the ser-

vice of plant biology. First, our finding that all plants considered

here are statistically similar raises immediate questions about

the molecular mechanisms that give rise to this simplicity in

morphology. Gene regulatory networks responsible for pattern

formation are often conserved and are capable of producing a

broad spectrum of patterns by combinatorially modulating the

expression of one or a few core genes [44–46]. Indeed, most mu-

tations lead to changes in gene expression levels, as opposed to

the deletion or invention of entirely new genes, and these

changes have long been viewed as a primary mechanism of

evolutionary adaptation [47–50]. From an evolutionary perspec-

tive, some conservation of structure may be expected—it is un-

likely that evolution uses growth rules that are unique to every

individual species or every different condition. However, only

developing the machinery to implement a single functional

form is highly economical and was not an expected result. The

mechanism driving this form remains a mystery and clearly

begs for an explanation by molecular and cell biologists. Sec-

ond, understanding growth is a grand challenge in plant biology

[1]; our finding that the functional form of the density function is

similar in both young and adult plants suggests that similar

growth strategies may be used throughout development.
Whereas the properties studied here are not meant to allow for

the reconstruction of individual plant architectures, they do

help explain variance in architectures observed at the population

level. Third, these properties may provide new evaluation strate-

gies for genome engineering and plant selection that are critical

for increasing crop yield [27, 28, 51]. Fourth, we used statistical

moments to describe plant architectures; reverse engineering

thesemoments to actual plant traits could provide a newmethod

for understanding and comparing plant forms.

Are there simple models that can generate plant architectures

with the described Gaussian functional form? For example, Lin-

denmayer systems provide a class of recursive growth rules that

naturally give rise to fractal branching. One challenge in these

models has been in determining the correct branch lengths,

which can affect spatial density. We found that the distribution

of branch lengths, across all plants, was clearly an exponential

(Figure S6). The simplest way to generate such a distribution

would be a Poisson process with a single parameter equal to

the mean branch length—a constant that is the same across

all plants and for all branches within a plant. Similar distributions

have been found in leaf venation networks [52]. These observa-

tions provide new constraints that realistic generators of plant ar-

chitectures should satisfy. Generativemodelsmay also be useful

in quantifying departure from true separability. For example, the

model could include a parameter that controls the amount of
Current Biology 27, 2078–2088, July 24, 2017 2085



separability; synthetic architectures generated from these

models could then be compared versus actual plant architec-

tures to determine how the observed departure from separability

observed here (0.959 versus 1.00) manifests in terms of other

plant traits.

All rules have exceptions; wheremaywe find exceptions to the

statistical properties studied here? First, gravity imposes phys-

ical limitations on both tree height and tree width [53–55], which

may alter branching patterns as they approach this physical lim-

itation. Our dataset consisted of plants with sizes below these

limits, and it would be important to see how these statistical

properties can be refined to address these physical limitations.

Second, our analysis studied juvenile plants from three species

across multiple conditions. This dataset does not encapsulate

the entire plant kingdom and all possible growth climates for

plants, for which there may also be exceptions to these rules.

Third, some trees, such as giant sequoias, can elongate verti-

cally roughly 100 m before branching. Such architectures would

clearly not be separable in the up-down direction. Thus, in our

analysis, we removed the part of the plant beneath the first

branch point. This part of the plant, called the hypocotyl for di-

cots, may be regulated differently, for example, as is well studied

in the shade-avoidance response [4]. When analyzing neural

branching morphologies, Snider et al. [30] also removed the

part of the dendrite before the first branch point, because den-

drites of some neurons travel a millimeter in the brain before

branching occurs and synapses form; without removing this

part, dendrites would also not be separable.

There are also many branching structures in biology where

these properties do not hold, indicating that these properties

are not ‘‘inevitable’’ and may indeed represent selective optimi-

zation by evolution. For example, both cardiovascular networks

and sand dune morphologies deviate from strict self-similarity

[56, 57]; the former is also better characterized by a uniform

density rather than a Gaussian [58]. Self-similarity has also

been questioned in some retinal neurons, where they appear

to be space filling rather than fractal [59] (though see below); like-

wise, in the spatial topology of tropical forests, species diversity

is not self-similar across all spatial scales [60]. There are also

many functions for which we observe curved lines in the

moments versus size plot (Figure 3B), also indicating non-self-

similarity [30].

On the other hand, there are some branching processes that

do display these properties. Snider et al. [30] analyzed thou-

sands of dendritic and axonal arbors in the brain across many

cell types and species; they found that all arbors exhibited

near separability and self-similarity and could be described by

a Gaussian density truncated at roughly 1.7 SDs for 3D arbors.

These properties allow complex arbors to be generated by

only varying a few parameters, offering a potentially very simple

way to form diverse neural circuits [61]. The fact that neural and

plant branching structures share similar topological properties

offers another correspondence contributing to the field of plant

neurobiology [62, 63].
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Experimental Models: Organisms/Strains
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Tobacco (Nicotiana benthamiana) Plant Biology Laboratories, Salk Institute N/A

Sorghum (Sorghum bicolor) John Mullet, Texas A&M University N/A

Software and Algorithms

Code to compute plant moments This paper http://plant3d.snl.salk.edu

3D scanner (Faro Technologies) http://www.faro.com/products/metrology/

faroarm-measuring-arm/overview

Other

Plant growth chambers Percival Scientific, IA https://www.percival-scientific.com/

Plant growth chambers Conviron model E8 http://www.conviron.com/products/e8-reach-

in-plant-growth-chamber
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Saket Navlakha

(navlakha@salk.edu).

METHOD DETAILS

Plant growth experiments
Experiments were performed with 3 species of plants (Table S1): tomato (Solanum lycopersicum cv m82D), tobacco (Nicotiana

benthamiana), and sorghum (Sorghum bicolor 100m). These species were selected because they encapsulate two well-known clas-

ses of flowering plants (monocots and dicots, which produce one and two embryonic leaves, respectively) and because of their over-

all agricultural importance [64]. Each plant was grown in amedium comprised of 2x soil (SunGro Propagationmix, USA) to 1xmedium

vermiculite (SunGro, USA). The soil was moistened with water containing 0.12–0.24 oz/gallon fertilizer (Plantex, Canada). All seed-

lings, except for sorghum, were planted in 12-celled planting trays and then transferred to plastic pots. Tomatoes were transferred to

plastic pots (4in. diameter x 3in. tall) on their 9th day after planting, and scanning began on their 11th day (whichwe refer to as scanning

day 0, or D0). Tobaccos were transferred to plastic pots (4.5in. diameter x 3.75in. tall) on their 9th day after planting, and scanning

began on their 17th day. Sorghum were directly planted in plastic pots (4in. diameter x 3in. tall) and scanning began on their 7th

day. All plants were given roughly 50mL of water per day in the greenhouse until they were moved to different environmental condi-

tions in chambers. All plants were placed in their environmental condition 24 hr prior to the first day of scanning (D0).

Experiments for each plant species were performed across 3–5 environmental conditions (with 2–5 replicates per species-condi-

tion pair), and through 20–30 days of growth (Table S1). All plants were grown in chambers on a long-day cycle — 8hr dark

(1am-9am), 16hr light (9am-1am) — once placed in their environments. All plants received 50mL of water every other day (drought

condition excluded). Tomato experiments were performed in ambient conditions (Percival Scientific, IA; 22+C), shade (22+C,

R:FR = 0.7), high-heat (35+C), high-light (Conviron model E8; 22+C, PAR = 1140 mmol�2m�1), and drought (22+C). Plants in the

drought condition were not watered for the entirety of the scanning period. Tobacco experiments were performed in ambient, shade,

and high-heat (32+C). Sorghum experiments were performed in ambient, shade, high-heat (35+C), and high-light. These conditions

were selected because they represent a range of realistic environments regularly faced by many plant species. Scans were

performed every 1–3 days. Each plant was scanned at approximately the same time every scanning day. Each scan took roughly

5–20 min, depending on plant size.
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High-resolution 3D plant scanning
A blue-laser scanner (Edge Scan Arm HD, Faro Inc.) was used to non-invasively reconstruct plant architectures in 3D. Scanning re-

quires no contact with the plant. The output of the scanner is a 3D point cloud representation of the plant with unprecedented,

micron-level resolution with an error ± 25um. There may be some loss in precision toward the boundary of the plant, but all our input

points were selected near the middle of the structure (e.g., each end-point of a branch was selected near the center of its diameter

with respect to thickness). Plant moments were all calculated on the order of millimeters (the precision of the scanner is in microns),

and thus we do not believe the precision of the scanner unduly affects our skeletonization and conclusions. Spatial encoders in the

scanning armprovide automatic 3D registration in X-Y-Z space. This technique avoids common issues in imaging-based approaches

that require segmentation, alignment, and thresholding [65, 66] because scanning only captures plant material, without any back-

ground. The accuracy of scanning-based measurements have been well-validated compared to reference measurements

[67, 68], justifying their use here.

Accompanying software (Polyworks 2016, USA) was used to produce a triangulation mesh of the point cloud. To produce themost

accurate representation of the plant, each plant was scanned from two sides — at 0+ and after turning the plant 180+ — and then

automatically aligned.

Selecting input points for moments calculation, and pre-processing
From each scan, input points were selected corresponding to all branch points, including branch terminal points where leaves or

leaflets emerge (for dicots). Sorghum do not have branches and instead have long grassy leaves; hence points were selected on

the stalk, excluding the coleoptile, and at two locations per leaf: the highest point of the leaf in the up-down (y) direction, and the

mid-point between the highest point of the leaf and base of the leaf (where the leaf branches from the stem).

In order to compare many plants, two adjustments to the moments are needed: a scaling of the density function so all plants are of

the same size, and an orientation of the axes so all plants are aligned. For the former, we normalize bym0 to scale each architecture to

unit length. For the latter, we rotate the architecture so its co-variance across all pairs of directions is zero. We computed separability

without orienting the axes and found that separability was not promoted due to this registration (from 0.959 with orientation to 0.976

without orientation). Thus, we do not believe separability is an artifact induced by registration.

For 2D architectures (e.g., some maize or vine plants), moments must be calculated in 2D, as opposed to 3D; otherwise, all of the

moments will be 0.

Definition of separability and separated moments
Formally, a function Pðx; y; zÞ of three variables is separable if it can be rewritten as:

Pðx; y; zÞ=p1ðxÞp2ðyÞp3ðzÞ;
for some functions p1;p2;p3 over the domain of P. An example of a function that is separable is Pðx; y; zÞ= xysinðzÞ, which can be

written as a product of p1ðxÞ= x, p2ðyÞ= y, p3ðzÞ= sinðzÞ. On the other hand, Pðx; y; zÞ= sinðxyzÞ is not separable.

For each k, the separated moments are defined as:

mk; x =
Xn

i = 1

ðxi � xÞkwi

mk; y =
Xn

i = 1

ðyi � yÞkwi

mk; z =
Xn

i = 1

ðzi � zÞkwi:

(2)

For example,m4;y is the 4th moment in only the y-direction, andm2;z is the 2nd moment (variance) in only the z-direction. If the density

function is not separable, then m4;y would also depend on the values of the function in at least one other direction, x or z.

Each separated moment in Equation 2 is normalized bym
2=3
0 so that when computing the product of separated moments, the total

length wi is only factored in once, allowing for an equal comparison to the product moment,mk in Equation 1. We calculate product

and separated moments for even values of k and thus leave out the absolute value sign.

Measure of architecture size using moments
To measure size, we used the standard deviation of the architecture in all directions. This denotes the amount the architecture

spreads around the center of mass. Recall that the 2nd momentm2 corresponds to the variance; thus, the standard deviation equals:

sxyz =

ffiffiffiffiffiffiffi
m2

m0

r

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
ðxi � xÞ2ðyi � yÞ2ðzi � zÞ2wiX

i
wi

vuut ;
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where we normalize by the total length ðm0Þ to scale to unit length. This is a typical measure of size that is computable using only the

moments themselves, and no other quantity. This measure is also proportional to another common measure of size, the convex hull

volume (i.e., the smallest convex polytope that encloses all the scanned cloud points representing the plant), justifying its use as a

measure of size (Figure 3A).

Note that the convex hull would not be sufficient to specify the functional form of the architecture: the same convex hull could

represent either a uniform or a Gaussian spatial density, and there would be no way to distinguish these from the convex hull alone.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data were quantified using statistical moments as described in Results and Method Details. We used n= 557 architectures. All

regression lines were computed using least-squares. Error bars correspond to 99% confidence interval computed using bootstrap-

ping, or least-squares fit error, as noted. Other technical details are described in Results, Figures 2, 3, and 4, and below.

Quantifying departure from true separability
We found that all plants analyzed together achieved a separability of 0.959; however, it is difficult to appreciate how close to true

separability this may be without providing some frame of reference. Here, we ask: at how many standard deviations would a true

Gaussian density function need to be truncated in order to exhibit the same departure from exact separability that we observed

for the actual plant architectures? In the main text, we found that the spatial density function of all plants can be described by a

Gaussian density truncated at two standard deviations from the center. Here, we test if a Gaussian truncated at two standard de-

viations exhibits a similar departure from exact separability as observed by the plants. The key point here is that the amount the func-

tion is truncated in one direction depends on the amount of truncation in another direction, which makes the function non-separable.

This would occur, for example, when the truncation is spherical for 3D data (circular for 2D).

Snider et al. (2010) provided a test to compute separability using truncated product and separated moments for Gaussian density

functions. Figure S1A shows that the observed departure for plants is very similar to that which would be expected by a Gaussian

truncated at two standard deviations from the center. Each colored line in Figure S1A corresponds to a true Gaussian function trun-

cated at a different number of standard deviations (as annotated; 1, 2, 3, 4, 6, 8, 10). For a Gaussian truncated very far from the center

(8 or 10 standard deviations, the purple and pink lines), the log of the separability is close to 0= logð1Þ, indicating very little departure

from exact separability. Superimposed on this plot are black dots corresponding to the plants’ separability, calculated for each

moment order separately (in the main text, we combined all moment orders together).

We find that the separability expected by a Gaussian truncated at two standard deviations closely overlaps with the plant data.

Thus, the observed departure from exact separability can be largely attributed to the fact that plant territories are truncated

Gaussians.

Quantifying length-to-volume differences across time
We sought systematic differences in the length-to-volume relationship across time. As expected, there was roughly an even split be-

tween architectures lying above (280) and below (277) the regression line. However, the 35 architectures lying furthest below the

regression line were all tomato or tobacco plants that were less than 6 days into their development. Tomato and tobacco are

both dicots, producing two embryonic leaves (cotyledons) that are used to capture resources for initial growth. The cotyledons

fan-out opposite from each other, occupying a relatively large volume for its small initial total length. Sorghum, on the other hand,

is a monocot which only produces one lengthy, grass-like cotyledon (scutellum); this occupies less volume and thus sorghum plants

lie closer to or above the regression line. The scatter observed thus represents a systematic trade-off in length-to-volume ratios em-

ployed in early development compared to later time-points.

DATA AND SOFTWARE AVAILABILITY

All data for the 557 3D plant architectures are available to download at Mendeley Data (http://dx.doi.org/10.17632/9k7zctdyhs.1).

Code for computing moments, and visualizations of all plant architectures, are available at: http://plant3d.snl.salk.edu.
Current Biology 27, 2078–2088.e1–e3, July 24, 2017 e3
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Figure S1: Separability analysis. Related to Figure 2. A) Depature from true separability 
of plants matches what would be expected by a Gaussian truncated at roughly 2 standard 
deviations. B–D) Separability by species. E–I) Separability by condition. 
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Figure S2: First test of self-similarity. Related to Figure 3. The first telf-similarity grouped A–C) 
by species, and D–H) by condition. 
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Figure S3: Second test of self-similarity. Related to Figure 4. The second test of self-similarity 
grouped A–C) by species, and D–H) by condition. I–J) Calculating self-similarity of all the plants
using even and odd moments together does not affect our conclusions.



A Control B High-heat

Figure S4: 3D scans of tobacco. Related to Figure 1. Two scans of a tobacco plant grown 
in A) control, and B) high-heat conditions on day 20. The control plant occupies a much larger 
convex hull volume than the plant grown in high-heat. 



A m10-to-volume by species B m10-to-volume by condition

C Tomato Drought
P < 0.001

→ 7.4%92.6% ←

D Tobacco High-heat
P < 0.001

→ 100.0%0.00% ←

E Sorghum Control
P = 0.095

→ 66.7%33.3% ←

Figure S5: Variation in m10 to volume to across species and conditions. Related to Figure 5. A–

B) The scaling relationship between volume and m10, the 10th moment, by species and condition. C–
E) There is significant variation (above versus below the regression line) in the tomato-drought and 
tobacco-high-heat plants, but not in the sorghum-control plants. The direction of variation for each 
of these species-condition pairs is similar to the variation observed for them using a lower order 
moment, m0 (Figure 5 in the main text). Thus, differences in plant form extend beyond just simple 
length-to-volume measurements, though it remains an open problem to understand what precise 
biological structure the 10th moment encodes. 
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Figure S6: Frequency histogram of branch lengths. Related to Table 1. The distribution of 
branch lengths, accumulated over all 557 architectures. Red line shows fit to an exponential curve 
with Kolmogorov-Smirnov P-value shown in the legend. 



Table S1: Summary of experiments. Related to Table 1.

Experiment Species Condition Time-points Replicates

Expt. 1 Tomato Ambient D00 – D34 2
Expt. 1 Tomato Shade D00 – D34 3
Expt. 1 Tomato High-heat D00 – D21 3

Expt. 2 Tomato Ambient D00 – D30 3
Expt. 2 Tomato Drought D00 – D30 3
Expt. 2 Tomato High-light D00 – D30 3

Expt. 3 Tobacco Ambient D00 – D30 3
Expt. 3 Tobacco Shade D00 – D26 3
Expt. 3 Tobacco High-heat D00 – D22 2

Expt. 4 Sorghum Ambient D00 – D22 3
Expt. 4 Sorghum Shade D00 – D22 3
Expt. 4 Sorghum High-heat D00 – D22 3
Expt. 4 Sorghum High-light D00 – D20 3
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