Transcriptional regulation of *O*-GlcNAc homeostasis is disrupted in pancreatic cancer

Kevin Qian, Simeng Wang, Minnie Fu, Jinfeng Zhou, Jay Prakash Singh, Min-Dian Li, Yunfan Yang, Kaisi Zhang, Jing Wu, Yongzhan Nie, Hai-Bin Ruan, Xiaoyong Yang

- 1. Figure S1-S3
- 2. Table S1-S7

Figure S1. Related to Figure 2. (A) UCSC Genome Browser view of the human *OGT* promoter with corresponding RNA-seq and H3K27ac and transcription factor ChIP-seq data from ENCODE. Notable p300 and C/EBPβ binding sites boxed in red. (B) Quantification of Flag band intensities from the Western blot in Figure 2D. (C) *Ogt* promoter luciferase assay performed in HEK 293T cells transfected with the indicated plasmids (n = 4). All values represent mean ± SEM. *p < 0.05 by one-way ANOVA with Tukey's multiple comparisons test. (D) Sequence alignment of the human, mouse, and rat *OGT* promoters with the conserved C/EBPβ binding motif boxed in red. (E) C/EBPβ binding site consensus sequence with the two mutated bases highlighted in red.

Figure S2. Related to Figure 3. Percentage of the indicated cancer types with the indicated genomic alterations in the (A) *OGT* and (B) *OGA* genes.

Figure S3. Related to Figure 5. (A) Primary mouse PDAC cells were treated with PD0325901 (10 μ M) for 0, 3, 6, 12, or 24 hr and p-ERK levels were measured by Western blot. (B) Quantification of OGT and β -Actin band intensities from the Western blot in Figure 5F (n = 2). All values represent mean ± SEM. *p < 0.05 by multiple t tests with Holm-Sidak correction for multiple comparisons. (C) Western blot analysis of OGA protein levels in whole cell lysates used for the OGA activity assay in Figure 5G.

Rank	Human	Mouse	Rat
-	OGT	Ogt	Ogt
1	DDX17	Pnisr	Ddx17
2	MDM4	Rbm5	Zfc3h1
3	ZFC3H1	Firre	Zc3h11a
4	RBM5	Thoc2	Kdelr3
5	DMTF1	Clk1	Zranb2
6	TTC17	Zfp871	Pnisr
7	NKTR	Abcc5	Morc3
8	ALG13	Atrx	Epm2aip1
9	MGEA5	Malat1	Cspp1
10	PNISR	Ddx17	Son
90	RAPGEF6	2610008E11Rik	Mgea5
107	ATG2B	Mgea5	Casp2

Table S1. Top genes coexpressed with OGT in human, mouse, and rat tissues

Rank	Human	Mouse	Rat
-	MGEA5	Mgea5	Mgea5
1	BTAF1	Phf3	Fyttd1
2	YTHDC1	Kdm3a	Ctnnb1
3	CHD2	Ubxn7	Adnp
4	MDM4	Zmym2	Pot1
5	OGT	Csnk1g1	Zc3h11a
6	DMTF1	Sf3b1	Ddx3x
7	NKTR	Ctr9	Rab6a
8	ZFC3H1	Sbno1	Gdi2
9	RBM5	Nbr1	Crk
10	CLK1	Rlf	SIc25a36
40	HERC4	Kctd18	Ogt
61	STK4	Ogt	Atp6ap1

Table S2. Top genes coexpressed with OGA in human, mouse, and rat tissues

Cancer Type	Pearson	Spearman	n
Uveal Melanoma	0.72	0.76	80
Pancreatic Adenocarcinoma	0.70	0.61	179
Thyroid Carcinoma	0.68	0.62	509
Acute Myeloid Leukemia	0.61	0.69	173
Adrenocortical Carcinoma	0.61	0.50	79
Sarcoma	0.57	0.54	263
Bladder Urothelial Carcinoma	0.53	0.46	408
Skin Cutaneous Melanoma	0.53	0.56	472
Thymoma	0.53	0.61	120
Stomach Adenocarcinoma	0.51	0.56	415
Testicular Germ Cell Cancer	0.49	0.55	156
Kidney Renal Clear Cell Carcinoma	0.47	0.52	534
Cholangiocarcinoma	0.46	0.39	36
Lymphoid Neoplasm Diffuse Large B-Cell	0.45	0.64	18
Lymphoma	0.45	0.04	40
Uterine Carcinosarcoma	0.45	0.34	57
Kidney Renal Papillary Cell Carcinoma	0.44	0.59	291
Prostate Adenocarcinoma	0.43	0.47	498
Breast Invasive Carcinoma	0.43	0.46	1100
Brain Lower Grade Glioma	0.42	0.42	530
Pheochromocytoma and Paraganglioma	0.42	0.43	184
Esophageal Carcinoma	0.42	0.42	185
Lung Adenocarcinoma	0.41	0.49	517
Glioblastoma Multiforme	0.41	0.41	166
Head and Neck Squamous Cell Carcinoma	0.41	0.42	522
Uterine Corpus Endometrioid Carcinoma	0.40	0.41	333
Colorectal Adenocarcinoma	0.38	0.42	382
Cervical Squamous Cell Carcinoma and	0.36	0.44	306
Endocervical Adenocarcinoma	0.50	0.44	300
Ovarian Serous Cystadenocarcinoma	0.35	0.44	307
Liver Hepatocellular Carcinoma	0.35	0.35	373
Lung Squamous Cell Carcinoma	0.33	0.54	501
Mesothelioma	0.31	0.20	87
Kidney Chromophobe	-0.05	0.09	66

Table S3. Correlation between OGT and OGA mRNA expression in human cancers

		OGT			OGA			RL2	
Tiecuo	Low	High	n *	Low	High	n*	Low	High	n *
113506	(-, +)	(++)	μ	(-, +)	(++)	ρ	(-, +)	(++)	ρ
Normal	73	8	<0.0001	60	21	<0.0001	62	19	<0.0001
PDAC	23	58	\U.UUU	15	66	\U.UUU	20	61	\U.UUU
*Fisher's exact test									

Table S4. Comparison of OGT, OGA, and RL2 levels in normal pancreas and PDAC

 Table S5. Correlation between OGT and OGA levels in PDAC

	OGA		
OGT	Low (-, +)	High (++)	
Low (-, +)	10	13	
High (++) 5 53			
Spearman r = 0.405, p < 0.001			

 Table S6. Correlation between OGT and RL2 levels in PDAC

	RL2		
OGT	Low (-, +)	High (++)	
Low (-, +)	15	8	
High (++) 5 53			
Spearman r = 0.592, p < 0.001			

Table S7. Correlation between OGA and RL2 levels in PDAC

	RL2		
OGA	Low (-, +)	High (++)	
Low (-, +)	8	7	
High (++) 12 54			
Spearman r = <mark>0.317</mark> , p < 0.001			