	FliN _C /FliY _C
Data collection	
Space group	P 1
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	48.21, 49.21, 52.37
α, β, γ (°)	69.34, 82.98, 76.01
Resolution (Å)	29.42 - 2.50 (2.60 - 2.50)
R-meas	0.057 (0.117)
CC1/2	0.994 (0.980)
I/σ(I)	6.0 (3.0)
Completeness (%)	87.3 (89.6)
Redundancy	1.9 (1.9)
Refinement	
Resolution (Å)	25.37 - 2.5
No. reflections	13190
$R_{\rm work}/R_{\rm free}$	0.2026/0.2286
No. atoms	2486
Protein	2408
Ligand/ion	-
Water	78
B-factors	43.2
Protein	43.0
Ligand/ion	-
Water	47.5
R.m.s. deviations	
Bond lengths (Å)	0.009
Bond angles (°)	1.220

Supplemental Table 1. Data collection and refinement statistics.

Statistics for the highest-resolution shell are shown in parentheses.

Western analysis of FliY, FliY_N and FliY_c expression in complemented

strains. (A). Expression of FliY and FliY_N was detected using anti-FliY antibody which was raised by using purified recombinant FliY_N protein. Loading control using urease B was included. (B). Expression of FliY_C was detected using anti-His antibody. We are not able to detect the his₆-FliY in FliY⁺ complemented strain using anti-His antibody, possibly due to the N-terminal his₆-tag in FliY is degraded. *H. pylori* cells were cultured in BB10 medium with a starting OD₆₀₀=0.02. After an overnight incubation, the cells were collected and washed with PBS. OD₆₀₀ was measured for each strain and same amount of cells were used for the western experiments.

FliY_c–**FliM**_c complex does not interact with $FliY_c$ –FliN_c complex. Purified $FliY_c$ –FliN_c and $FliY_c$ –FliM_c complexes were mixed at equimolar ratio at 4°C for overnight and were separated by Superdex S75. The elution profiles of $FliY_c$ –FliN_c and $FliY_c$ –FliM_c were overlaid for comparison.

Co-purification of FliY–FliN–FliM complex. GST-FliM was co-expressed with His₆-FliN and FliY. After nickel and GST affinity chromatography, the partially purified FliY–FliN–FliM complex was subjected to Superdex S200 size exclusion analysis. (A). The elution profile from Superdex S200. (B). Eluted fractions were analyzed by SDS-PAGE. (Upper panel) Fractions eluted from 8.2–14.0 ml using 15% SDS-PAGE. (Lower panel) Fractions eluted from 12.8–15.4 ml using 10-20% gradient SDS-PAGE.

Unique residues at the interface of FliY_{c} and FliN_{c} may favor the formation of $\text{FliY}_{-}\text{FliN}$ heterodimeric complex. (A) The binding interface of FliY_{c} - FliN_{c} shown as electrostatic surface. Note that the FliY_{c} is characterized by electropositive surface while FliN_{c} is more electronegative. (B) Amino acid composition of FliN_{c} and FliY_{c} from ϵ -proteobacteria that contains both FliY and FliN (in *H. pylori* numbering) (Lowenthal et al., 2009). The sequences were aligned by T-coffee and depicted as sequence logo. Secondary structure of FliN_{c} and FliY_{c} were shown above and below the sequences, respectively. FliY and FliN-specific charged interacting residues at the interface are marked and indicated by arrows.

Superimposition of FliM_{M} (PDB-ID: 4FQ0) with FliY_{N} model highlighting the sequence variations at the FliG interacting surface between these two proteins. The conserved GGXG motif is represented as sphere. The residues at α 3 and α 1' of FliM_{M} mediating FliG–FliM interaction as well as the corresponding FliY residues are shown as stick. Note that I149 is replaced by aspartic acid in FliY_{N} , and FliM_{M} I149D mutation abolished FliG–FliM interaction as demonstrated from our previous study (Lam et al., 2013). The model of FliY_{N} was generated by Modeller using FliY_{M} from *T. maritima* (PDB-ID: 4HYN) as template (Eswar et al., 2007).