Supplementary Information

Auxin sensing is a property of an unstructured domain in the Auxin Response Factor ETTIN of *Arabidopsis thaliana*

Sara Simonini, Philippe J. Mas, Caroline M. V. S. Mas, Lars Østergaard and Darren J. Hart

Supplementary Figure 1.

Structure prediction by (A) IUPred indicating predicted disorder in red and potential interaction sites in blue; (B) PsiPRED indicating secondary structure; and (C) Phyre2 indicating predicted disorder and secondary structure.

QLFGSPSPSLLSDLNLSSYTGNNKL-
LSSSDLHHYYLNRPPPPPP
TEFGDSYGFHXVLQGQETVP
GVNPACSGVMDLDRFPRVLQGQEICS
EDSKFLSGLLLNHSLLAIPN
EDAMTPSRLLMSYPVQPM
EDAMNESELLMSVEVOPME
EDAMNPSRLLMSYPVOPMP-
EAAMNPSRLLMSYPVQPMP-
EDAMNPSKLLMSYPVQPMP-
EDVMNPSRLLMSYPVQPMP-
EDAKKSDWLNNSYSVSNVAK
LEB
NKSFGVSIGSAFWPTNADS-
WMSSARHEPTYTDLLSGFGTNIDPSHGQRIP
MMNQKSEMVQPQNKLTVNPSASNTSGQEQNL
FNKQNQQAPMSQLPQPPTTLSQQQQLQQLLHSSLNHQQQQSQSQQQQQQQLLQQQQQLQ
LSSANSQFNKPNTVNHISQQMQAQP SPCFSMOSPSI VODOMI 0001 S000001
HOYLOOSASHNSDLML0000000ASR

NIC	10010		
NL5	ARF10 ARF16	LSP-FSPRKKIRI-PQPFEFPRKKIRI-PFHGTKFPIFSP	
	ARF17	TPF-PPAKRLKY-POPGGGFLSGDDGEILYPOSGLSSAAA	
	ARF3	SFV-TTGPKRSRI-GFSSGKPDIPVSEGIRATDFEESLRFQRVLQ	
	ARF4	IQS-SPRPKRPWAGLLDTTPPGNPITKRGGFLDFEESVRPSKVLQ	
	ARF13	QSS-LKKKKHWLQLNEIGATLSNLWT	
	ARF14	RSS-FLKNKRSRE-VNEIGSSSSHLLPPTLTQ	
	ARF23		
	ARF20	RSS-LIKNKRLRE-VNEF	
	ARF21	RSS-LLKNKRLRE-VNEFGSSSSHLLPPILTQ	
	ARF12	RSF-LLKNKRLRE-VNEIGSSSSHLLPPILTQ	
	ARF22	RPS-LLKNKRLRE-VNEIGSSSSHLLPPILTQ	
	ARF9	KSV-MLKNKRPRQ-VSEVSALDVGITASNLWSSVLTQ	
	ARF11	TPT-QQQSKSKRSRPISEITGSPVASSFLSSFSQ	
	ARF18	TPAQQPQSKCKRSRPIEPSVKTPAPPSFDISLPQ SOD_ODDODNKRDDD_DCI_DSDATCDSC	
	ARF1 ARF2	PUP-MPRPKRPRS-NIAPSSPDSSMITREGTTKANMDPLPASGLSRVLO	
	ARF5	SLT-SGLKROLHP-SYFAGETEWGSLIKRPLIRVPDSANGIMPYAS	
	ARF7	PPP-FFRPRFSGQPGMPDDETDMESALKRAMPWLDNSLEMKDPSSTIFPGLSLVQWMN	
	ARF19	PPP-FFRPKYPRQPGMPDDELDMENAFKRAMPWMGEDFGMKDAQSSMFPGLSLVQWMS	
	ARF6	SPF-PLRLKRPWP-PGLPSFHGLKED-DMGMSMSSPLMWDRGLQSLNFQGMGVNPWMQ	
	ARF8	SLF-PLRLKRPWHAGTSSLPDGRGDLGSGLTWLRGGGGEQQGLLPLNYPSVGLFPWMQ	
Motif	ARF10	PFHGTKFPIFSP-GFANNGGGESMCYLSNDNNN	ARF10
Moth	ARF15	CFILVPOSCI SCAAA _ DDBSDCMDSVCM	ARF16
$1\Delta/1B$	ARF1/	EGIRATDFEESLRFORVIO _COFIFPCFINTCSD	ARF1/
	ARF4	KRGGFLDFEESVRPSKVLQ-GQENIGSASPSQGFDVMNRRILDFAMO	ARF4
	ARF13	LSNLWT-CQEIGQRSMNSPISVP	ARF13
	ARF14	PPTLTQ-GQEIGQQSMATPMNI	ARF14
	ARF23		ARF23
	ARF15	PPILTQ-GQEIGQLSVASPMNI	ARF15
	ARF20		ARF20
	ARF12	PPILTQ -GQEIGQLSVASPMNI	ARF12
	ARF22	PPILTO-GOEIGOLSVASPMNI	ARF22
	ARF9	ASNLWSSVLTQ-PHEFAQSCITSQWSSP	ARF9
	ARF11	LSSFSQ-SHESNPSV	ARF11
	ARF18	LYSLPQ-SQDSINAS	ARF18
	ARF1	PVTPDGVWKSPADT-PSSVPLFSPPAK	ARF1
	ARF2	TREGTTKANMDPLPASGLSRVLQ-GQEYSTLRTKHTESVECDAPENSVVWQ	ARFZ
	ARF7	LKRAMPWLDNSLEMKDDSSTTEPGLSLUOWMN_MOOONGOLDSAAAOOCFFDSMLSDTAA	ARF7
	ARF19	FKRAMPWMGEDFGMKDAQSSMFPGLSLVQWMS -MOONNPLSGSATPQLPSALSSFNL	ARF19
	ARF6	-DMGMSMSSPLMWDRGLQSLNFQGMGVNPWMQ-PRLDTSGLLGMQNDVYQAMAA	ARF6
	ARF8	GSGLTWLRGGGGEQQGLLPLNYPSVGLFPWMQQRLDLSQMGTDNNQQYQAMLA	ARF8
Sor	ARF10	VLFGOPILTEOOVMNRKRFLEE	
Ser	ARF16	.VLFGKLILPEEQLSEKGSTDTANIEKTC	
Patch	ARF17	QLFTNNFLSPLPDLGKVSTE	
raton	ARF3	QNFSTRILPPSVSSSPSSVLLTNSNSF	
	ARF4	·INFGEETRKFDAQNEGGLPNNVTADLPFK	
	ARF13 ARF14	BLFDF	
	ARF23		
	ARF15	RLFDF	
	ARF20	-RLFDF	
	ARF21	·RLFGVTLDTPPMIKDF	
	ARF12	·RLFDF	
	ARF22	RLFDF	
	ARF11	RLFGFDLTSKPASATIPHDKC	
	ARF18	RLFGFDLTSNSPAPIF	
	ARF1	-RLFGFELVENVNVDECFSAASVSGAVAVDQF	
	ARF2	·RLFGIPLTNNMNGTDSTMSQRNNLNDAAGLTQIASPF	
	ARF5	·PLFHDVWDTQLNGLKFDQFSPLMQQDLYASQNICMSNSTTSNILDPPLSNTVLDDFCAIK	
	ARF/	SGFLNRSQSGPAILIPDAAIDMSGNLVQDLYSKSDMRLKQELVGQQKSKAS	
	ARF6	EOLEC	
	ARF8	NLLYF	
Matte	ARF10	-VARGLTWNYS	
woth 2	ARF16	VAGREFSSSDEGSPCSKKVHD	
	ARF17	-NLSPNSNTTNLSSGNDLVG	
	ARF3	-SGRCRLFGFPLTDETTA	
	ARF4	ASSGCKLFGFSLPVETPASK	
	ARF14	-LTOEKKFGOSOIL BSDTFIOS	
	ARF23		
	ARF15	-LTEGKKFGQSQTLRSPTKIQS	
	ARF20	-LTEGKKFGQSQTLRSPIEIQS	
	ARF21	-LTERKKFGQSQTLRSPIEIQS	
	ARF12	-LTEGKKFGLSQTLRSPTEIQN	
	ARF22	-LTEGKKFGQSQTLRSPTEIQS	
	ARF11	-TTKCODPNSAEGSPKEVQS	
	ARF18	-AAKCQEPITPTSMSE	
	ARF1	-QSEPLNINQSDIPSGSGDPEKSSLRSPQE	
	ARF2	STNDHREQGRPFQTNNPHPKDAQT	
	ARF5	QITSASFADSQAFSRQDFPDNSGGTGTSSSNVDFDDCSLRQNSKGSSWQK	
	ARF7	QNFLAPTFGLDGDSRNSLLGGANVDNGFVPDTLLSRGYDSQKDLQNMLSNYGGVTNDIGT	
	ARF19 ARF6	GMSNLRSIGIRCCDSTTLPFTSSNFNNDFSCNLMMTDSSC	

Supplementary Figure 2.

Amino acid alignment of the 23 ARFs of A. thaliana

Supplementary Figure 3.

Ranked plot of *ETT* gene insert lengths (bp) by colony PCR of randomly selected clones from medium and large insert sublibraries showing even distribution of construct sizes in both. Correlation coefficients (R²) are shown for both sublibraries.

Supplementary Figure 4.

(A-B) Fluorescent streptavidin blot against C-terminal biotin acceptor peptide following Ni²⁺-NTA purifications from 4 mL small-scale cultures of the 95 selected clones from (A) Minus (-)IAA and (B) Plus (+)IAA conditions plus 6xHis-MBP-BAP control (lane 96). The first three gels show clones from the medium sub-library (DNA fragments from 250 to 1200 bp); the last gel from the large sub-library (DNA fragments from 800 to 1900 bp). Lanes correspond to constructs shown in Fig. 3 as follows: 442-594, gel +IAA, lane 4; 439-594, gel -IAA, lane 4; 416-594, gel -IAA, lane 54; 415-594, gel -IAA, lane 18; 413-594, gel -IAA, lane 27; 397-594, gel -IAA, lane 29; 396-594, gel -IAA, lane 26; 391-594, gel -IAA, lane 19; 388-594, gel -IAA, lane 8; 380-594, gel -IAA, lane 33; 373-594, gel -IAA, lane 9; 340-594, gel -IAA, lane 86.

(C) Agarose gel showing insert sizes by colony PCR on randomly selected clones from the library prior to screening confirming that all the three fixed 3' ends were present.

В

Supplementary Figure 5.

(A) SDS-PAGE analysis of Ni²⁺-NTA purified ETT_388-594 with hexahistidine and biotin acceptor peptide tags from 2 L of bacterial culture. Elution fractions comprised a strong major species and a minor component of lower molecular weight. T; Total fraction, S: soluble fraction; U: unbound fraction during resin binding step; 1-10: 1 mL elutions. Fraction 10 was used for CD analysis and thermal stability assays.

(B) Left side of gel: Thermal stability assay of purified tagged ETT_388-594 (fraction 10). Protein was heated at 95 °C for 0, 20, 40 and 60 minutes and the soluble fraction analysed after centrifugation. No change in solubility was observed. Right side of gel: lane a: ETT_388-594 after 1 week at RT; lane b: sample from lane a after centrifugation (no precipitation observed); lane c: overnight mock digestion without TEV protease; d: overnight digestion with TEV protease.

001101000000000000000000000000000000000	
GGAAGAGGGTGATGTTGATACAGATGG	ETTES S5231 rev
CCATCTGTATCATCAACACCCTCTTCCG	ETT ES S524T fw
CGGAAGAGGGTGTTGATGATACAGATGG	ETT ES S524T rev
ATCATCACCCACTTCCGTCTTGC	ETT ES S526T fw
GCAAGACGGAAGTGGGTGATGAT	ETT ES S526T rev
CACCCTCTACCGTCTTGCTTACCA	ETT ES S527T fw
TGGTAAGCAAGACGGTAGAGGGTG	ETT ES S527T rev
TCTAGAGGCCGAGGCCGGCCGACATGCTAGAGAGCAATGTCTAGCAAC	REV on ETT for pGADT7 recombination
AAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCATGATCTCCAATTCAGGCAGCTTCG	FW ETT-ES domain for error-prone analyses pGADT7 rec
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAACCATCTGGTTCCATCTCCAATTC	ETT ESPRIT clone fw gw
GGGGACCACTTTGTACAAGAAAGCTGGGTGCTACCTTCCTT	ETT ESPRIT clone rev gw (ends in SQGR)

Supplementary Figure 6.

Table of primers used in this study. Sequences are shown 5' to 3'.