Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating *Fgfr2* and *Fgfr3*

Tetsuya Kawane¹, Xin Qin¹, Qing Jiang^{1, 2}, Toshihiro Miyazaki¹, Hisato Komori¹, Carolina Andrea Yoshida¹, Viviane Keiko dos Santos Matsuura-Kawata¹, Chiharu Sakane¹, Yuki Matsuo¹, Kazuhiro Nagai³, Takafumi Maeno^{1,4}, Yuki Date^{1, 5}, Riko Nishimura⁶, and Toshihisa Komori^{1, 2*}

¹Department of Cell Biology, ⁵Department of Molecular Bone Biology, Unit of Basic Medical Sciences, ²Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan

³Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki 852-8501, Japan

⁴Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan

⁶Department of Molecular and Cellular Biochemistry, Osaka University of graduate School of Dentistry, Osaka 565-0871, Japan

*Corresponding author:

Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan TEL: +81-95-819-7630; FAX: +81-95-819-7633

E-mail: <u>komorit@nagasaki-u.ac.jp</u>

Supplemental Figure 1

Real-time RT-PCR analysis

(A) *Runx1* and *Runx3* mRNA expression in the calvariae of wild-type, $Sp7^{-/-}$, and $Runx2^{-/-}$ mice. Data are the mean ± SE of 4-5 mice. * vs. wild-type mice. *p<0.05, **p<0.01. (B) Effects of the overexpression of *Runx2* or *Runx3* on the mRNA expression of *Runx1*, *Runx2*, *Runx3*, *Fgfr1*, *Fgfr2*, and *Fgfr3* in osteoblast progenitors. n=3. * vs. GFP. *p<0.05, **p<0.01. Similar results were obtained in two independent experiments and representative data are shown.

Supplemental Figure 2

Osteoblast progenitors in the perichondrium of hind limb bones in wild-type, $Sp7^{-/-}$, and $Runx2^{-/-}$ mice at E18.5

H-E stained sections (A-F) and in situ hybridization using *Col2a1* (G-L) and *Col1a1* (M-R) probes in wild-type (A, D, G, J, M, P), $Sp7^{-/-}$ (B, E, H, K, N, Q), and $Runx2^{-/-}$ (C, F, I, L, O, R) mice. The boxed regions in A-C, G-I, and M-O are magnified in D-F, J-L, and P-R, respectively. Arrows indicate chondrogenic cells, which expressed both *Col2a1* and *Col1a1*. Bars: 200 µm.

Supplemental Figure 3

Reporter assay.

The activation of a p6xOSE2 reporter vector by *Runx2* was assayed in the presence of FGF2 (10 ng/ml) or FGF18 (10 ng/ml) in *Runx2^{-/-}* calvaria-derived cells line (CA120-4) ^{*1}. * vs. Mock. **, $\dagger\dagger$ p<0.01.

Skeletal preparation and histological analysis of limb skeletons in $Sp7^{-/-}Runx2^{+/+}$ and $Sp7^{-/-}Runx2^{+/-}$ mice at E18.5

(A, B) Skeletal preparation of $Sp7^{-/-}Runx2^{+/+}$ (A) and $Sp7^{-/-}Runx2^{+/-}$ (B) mice. (C-F) H-E stained sections of $Sp7^{-/-}Runx2^{+/+}$ (C, E) and $Sp7^{-/-}Runx2^{+/-}$ (D, F) mice. The boxed regions in C and D are magnified in E and F, respectively. Arrows in A and B show tibiae and fibulae.

Cell proliferation related-genes up-regulated more than two times in calvarial tissues of $Sp7^{-/-}$ mice compared with those of $Runx2^{-/-}$ mice at E18.5 by microarray analysis

	Gene	Sp7 ^{-/-} / Runx2 ^{-/-}		Gene	Sp7 ^{-/-} / Runx2 ^{-/-}
1	Bcl11b	12.97	26	Fgf1	2.65
2	Cxcl10	10.81	27	Fezf2	2.45
3	Alox12	9.24	28	Pthlh	2.43
4	Wnt10b	9.08	29	Nr2e3	2.42
5	Tff2	5.66	30	II24	2.40
6	Nccrp1	5.35	31	Bcl6	2.39
7	Ghrh	5.16	32	Bnipl	2.38
8	Atf3	5.05	33	Fgfbp1	2.32
9	Ihh	4.76	34	Trp53inp1	2.28
10	Dynap	4.52	35	Epo	2.26
11	Alox12	4.16	36	Gata3	2.20
12	Ptgs2	4.04	37	Slfn1	2.20
13	Hck	4.02	38	Lef1	2.19
14	Edn3	3.71	39	Adarb1	2.17
15	Myocd	3.62	40	I 6	2.17
16	Tfap2a	3.61	41	Ptges	2.16
17	Bcl11b	3.55	42	Chrna7	2.13
18	Cdkn2b	3.30	43	Klf13	2.11
19	Nox1	3.27	44	Lta	2.06
20	Bmp7	3.25	45	H19	2.04
21	Vdr	3.23	46	Agt	2.03
22	Pth1r	2.93	47	Axin2	2.02
23	Drd2	2.93	48	I 3	2.02
24	Pkp2	2.76	49	Fgfr3	2.02
25	Hrg	2.68	50	Ifit3	2.02

	Cana	Sp7 ^{-/-} /		Cons	Sp7 ^{-/-} /
	Gene	Runx2 ^{-/-}		Gene	Runx2 ^{-/-}
1	Pla2g2a	0.20	27	Fgf10	0.38
2	Plau	0.24	28	Thpo	0.38
3	Plac8	0.24	29	Meg3	0.39
4	Calcrl	0.28	30	Smad1	0.39
5	Adrb2	0.29	31	Areg	0.39
6	Ptk2	0.29	32	Prox1	0.41
7	Gnrhr	0.29	33	Edn1	0.41
8	Meg3	0.29	34	Pim2	0.42
9	Pou3f2	0.29	35	Wnt2	0.42
10	Ntn1	0.30	36	Fzd5	0.42
11	Tbx5	0.31	37	Fabp4	0.42
12	Chp2	0.31	38	Xirp1	0.43
13	Cntfr	0.31	39	Ptk2b	0.44
14	Zbtb16	0.32	40	Hif1a	0.45
15	Ptprv	0.33	41	Lbx1	0.45
16	Nodal	0.34	42	Notch1	0.46
17	Mas1	0.35	43	т	0.47
18	Il1rl1	0.35	44	Cxcl12	0.47
19	Tgfbr1	0.35	45	Sfrp2	0.47
20	Tdgf1	0.36	46	Isl1	0.47
21	Mas1	0.37	47	Meg3	0.47
22	Nacc2	0.37	48	Hras1	0.47
23	Osm	0.37	49	II34	0.48
24	Dpt	0.37	50	Asph	0.48
25	Gpc3	0.38	51	Cxcl12	0.49
26	Hoxa3	0.38	52	Col18a1	0.49
			53	Wt1	0.50

Cell proliferation related-genes down-regulated to less than half in calvarial tissues of $Sp7^{-/-}$ mice compared with those of $Runx2^{-/-}$ mice at E18.5 by microarray analysis

The ratios of mRNA expression by CAGE in $Runx2^{-/-}$ and wild-type osteoblast progenitors in vitro (a), the ratios of mRNA expression by CAGE in $Runx2^{-/-}$ and wild-type calvarial tissues (b), and their ratios (a/b).

The genes, in which a/b were more than two, are shown. The genes with more than 10 counts per million in $Runx2^{-/-}$ osteoblast progenitors in vitro were analyzed.

		а	b					а	b	
		Runx2 ^{-/-}	Runx2 ^{-/-}	a/h				Runx2 ^{-/-}	Runx2 ^{-/-}	a/h
		/wt	/wt	a/ D				/wt	/wt	a/D
		(in vitro)	(in vivo)					(in vitro)	(in vivo)	
1	II11	3.88	0.01	457.43	:	38	Dkc1	0.88	0.27	3.19
2	Fosl1	0.86	0.02	57.37	:	39	Fgf7	0.76	0.24	3.16
3	Timp1	1.16	0.02	47.58	4	40	Tead4	1.19	0.39	3.07
4	Ereg	1.00	0.03	33.04	4	41	Bcl6	1.14	0.37	3.07
5	Ptgs2	0.88	0.04	22.36	4	12	Hipk1	1.55	0.51	3.04
6	Inhba	0.44	0.02	21.56	4	13	Csf1	0.72	0.24	2.99
7	Hmga2	1.41	0.07	20.85	4	44	Col18a1	2.15	0.73	2.96
8	Cdkn2b	0.58	0.04	16.33	4	45	Cd63-ps	0.94	0.33	2.88
9	Crlf1	1.45	0.09	15.91	4	16	Tpd52	1.83	0.64	2.84
10	Hbegf	0.81	0.05	14.94	4	47	Spry2	1.16	0.42	2.79
11	Ptges	1.08	0.08	13.99	4	18	Itpripl2	1.06	0.40	2.63
12	Itprip12	2.63	0.31	8.61	4	19	Tbx3	2.34	0.90	2.59
13	Tgfb1	1.05	0.14	7.58	ł	50	Fgf2	1.78	0.70	2.54
14	Osmr	1.05	0.14	7.36	ę	51	Clcf1	1.11	0.44	2.50
15	Ngf	1.02	0.15	6.91	ł	52	Eef1e1	0.70	0.28	2.49
16	Plau	1.04	0.17	6.22	ť	53	Ets1	0.99	0.41	2.44
17	Hmox1	0.67	0.11	6.01	ę	54	Ndufaf4	0.99	0.41	2.43
18	Il1rl1	0.45	0.08	5.94	ę	55	Tnk2	1.87	0.78	2.38
19	Serpine2	1.48	0.26	5.73	ť	56	S1pr1	0.62	0.26	2.38
20	SIc1a5	1.04	0.19	5.41	ł	57	Yars	0.83	0.35	2.36
21	Vegfa	0.94	0.19	5.01	ţ	58	Bax	0.78	0.33	2.36
22	Cdkn1a	0.76	0.16	4.82	ę	59	Pdgfc	0.61	0.26	2.33
23	Btg1	1.65	0.36	4.53	(60	Rpl23	1.06	0.46	2.31
24	Pdpn	1.25	0.29	4.31	(61	Dot11	0.80	0.35	2.29
25	Pth1r	0.74	0.17	4.28	(62	Atf5	0.82	0.36	2.28
26	Spred3	1.58	0.37	4.27	(63	Aimp2	0.75	0.34	2.20
27	Eif5a	1.15	0.28	4.12	(64	Cth	0.78	0.36	2.18
28	Suv39h2	1.43	0.35	4.11	(65	Acer3	1.23	0.57	2.16
29	Has2	1.12	0.28	4.00	(66	Ptprf	1.36	0.64	2.12
30	Cd9	1.14	0.29	3.99	(67	Rps4y2	0.95	0.45	2.11
31	Ifitm3	1.90	0.49	3.84	(68	Jun	0.81	0.39	2.10
32	Shmt2	0.91	0.24	3.78	(69	Dlg1	1.38	0.66	2.08
33	Myc	0.75	0.20	3.70	-	70	Rps9	1.35	0.65	2.07
34	Fam129b	1.19	0.32	3.66		71	Smyd2	0.99	0.48	2.06
35	Gtpbp4	0.94	0.27	3.51	-	72	Smad1	1.11	0.54	2.06
36	Adm	0.72	0.21	3.41		73	Zfp703	1.02	0.50	2.02
37	Ccnd1	0.89	0.26	3.40	-	74	Rbpi	1.06	0.53	2.00

The ratios of mRNA expression by CAGE in $Runx2^{-/-}$ and wild-type osteoblast progenitors in vitro (a), the ratios of mRNA expression by CAGE in $Runx2^{-/-}$ and wild-type calvarial tissues (b), and their ratios (a/b).

The genes, in which a/b were less than 0.5, are shown. The genes with more than 10 counts per million in $Runx2^{-/-}$ osteoblast progenitors in vitro were analyzed.

		а	b				a	b	
		Runx2 ^{-/-}	Runx2 ^{-/-}	a/h			Runx2 ^{-/-}	Runx2 ^{-/-}	a/h
		/wt	/wt	a/ b			/wt	/wt	
		(in vitro)	(in vivo)				(in vitro)	(in vivo)	
1	Fgfr1op	0.00	0.01	0.00	26	Rogdi	0.90	2.84	0.32
2	Igf1	0.14	7.42	0.02	27	Efemp1	1.30	4.09	0.32
3	Sfrp1	0.52	10.25	0.05	28	Zfp503	0.60	1.89	0.32
4	Wnt9a	0.26	3.75	0.07	29	Kifap3	0.73	2.10	0.35
5	Itga 1	0.31	3.92	0.08	30	Cav1	0.64	1.84	0.35
6	Clec11a	0.07	0.70	0.09	31	Podn	0.81	2.25	0.36
7	Scx	0.73	7.24	0.10	32	Wnt5a	1.02	2.80	0.36
8	Cxcl12	0.79	7.38	0.11	33	Insr	0.44	1.16	0.38
9	Gpc3	0.29	2.20	0.13	34	Cyp1b1	0.81	2.14	0.38
10	Odz3	0.79	5.19	0.15	35	Brip1	0.79	2.04	0.39
11	Csnk2a1	0.29	1.50	0.20	36	Lrrcc1	0.80	2.04	0.39
12	Cd248	1.42	7.16	0.20	37	Gm3511	1.04	2.59	0.40
13	Wdr6	0.62	2.98	0.21	38	Tob1	0.80	2.00	0.40
14	Slit3	0.24	1.12	0.22	39	Pttg1	0.76	1.88	0.40
15	Id4	0.50	2.29	0.22	40	Gja1	0.52	1.26	0.41
16	Figf	2.06	8.97	0.23	41	Vps13b	0.58	1.42	0.41
17	Egfr	0.70	3.05	0.23	42	Prkaca	1.06	2.60	0.41
18	Igf2	0.31	1.31	0.24	43	Ptprk	0.72	1.69	0.43
19	Nfib	0.93	3.51	0.26	44	Tgfb2	0.55	1.26	0.44
20	Dab2ip	0.68	2.52	0.27	45	Sox11	0.83	1.83	0.45
21	Ptn	0.58	2.08	0.28	46	Efnb2	0.71	1.51	0.47
22	Il11ra1	0.88	2.93	0.30	47	Tsc22d1	0.49	1.04	0.47
23	Slc9a3r1	1.08	3.58	0.30	48	Gnas	0.95	1.97	0.48
24	Ddr1	0.91	2.99	0.30	49	Kdm4c	0.76	1.59	0.48
25	Ccnd3	0.59	1.91	0.31	50	Cbx8	0.98	1.98	0.49
					51	Tgfbr2	0.80	1.62	0.50

Comparison of the mRNA expression of Cdk inhibitors by CAGE

The values of $Runx2^{-/-}$ osteoblast progenitors with GFP transfection, $Runx2^{-/-}$ osteoblast progenitors with Runx2 transfection, wild-type osteoblast progenitors with GFP transfection, wild-type osteoblast progenitors with Runx2 transfection, $Runx2^{-/-}$ calvarial tissues, and wild-type calvarial tissues are shown. The ratios of $Runx2^{-/-}$ and wild-type osteoblast progenitors with GFP transfection, and the ratios of $Runx2^{-/-}$ and wild-type calvarial tissues are also shown.

cell culture calvarial tissue Runx2 -/-Runx2^{-/-} Runx2^{-/-} wt wt Runx2 -/-(GFP)/ Runx2 -/wt (GFP) (Runx2) (GFP) /wt (Runx2) wt (GFP) Cdkn1a (p21^{Cip1}) 250.89 269.74 331.74 362.30 0.76 28.68 182.72 0.16 Cdkn1b (p27Kip1) 69.17 66.43 47.59 51.09 1.45 62.29 75.60 0.82 Cdkn1c (p57Kip2) 1.03 5.24 0.88 7.08 1.17 496.90 79.44 6.26 Cdkn2a (p16^{lnk4a}) 18.10 16.29 24.48 25.43 0.74 0.00 0.00 _ Cdkn2a (p19^{ARF}) 10.99 11.78 14.49 18.39 0.76 0.00 1.48 0.00 Cdkn2b (p15^{Ink4b}) 0.40 0.04 21.41 27.49 37.11 46.67 0.58 11.32 Cdkn2c (p18^{lnk4c}) 17.80 18.43 11.60 12.74 1.53 9.09 8.04 1.13 Cdkn2d (p19^{lnk4d}) 0.00 0.00 1.37 0.00 0.00 0.00 0.00 _ Cdkn3 (KAP) 0.91 11.71 14.89 8.81 1.33 6.05 6.68 8.87

Sequences of the oligonucleotides for real-time RT-PCR and ChIP analyses.

	gene	organism	direction	5'->3'
Real-time PCR	Runx?	mouse	F	TCCACCACGCCGCTGTCT
	Ranz	mouse	R	TCAGTGAGGGATGAAATGCT
Real-time PCR	\$p7	mouse	F	
	Sp/	mouse	R	AATGAGTGAGGGAAGGGT
Real-time PCR	Fafr1	mouse	F	GCTCCCTACTGGACATCC
	1 5/1	mouse	R	TGCGGAGATCGTTCCACG
Real-time PCR	Fafr?	mouse	F	GTCTCCGAGTATGAGTTG
rear time r cre	1 g/ 2	mouse	R	ACTATGACGTAGAGAGGT
Real-time PCR	Fafr3	mouse	F	CCAGAAACGTCCTGGTGA
	1 8/10	mouse	R	ACTGGGATGCCAGGATAC
Real-time PCR	Fafr1h	mouse	F	A ATTA ATA GCTCGG ATGC
	1 5/10	mouse	R	TGCCACAGGTCTGGTGACAG
Real-time PCR	Fafrlc	mouse	F	ATACCACCGACAAGGAAAT
	1 g//10	mouse	R	
Real-time PCR	Fafr?h	mouse	F	GGATAAATAGCTCCAATGCA
	1 5/ 20	mouse	R	GCGCTTGCTGTTTGGGCA
Real-time PCR	Fofr2c	mouse	F	GGTGTTAACACCACGGACAA
	1 8/ 20	mouse	R	TGCAGAGTGAAAGGATAT
Real-time PCR	Fofr3h	mouse	F	AGTCCTGGATCAGTGAGAATGT
	- a/		R	GTGAACACGCAGCCAAAAG
Real-time PCR	Fgfr3c	mouse	F	TAACACCACCGACAAGGAGC
	- a)		R	AGCCACGCAGAGTGATGGGA
Real-time PCR	Type I Runx2	mouse	F	CGTTGCAGCCACCGCCAGG
			R	CAAGTTCGAGGAAGCCGTGTGC
Real-time PCR	Type II Runx2	mouse	F	CCAGCCACCGAGACCAACC
			R	GTTTGACGCCATAGTCCCTCC
Real-time PCR	Ccnd1	mouse	F	GGCACCTGGATTGTTCTGTT
			R	CAGCTTGCTAGGGAACTTGG
Real-time PCR	β -actin	mouse	F	CCACCCGCGAGCACAGCTTC
			R	TTGTCGACGACCAGCGCAGC
ChIP primer	Fgfr1	mouse	F	GCTGCAGCTTGAGAACTACAAGG
			R	AGGTCGCCGCAATGCGCTAA
ChIP primer	Fgfr2	mouse	F	AGGAAACGGCTCGGGTTTCA
			R	TGCCTACTCCAAACTTTGCT
ChIP primer	Fgfr3	mouse	F	TATTGGAGGGAGAAGCGT
			R	TTTTCCAGGGTCTCCTCT
TaqMan PCR	Runx1	mouse		Mm00486762_m1 (Applied Biosystems)
TaqMan PCR	Runx3	mouse		Mm00490666_m1 (Applied Biosystems)
TaqMan PCR	Fgfr1	mouse		Mm00438930_m1 (Applied Biosystems)
TaqMan PCR	Fgfr2	mouse		Mm01269930_m1 (Applied Biosystems)
TaqMan PCR	Fgfr3	mouse		Mm00433294_m1 (Applied Biosystems)
TaqMan PCR	β -actin	mouse		Mm00607939_s1 (Applied Biosystems)

Supplementary method

Analysis of mRNA expression using cDNA arrays

Total RNA was extracted from E18.5 calvariae using the acid guanidine thiocyanatephenol-chloroform method according to the manufacturer's instruction (Isogen, Nippon Gene, Tokyo, Japan). Poly(A) mRNA was purified from total RNA using an Oligotex kit (Takara, Tokyo, Japan). The cRNA was amplified, labeled and hybridized to an Agilent SurePrint G3 Mouse Gene Expression Microarray 8 x 60 K (Agilent Technologies, Santa Clara, CA) according to the manufacturer's instructions. The hybridized microarray slides were scanned by means of an Agilent scanner. Relative hybridization intensities and background hybridization values were calculated using Agilent Feature Extraction Software (ver. 9.5.1.1), and background hybridization values were calculated using Agilent Feature Extraction Software (ver. 9.5.1.1).

CAGE library preparation and sequencing

For CAGE analysis, 5x10⁵ cells were subjected to electroporation with 1 µg of each expression vector using the Neon Transfection System (Invitrogen) and cultured on 24well plates for 24h. Total RNA was extracted using ISOGEN (NipponGene) from cultured cells or calvarial tissue. A multiplexed CAGE library was constructed from 2 -5 µg total RNA sample based on nAnT-iCAGE protocol ^{*2} (K. K. DNAForm, Yokohama, Japan). Briefly, total RNA was reverse transcribed using a random "N6 plus base 3" primer (TCTNNNNN), using Superscript III reverse transcriptase (Thermo Fisher). Following oxidation (with sodium peroxide) and biotinylation of the m7G cap structures, first-strand-complete messenger RNA: complementary DNA (mRNA:cDNA) hybrids were bound with streptavidin beads, pulled down with a magnet, and released. This was followed by RNaseH and RNaseONE treatments, ligation of the 5' linker, and ligation of 3' linker comprising 6 nt index sequence. Finally, second-strand synthesis was performed, creating the final double-stranded DNA product. Multiplex deep sequencing of cDNA libraries was performed on an Illumina NextSeq500 sequencer. The sequenced CAGE tags were mapped to mouse reference genomes, mm9, using the BWA software without changing any parameters. Unmapped reads are then mapped to mm9 using HiSAT2. For tag clustering, the CAGE-tag 5'coordinates were input for CAGEr clustering followed by differential expression analysis using R program DESeq2.

*1 Enomoto H, Shiojiri S, Hoshi K, Furuichi T, Fukuyama R, Yoshida CA *et al.* Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in *Runx2^{-/-}* mice by RANKL transgene. *J Biol Chem.* 2003; **278**: 23971-23977

*2 Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M. Detecting expressed genes using CAGE. *Methods Mol Biol.* 2014; **1164**: 67-85.

Supplementary Information

Fig.4

Original gels:

Fig.6

E				F		
	Veh. Veh.	FGF Veh. U	2 AZD		Veh. FGF	2 IGF-I
p-MAPK	=	=	-	p-Akt	-	-
МАРК	=		=	Akt		-
β-actin	-		-	β -actin		

Original films:

Fig.8

В		Input	lgG Runx2
	Fgfr1		-
	Fgfr2	-	-
	Fgfr3	-	-

Original gels:

Fig.7

W	vt Sp7 +/- Sp7 -/-
Runx2	
β -actin	

Original films:

2min exposure
Runx2
2015.08.16
30s exposure
Actin
Actin 2015, 08.16