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ABSTRACT  
Background: Using software containers has become standard practice to reproducibly deploy 
and execute biomedical workflows on the cloud. However, some applications which contain 
time-consuming initial steps will produce unnecessary costs for repeated executions.   
 
Findings: We demonstrate that hot-starting, from containers that have been frozen after the 
application has already begun execution, reduces the costs of cloud computing by avoiding 
repetitive initialization steps.  In particular, we use an open source tool called Checkpoint and 
Restore in Userspace (CRIU) to save the state of the containers as checkpoint files after 
executing the initialization steps. We then migrate the checkpoint files to other virtual machines 
on the cloud and restored containers from checkpoint files.  As a proof-of-concept example, we 
create a hot-start container for the STAR aligner and deploy this container to align RNA 
sequencing data.   In addition, we compare the performance of the alignment step with and 
without checkpoints on cloud platforms using local and network disks. 
 
Conclusions: We demonstrate that hot-starting Docker containers from snapshots taken after 
repetitive initialization steps are completed, significantly reduces the costs of executing the 
STAR aligner on all experimental platforms, including Amazon Web Services (AWS), Microsoft 
Azure and local virtual machines. Our method can be employed in other bioinformatics 
applications in which a checkpoint can be inserted after a repetitive initialization phase.  
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FINDINGS 
Background 

With the availability of high-throughput next generation sequencing technologies and the 

subsequent explosion of big biomedical data, the processing of biomedical big data has become 

a major challenge.  Cloud computing plays an important role in addressing this challenge by 

offering massive scalable computing and storage, data sharing and on-demand access to 

resources and applications [1, 2].  The National Institutes of Health is launching a Data 

Commons Pilot Phase to provide access and storage of biomedical data and bioinformatics 

tools on the cloud (https://commonfund.nih.gov/bd2k).   Additionally, software containers have 

become increasingly popular for deploying bioinformatics workflows on the cloud. Docker 

(https://www.docker.com/), an open source project, has become the de facto standard for 

container software. Docker packages executables with all the necessary software dependencies 

ensuring that the same software environment is replicated regardless of the host hardware and 

operating system.  Thus, containerization enhances the reproducibility of bioinformatics 

workflows. In the context of cloud computing, the utility of containers comes from the ease in 

which a virtual cloud cluster can be rapidly provisioned with all of the necessary dependencies 

for a complicated workflow by simply downloading a set of containers, each of which take a few 

seconds to spin up. Recently, Vivian et al. processed over 20,000 RNA sequencing (RNA-seq) 

samples from the Cancer Genome Atlas (TCGA) using Docker containers on the cloud [3].  

Tatlow et al. used software containers to study the performance and cost profiles of different 

cloud-based configurations in processing RNA-seq data from public cancer compendia [4].    

  

When containers are deployed, applications are launched de novo each time the container is 

spun up. This means that any initial preparatory steps are repeated each time the container is 

used. For applications such as the alignment of reads, these initial steps can be quite 

substantive as an entire reference genome is read in and indices are generated. In an 

automated large-scale deployment, these steps are replicated many times.  It would be far more 

efficient if one could “checkpoint” and save containers in states where the application has 

already completed the initialization steps so as to avoid unncessary repetitions.  One could then 

“hot-start” workflows from these checkpoints. This is analogous to hot-start PCR where all the 

necessary reagents are pre-mixed awaiting only the addition of the template.  

 

Our approach 
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Our key idea is to save and restore memory states in software containers using the Checkpoint 

Restore in Userspace (CRIU) tool. CRIU freezes a running container and saves the checkpoint 

as a collection of files on disk (https://criu.org/Main_Page). These files can subsequently be 

used to restore and resume the application from that checkpoint.  CRIU was originally 

developed for Linux, but has recently become available for Docker (https://criu.org/Docker).  

While it is possible to stop Docker containers with native docker commands, this process does 

not preserve the memory state. Although re-starting from a ready-to-go state is an intuitive 

application of checkpointing, we have been unable to find any previous description of using 

checkpointing as a general method for improving the efficiency of container deployments. 

 

We demonstrate that hot-starting from a saved container checkpoint can significantly reduce the 

execution time using the STAR aligner [5, 6] for RNA-seq data analyses.  We choose STAR as 

a proof-of-concept example because it has an option to save an intermediate state. However, 

our idea of using checkpoints has broad applications in optimizing performance using software 

containers on the cloud when deploying any bioinformatics task where a pause could be 

inserted to capture a re-usable state. 

 

The STAR aligner [5, 6] consists of two steps.  In the first step, genome indices using the 

reference genome as input are generated.  In the second step, read sequences from a specific 

experiment sample are mapped to the reference genome assuming that the genome indices 

have already been generated.  In particular, STAR has the option of keeping the indices in 

memory after they have been generated to avoid repeating the first step when multiple files are 

to be aligned to the same reference genome. We used the CRIU tool to create checkpoints after 

the first step of generating genome indices. Instead of launching a new container and starting 

STAR from scratch, we restore the container state using CRIU and resume running STAR after 

it has loaded the indices. Figure 1 shows an overview of our approach with and without using 

checkpoints. 

 

Testing 

To test the checkpointing methodology, we used RNA-seq data generated by Himes et al. which 

measure the gene expression changes in human airway smooth muscle cells in response to 

asthma medications [7].  We compared the time required to align the sequences with a normal 

container where STAR starts from scratch, and the time required when hot-starting from a 

container checkpoint where STAR has already generated indices. We performed empirical 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

studies on cloud instances including the Amazon Web Services (AWS) and Microsoft Azure, 

using both local and networked disks. On AWS, we compared the performance with data on the 

local host and Amazon Elastic Block Store (EBS). On Microsoft Azure, we compared the 

performance with data on local host and Azure File Storage.  Please refer to the Online 

Methods for details of our experimental setup. Our empirical results are shown in Figure 2. 

 
Figure 2 shows that the STAR aligner with checkpoint reduces the execution time compared to 

STAR without checkpoint. On AWS, we observed 1.89x speedup with data stored on the local 

disk and 1.42x speedup with data on network disk (Amazon EBS). On Microsoft Azure, we 

achieved a 1.34x speedup with data stored on the local disk, and 3.57x speedup with data on 

Azure File Storage.  With respect to execution time, we show that hot-starting from checkpoint 

containers save 2 minutes on fast local disks and Amazon EBS disks.  The saving is almost 20 

minutes when using Azure network storage where the disk caching scheme appears to be much 

less favorable to STAR’s index generation process.   

 

In this article, we have presented a novel idea for optimising cloud deployments using 

checkpointing to save containers where the applications are already started.  Using CRIU for 

Docker, we can save the container with a preloaded genome for STAR alignment and restore 

the container from these checkpoint files to any host.  We have achieved successful migration 

of checkpointed containers to different virtual machine instances running on the Amazon and 

Azure cloud platforms while realizing up to a 3.57x speedup using our approach saving up to 20 

minutes for a single STAR alignment workflow on Azure with network disks.  For STAR 

alignment, it is possible to use a checkpointed container to align multiple sequences at once by 

retaining the genomic indices in memory. Our approach yields a significant benefit with hot-

starting when as few as one or two files are aligned.  Additionally, multiple STAR alignment 

tasks can be computed in parallel using the same genome indices hosted by different 

processes.  For automated schedulers such as Docker Compose 

(https://docs.docker.com/compose/),  “hot-starting” reduces execution time every single time the 

STAR container is launched.  While it is possible to design a workflow to perform all the 

alignments in a single container first, load-balancing optimizations would be better utilized by 

allowing the scheduler to distribute the computation over the cluster as shorter jobs.  

 

Our hot-start strategy only requires that there is a convenient place for a pause, checkpoint and 

re-start. In the case of STAR, this is provided by a flag that allows the container to keep 
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genomic indices in shell memory between invocations of STAR.  For other workflows, one could 

add a flag to pause the computation where the checkpoint is to be created, and a flag to resume 

the computation afterwards. With these straightforward modifications, any application could take 

advantage of checkpointing to avoid repetitive initialization. This is a novel and unexplored 

approach to optimising containerized workflows while reducing the costs of cloud computing. 

 
METHODS 

CRIU. CRIU (Checkpoint/Restore In Userspace) is a Linux software tool that freezes a running 

application and saves it as a collection of files to disk (https://criu.org).  The application can later 

be restored on the same or on a different host. Docker currently integrates CRIU as an 

experimental checkpoint sub-command that saves the state of processes to a collection of files 

on disk. The checkpointing command has been used to migrate containers from the source host 

to a target host when the resources of the source are limited [8], for fault tolerance purposes [9], 

and to provide highly available and scalable micro-services [10].   

 

Cloud configurations tested  

In our experiments, we deployed our containers on instances from two cloud platforms: 

Microsoft Azure and Amazon Web Services (AWS).  Ubuntu 16.04 was the host operating 

system in all our tests. Testing was conducted using a standard DS13 v2 instance with 8 virtual 

CPUs and 56 Gb memory on an Azure and a m4.4xlarge instance with 16 virtual CPUs and 64 

GB memory on AWS.  As disk I/O is an important factor in the efficiency of CRIU restoration and 

the generation of indices without CRIU, instances were tested using both network based disks 

(EBS for AWS and Microsoft Azure File Storage for Azure) and locally attached disks.  

  

Creating hot-start containers 

We installed CRIU on the host Ubuntu system. Docker Community Edition (Docker CE), which 

includes the experimental checkpointing tool, was then installed. The STAR binary was 

compiled from source (https://github.com/alexdobin/STAR) using Ubuntu 16.04 and g++ and 

then copied into a fresh Ubuntu 16.04 container to get rid of all the intermediate build files. The 

build code and Dockerfiles are available from https://github.com/BioDepot/ubuntu-star. To 

create the checkpoint, STAR was launched with the genomeLoad flag set to LoadAndKeep. 

This keeps the indices in shared memory after STAR exits. To trap the container in this state, 

we launched STAR using a parent shell script that did not exit, and checkpointed the container 

after STAR exited. This results in the generation of checkpoint files that store the state of the 
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hot-start container. Due to different kernel versions being used, we created separate hot-start 

containers for AWS and Azure. 

 

Comparing hot-start containers and standard cold-start containers 

The paired-end fastq files were 9 Gb in size comprising 22,935,521 reads. Times were recorded 

for the generation of aligned BAM files using STAR in the standard container and using STAR 

with the hot-start container. Times include the time required to restore the hot-start container 

from the checkpointed files.  

 
AVAILABILITY AND REQUIREMENTS 
Project name: Hot-starting software container for STAR Alignment 

Project homepage:  https://github.com/paizhang/Hotstarting-For-STAR-Alignment 

DockerHub URL: https://hub.docker.com/r/biodepot/star-for-criu/  

Operating system: Ubuntu 16.04 

Programming language: Shell 

Other requirements: Docker API version 1.25 or higher is required, Linux kernel v3.11 or 

higher is required. 

License: MIT License.  

 
AVAILABILITY OF SUPPORTING DATA 
The fastq files used in our tests were generated by Himes et al. and are publicly available from 

GEO with accession number GSE52778 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778). 
 

ADDITIONAL FILES 
Additional File 1: User manual for “Hot-starting software container for STAR Alignment” 

 

ABBREVIATIONS: 
AWS : Amazon Web Services; 
CRIU: Checkpoint/Restore In Userspace; 

EBS: Elastic Block Store; 

NIH: National Institutes of Health; 

STAR: Spliced Transcripts Alignment to a Reference; 

TCGA : The Cancer Genome Atlas. 
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FIGURE CAPTION 
 
Figure 1. An overview of our approach with and without checkpoints.  The left panel shows the 

two steps of the STAR aligner [5, 6].  Note that the generation of the genome indices in the first 

step only requires the reference genome as input, thus the data from the experimental sample is 

only used in the second (mapping) step of STAR.  The right panel shows our approach using 

the Checkpoint Restore in Userspace (CRIU) tool that freezes a running container and saves 

the checkpoint as a collection of files on disk after the genome indices are generated using the 

reference genome.  Our “hot-start” containers use these saved files to restore the application 

and map the reads from the experimental sample data to the reference.   

 

Figure 2. STAR alignment running time comparison with checkpoint and without checkpoint.  

We performed our empirical experiments on two cloud platforms: Amazon Web Services (AWS) 

and Microsoft Azure.  Both the Azure File Storage and the Amazon Elastic Block Store (EBS) 

represent network disks.  We observe that our “hot-start” containers (orange and grey bars) 

provide a major reduction in execution time, especially on local disks.  
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