
GigaScience

Hot-starting software containers for bioinformatics analyses
--Manuscript Draft--

Manuscript Number: GIGA-D-17-00326

Full Title: Hot-starting software containers for bioinformatics analyses

Article Type: Technical Note

Funding Information: National Institutes of Health
(U54HL127624)

Not applicable

AMEDD Advanced Medical Technology
Initiative

Not applicable

Abstract: Background: Using software containers has become standard practice to reproducibly
deploy and execute biomedical workflows on the cloud. However, some applications
which contain time-consuming initial steps will produce unnecessary costs for repeated
executions.

Findings: We demonstrate that hot-starting, from containers that have been frozen after
the application has already begun execution, reduces the costs of cloud computing by
avoiding repetitive initialization steps. In particular, we use an open source tool called
Checkpoint and Restore in Userspace (CRIU) to save the state of the containers as
checkpoint files after executing the initialization steps. We then migrate the checkpoint
files to other virtual machines on the cloud and restored containers from checkpoint
files. As a proof-of-concept example, we create a hot-start container for the STAR
aligner and deploy this container to align RNA sequencing data. In addition, we
compare the performance of the alignment step with and without checkpoints on cloud
platforms using local and network disks.

Conclusions: We demonstrate that hot-starting Docker containers from snapshots
taken after repetitive initialization steps are completed, significantly reduces the costs
of executing the STAR aligner on all experimental platforms, including Amazon Web
Services (AWS), Microsoft Azure and local virtual machines. Our method can be
employed in other bioinformatics applications in which a checkpoint can be inserted
after a repetitive initialization phase.

Corresponding Author: Ka Yee Yeung, Ph.D.
University of Washington Tacoma
UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Washington Tacoma

Corresponding Author's Secondary
Institution:

First Author: Pai Zhang

First Author Secondary Information:

Order of Authors: Pai Zhang

Ling-Hong Hung, Ph.D.

Wes Lloyd, Ph.D.

Ka Yee Yeung, Ph.D.

Order of Authors Secondary Information:

Opposed Reviewers:

Additional Information:

Question Response

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Hot-starting software containers for bioinformatics analyses

Pai Zhang

Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.
Email: paizhang@uw.edu

Ling-Hong Hung
Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.

Email: lhhung@uw.edu

Wes Lloyd
Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.

Email: wlloyd@uw.edu

Ka Yee Yeung

Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.
Email: kayee@uw.edu

Correspondence should be addressed to K.Y.Y. (kayee@uw.edu)

Manuscript Click here to download Manuscript CRIU docker For
GIgaScience-noFig.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=24181&guid=5754c1ec-31e4-436b-a190-ee9a65acb236&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=24181&guid=5754c1ec-31e4-436b-a190-ee9a65acb236&scheme=1

ABSTRACT
Background: Using software containers has become standard practice to reproducibly deploy
and execute biomedical workflows on the cloud. However, some applications which contain
time-consuming initial steps will produce unnecessary costs for repeated executions.

Findings: We demonstrate that hot-starting, from containers that have been frozen after the
application has already begun execution, reduces the costs of cloud computing by avoiding
repetitive initialization steps. In particular, we use an open source tool called Checkpoint and
Restore in Userspace (CRIU) to save the state of the containers as checkpoint files after
executing the initialization steps. We then migrate the checkpoint files to other virtual machines
on the cloud and restored containers from checkpoint files. As a proof-of-concept example, we
create a hot-start container for the STAR aligner and deploy this container to align RNA
sequencing data. In addition, we compare the performance of the alignment step with and
without checkpoints on cloud platforms using local and network disks.

Conclusions: We demonstrate that hot-starting Docker containers from snapshots taken after
repetitive initialization steps are completed, significantly reduces the costs of executing the
STAR aligner on all experimental platforms, including Amazon Web Services (AWS), Microsoft
Azure and local virtual machines. Our method can be employed in other bioinformatics
applications in which a checkpoint can be inserted after a repetitive initialization phase.

Keywords: software container, reproducibility of research, cloud computing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FINDINGS
Background

With the availability of high-throughput next generation sequencing technologies and the

subsequent explosion of big biomedical data, the processing of biomedical big data has become

a major challenge. Cloud computing plays an important role in addressing this challenge by

offering massive scalable computing and storage, data sharing and on-demand access to

resources and applications [1, 2]. The National Institutes of Health is launching a Data

Commons Pilot Phase to provide access and storage of biomedical data and bioinformatics

tools on the cloud (https://commonfund.nih.gov/bd2k). Additionally, software containers have

become increasingly popular for deploying bioinformatics workflows on the cloud. Docker

(https://www.docker.com/), an open source project, has become the de facto standard for

container software. Docker packages executables with all the necessary software dependencies

ensuring that the same software environment is replicated regardless of the host hardware and

operating system. Thus, containerization enhances the reproducibility of bioinformatics

workflows. In the context of cloud computing, the utility of containers comes from the ease in

which a virtual cloud cluster can be rapidly provisioned with all of the necessary dependencies

for a complicated workflow by simply downloading a set of containers, each of which take a few

seconds to spin up. Recently, Vivian et al. processed over 20,000 RNA sequencing (RNA-seq)

samples from the Cancer Genome Atlas (TCGA) using Docker containers on the cloud [3].

Tatlow et al. used software containers to study the performance and cost profiles of different

cloud-based configurations in processing RNA-seq data from public cancer compendia [4].

When containers are deployed, applications are launched de novo each time the container is

spun up. This means that any initial preparatory steps are repeated each time the container is

used. For applications such as the alignment of reads, these initial steps can be quite

substantive as an entire reference genome is read in and indices are generated. In an

automated large-scale deployment, these steps are replicated many times. It would be far more

efficient if one could “checkpoint” and save containers in states where the application has

already completed the initialization steps so as to avoid unncessary repetitions. One could then

“hot-start” workflows from these checkpoints. This is analogous to hot-start PCR where all the

necessary reagents are pre-mixed awaiting only the addition of the template.

Our approach

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our key idea is to save and restore memory states in software containers using the Checkpoint

Restore in Userspace (CRIU) tool. CRIU freezes a running container and saves the checkpoint

as a collection of files on disk (https://criu.org/Main_Page). These files can subsequently be

used to restore and resume the application from that checkpoint. CRIU was originally

developed for Linux, but has recently become available for Docker (https://criu.org/Docker).

While it is possible to stop Docker containers with native docker commands, this process does

not preserve the memory state. Although re-starting from a ready-to-go state is an intuitive

application of checkpointing, we have been unable to find any previous description of using

checkpointing as a general method for improving the efficiency of container deployments.

We demonstrate that hot-starting from a saved container checkpoint can significantly reduce the

execution time using the STAR aligner [5, 6] for RNA-seq data analyses. We choose STAR as

a proof-of-concept example because it has an option to save an intermediate state. However,

our idea of using checkpoints has broad applications in optimizing performance using software

containers on the cloud when deploying any bioinformatics task where a pause could be

inserted to capture a re-usable state.

The STAR aligner [5, 6] consists of two steps. In the first step, genome indices using the

reference genome as input are generated. In the second step, read sequences from a specific

experiment sample are mapped to the reference genome assuming that the genome indices

have already been generated. In particular, STAR has the option of keeping the indices in

memory after they have been generated to avoid repeating the first step when multiple files are

to be aligned to the same reference genome. We used the CRIU tool to create checkpoints after

the first step of generating genome indices. Instead of launching a new container and starting

STAR from scratch, we restore the container state using CRIU and resume running STAR after

it has loaded the indices. Figure 1 shows an overview of our approach with and without using

checkpoints.

Testing

To test the checkpointing methodology, we used RNA-seq data generated by Himes et al. which

measure the gene expression changes in human airway smooth muscle cells in response to

asthma medications [7]. We compared the time required to align the sequences with a normal

container where STAR starts from scratch, and the time required when hot-starting from a

container checkpoint where STAR has already generated indices. We performed empirical

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

studies on cloud instances including the Amazon Web Services (AWS) and Microsoft Azure,

using both local and networked disks. On AWS, we compared the performance with data on the

local host and Amazon Elastic Block Store (EBS). On Microsoft Azure, we compared the

performance with data on local host and Azure File Storage. Please refer to the Online

Methods for details of our experimental setup. Our empirical results are shown in Figure 2.

Figure 2 shows that the STAR aligner with checkpoint reduces the execution time compared to

STAR without checkpoint. On AWS, we observed 1.89x speedup with data stored on the local

disk and 1.42x speedup with data on network disk (Amazon EBS). On Microsoft Azure, we

achieved a 1.34x speedup with data stored on the local disk, and 3.57x speedup with data on

Azure File Storage. With respect to execution time, we show that hot-starting from checkpoint

containers save 2 minutes on fast local disks and Amazon EBS disks. The saving is almost 20

minutes when using Azure network storage where the disk caching scheme appears to be much

less favorable to STAR’s index generation process.

In this article, we have presented a novel idea for optimising cloud deployments using

checkpointing to save containers where the applications are already started. Using CRIU for

Docker, we can save the container with a preloaded genome for STAR alignment and restore

the container from these checkpoint files to any host. We have achieved successful migration

of checkpointed containers to different virtual machine instances running on the Amazon and

Azure cloud platforms while realizing up to a 3.57x speedup using our approach saving up to 20

minutes for a single STAR alignment workflow on Azure with network disks. For STAR

alignment, it is possible to use a checkpointed container to align multiple sequences at once by

retaining the genomic indices in memory. Our approach yields a significant benefit with hot-

starting when as few as one or two files are aligned. Additionally, multiple STAR alignment

tasks can be computed in parallel using the same genome indices hosted by different

processes. For automated schedulers such as Docker Compose

(https://docs.docker.com/compose/), “hot-starting” reduces execution time every single time the

STAR container is launched. While it is possible to design a workflow to perform all the

alignments in a single container first, load-balancing optimizations would be better utilized by

allowing the scheduler to distribute the computation over the cluster as shorter jobs.

Our hot-start strategy only requires that there is a convenient place for a pause, checkpoint and

re-start. In the case of STAR, this is provided by a flag that allows the container to keep

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

genomic indices in shell memory between invocations of STAR. For other workflows, one could

add a flag to pause the computation where the checkpoint is to be created, and a flag to resume

the computation afterwards. With these straightforward modifications, any application could take

advantage of checkpointing to avoid repetitive initialization. This is a novel and unexplored

approach to optimising containerized workflows while reducing the costs of cloud computing.

METHODS

CRIU. CRIU (Checkpoint/Restore In Userspace) is a Linux software tool that freezes a running

application and saves it as a collection of files to disk (https://criu.org). The application can later

be restored on the same or on a different host. Docker currently integrates CRIU as an

experimental checkpoint sub-command that saves the state of processes to a collection of files

on disk. The checkpointing command has been used to migrate containers from the source host

to a target host when the resources of the source are limited [8], for fault tolerance purposes [9],

and to provide highly available and scalable micro-services [10].

Cloud configurations tested

In our experiments, we deployed our containers on instances from two cloud platforms:

Microsoft Azure and Amazon Web Services (AWS). Ubuntu 16.04 was the host operating

system in all our tests. Testing was conducted using a standard DS13 v2 instance with 8 virtual

CPUs and 56 Gb memory on an Azure and a m4.4xlarge instance with 16 virtual CPUs and 64

GB memory on AWS. As disk I/O is an important factor in the efficiency of CRIU restoration and

the generation of indices without CRIU, instances were tested using both network based disks

(EBS for AWS and Microsoft Azure File Storage for Azure) and locally attached disks.

Creating hot-start containers

We installed CRIU on the host Ubuntu system. Docker Community Edition (Docker CE), which

includes the experimental checkpointing tool, was then installed. The STAR binary was

compiled from source (https://github.com/alexdobin/STAR) using Ubuntu 16.04 and g++ and

then copied into a fresh Ubuntu 16.04 container to get rid of all the intermediate build files. The

build code and Dockerfiles are available from https://github.com/BioDepot/ubuntu-star. To

create the checkpoint, STAR was launched with the genomeLoad flag set to LoadAndKeep.

This keeps the indices in shared memory after STAR exits. To trap the container in this state,

we launched STAR using a parent shell script that did not exit, and checkpointed the container

after STAR exited. This results in the generation of checkpoint files that store the state of the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

hot-start container. Due to different kernel versions being used, we created separate hot-start

containers for AWS and Azure.

Comparing hot-start containers and standard cold-start containers

The paired-end fastq files were 9 Gb in size comprising 22,935,521 reads. Times were recorded

for the generation of aligned BAM files using STAR in the standard container and using STAR

with the hot-start container. Times include the time required to restore the hot-start container

from the checkpointed files.

AVAILABILITY AND REQUIREMENTS
Project name: Hot-starting software container for STAR Alignment

Project homepage: https://github.com/paizhang/Hotstarting-For-STAR-Alignment

DockerHub URL: https://hub.docker.com/r/biodepot/star-for-criu/

Operating system: Ubuntu 16.04

Programming language: Shell

Other requirements: Docker API version 1.25 or higher is required, Linux kernel v3.11 or

higher is required.

License: MIT License.

AVAILABILITY OF SUPPORTING DATA
The fastq files used in our tests were generated by Himes et al. and are publicly available from

GEO with accession number GSE52778

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778).

ADDITIONAL FILES
Additional File 1: User manual for “Hot-starting software container for STAR Alignment”

ABBREVIATIONS:
AWS : Amazon Web Services;
CRIU: Checkpoint/Restore In Userspace;

EBS: Elastic Block Store;

NIH: National Institutes of Health;

STAR: Spliced Transcripts Alignment to a Reference;

TCGA : The Cancer Genome Atlas.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Conflict of interests
The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS
P.Z. implemented the Docker containers and conducted the empirical experiments. P.Z., L.H.H.

and K.Y.Y. drafted the manuscript. K.Y.Y. and L.H.H. designed the case study. W.L. provided

cloud computing expertise. K.Y.Y. coordinated the empirical study. All authors edited the

manuscript.

ACKNOWLEDGEMENTS
L.H.H. and K.Y.Y. are supported by NIH grant U54HL127624 and the AMEDD Advanced

Medical Technology Initiative. We would like to acknowledge support from the AWS Cloud

Credits for Research (to Lloyd and Yeung) and the Microsoft Azure for Research programs (to

Hung and Lloyd) for providing cloud computing resources. We would like to acknowledge the

Student High Performance Computing Club and the eScience Institute at University of

Washington for both technical assistance and computing resources to Pai Zhang.

REFERENCES

1. Calabrese B and Cannataro M. Cloud Computing in Bioinformatics: current solutions and
challenges. PeerJ Preprints. 2016;4:e2261v1.

2. Shanahan HP, Owen AM and Harrison AP. Bioinformatics on the cloud computing
platform Azure. PLoS One. 2014;9 7:e102642. doi:10.1371/journal.pone.0102642.

3. Vivian J, Rao A, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Rapid and efficient
analysis of 20,000 RNA-seq samples with Toil. bioRxiv. 2016.

4. Tatlow PJ and Piccolo SR. A cloud-based workflow to quantify transcript-expression
levels in public cancer compendia. Scientific reports. 2016;6:39259.
doi:10.1038/srep39259.

5. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics. 2013;29 1:15-21.
doi:10.1093/bioinformatics/bts635.

6. Dobin A and Gingeras TR. Mapping RNA-seq Reads with STAR. Current protocols in
bioinformatics. 2015;51:11 4 1-9. doi:10.1002/0471250953.bi1114s51.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7. Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, et al. RNA-Seq
transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that
modulates cytokine function in airway smooth muscle cells. PLoS One. 2014;9
6:e99625. doi:10.1371/journal.pone.0099625.

8. Al-Dhuraibi Y, Paraiso F, Djarallah N and Merle P. Autonomic Vertical Elasticity of
Docker Containers with ELASTICDOCKER. In: IEEE 10th International Conference on
Cloud Computing Honolulu, CA, USA, 25-30 June 2017 2017, IEEE.

9. Ismail BI, Goortani EM, Karim MBA, Tat WM, Setapa S, Luke JY, et al. Evaluation of
Docker as Edge Computing Platform. In: IEEE Confernece on Open Systems (ICOS)
Bandar Melaka, Malaysia 24-26 Aug. 2015 2015, IEEE.

10. Chen Y. Checkpoint and Restoration of Micro-service in Docker Containers. In: Third
International Conference on Mechatronics and Industrial Informatics 2015.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FIGURE CAPTION

Figure 1. An overview of our approach with and without checkpoints. The left panel shows the

two steps of the STAR aligner [5, 6]. Note that the generation of the genome indices in the first

step only requires the reference genome as input, thus the data from the experimental sample is

only used in the second (mapping) step of STAR. The right panel shows our approach using

the Checkpoint Restore in Userspace (CRIU) tool that freezes a running container and saves

the checkpoint as a collection of files on disk after the genome indices are generated using the

reference genome. Our “hot-start” containers use these saved files to restore the application

and map the reads from the experimental sample data to the reference.

Figure 2. STAR alignment running time comparison with checkpoint and without checkpoint.

We performed our empirical experiments on two cloud platforms: Amazon Web Services (AWS)

and Microsoft Azure. Both the Azure File Storage and the Amazon Elastic Block Store (EBS)

represent network disks. We observe that our “hot-start” containers (orange and grey bars)

provide a major reduction in execution time, especially on local disks.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Generating
genome indices

Mapping reads
to genome

Output files

Mapping reads
to genome

Output files

Reference
genome

Checkpoint
and save

Traditional STAR
Alignment

Hot-start STAR alignment

Input reads
from sample

Input reads
from sample

Figure 1 Click here to download Figure Fig1_Experiment design STAR CRIU.pdf

http://www.editorialmanager.com/giga/download.aspx?id=24182&guid=d56ac419-be74-49c7-a87f-7a1a8810a28a&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=24182&guid=d56ac419-be74-49c7-a87f-7a1a8810a28a&scheme=1

Figure 2 Click here to download Figure Fig2.png

http://www.editorialmanager.com/giga/download.aspx?id=24183&guid=c02b5dc7-fdf6-4db1-8a26-eecc96a31f83&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=24183&guid=c02b5dc7-fdf6-4db1-8a26-eecc96a31f83&scheme=1

Supplementary Material

Click here to access/download
Supplementary Material

User Manual Hot-start Containers.pdf

http://www.editorialmanager.com/giga/download.aspx?id=24184&guid=bdd7e34a-d2bb-4b5c-b615-37733576a0c9&scheme=1

