
GigaScience

Hot-starting software containers for STAR aligner
--Manuscript Draft--

Manuscript Number: GIGA-D-17-00326R2

Full Title: Hot-starting software containers for STAR aligner

Article Type: Technical Note

Funding Information: National Institutes of Health
(U54HL127624)

Not applicable

AMEDD Advanced Medical Technology
Initiative

Not applicable

National Institutes of Health
(R01GM126019)

Dr. Ka Yee Yeung

Abstract: Background: Using software containers has become standard practice to reproducibly
deploy and execute biomedical workflows on the cloud. However, some applications
which contain time-consuming initialization steps will produce unnecessary costs for
repeated executions.

Findings: We demonstrate that hot-starting, from containers that have been frozen after
the application has already begun execution, can speed up bioinformatics workflows by
avoiding repetitive initialization steps. We use an open source tool called Checkpoint
and Restore in Userspace (CRIU) to save the state of the containers as a collection of
checkpoint files on disk after it has read in the indices. The resulting checkpoint files
are migrated to the host and CRIU is used to regenerate the containers in that ready-
to-run hot-start state. As a proof-of-concept example, we create a hot-start container
for the STAR aligner and deploy this container to align RNA sequencing data. We
compare the performance of the alignment step with and without checkpoints on cloud
platforms using local and network disks.

Conclusions: We demonstrate that hot-starting Docker containers from snapshots
taken after repetitive initialization steps are completed, significantly speeds up the
execution of the STAR aligner on all experimental platforms, including Amazon Web
Services (AWS), Microsoft Azure and local virtual machines. Our method can be
potentially employed in other bioinformatics applications in which a checkpoint can be
inserted after a repetitive initialization phase.

Corresponding Author: Ka Yee Yeung, Ph.D.
University of Washington Tacoma
UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Washington Tacoma

Corresponding Author's Secondary
Institution:

First Author: Pai Zhang

First Author Secondary Information:

Order of Authors: Pai Zhang

Ling-Hong Hung, Ph.D.

Wes Lloyd, Ph.D.

Ka Yee Yeung, Ph.D.

Order of Authors Secondary Information:

Response to Reviewers: Thank you for the opportunity to publish in Gigascience. We added the following
reference to the manuscript as instructed.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

[22] Zhang, P; Hung, L, H; Lloyd, W; Yeung, K, Y (2018): Supporting data for"Hot-
starting software containers for STAR aligner" GigaScience Database.
http://dx.doi.org/10.5524/100468

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

 1

Hot-starting software containers for STAR aligner

Pai Zhang

Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.
Email: paizhang@uw.edu

Ling-Hong Hung
Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.

Email: lhhung@uw.edu

Wes Lloyd
Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.

Email: wlloyd@uw.edu

Ka Yee Yeung

Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.
Email: kayee@uw.edu

Correspondence should be addressed to K.Y.Y. (kayee@uw.edu)

Manuscript Click here to access/download;Manuscript;CRIU docker For
GIgaScience-noFig-submit_wl4.pdf

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=44521&guid=ed2052c4-10b8-4a5a-88d6-bd0277a705ae&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=44521&guid=ed2052c4-10b8-4a5a-88d6-bd0277a705ae&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=848&rev=2&fileID=44521&msid=0855ccdf-c110-4f19-9b22-4f89bc60c95b

 2

ABSTRACT
Background: Using software containers has become standard practice to reproducibly deploy
and execute biomedical workflows on the cloud. However, some applications which contain
time-consuming initialization steps will produce unnecessary costs for repeated executions.

Findings: We demonstrate that hot-starting, from containers that have been frozen after the
application has already begun execution, can speed up bioinformatics workflows by avoiding
repetitive initialization steps. We use an open source tool called Checkpoint and Restore in
Userspace (CRIU) to save the state of the containers as a collection of checkpoint files on disk
after it has read in the indices. The resulting checkpoint files are migrated to the host and CRIU
is used to regenerate the containers in that ready-to-run hot-start state. As a proof-of-concept
example, we create a hot-start container for the STAR aligner and deploy this container to align
RNA sequencing data. We compare the performance of the alignment step with and without
checkpoints on cloud platforms using local and network disks.

Conclusions: We demonstrate that hot-starting Docker containers from snapshots taken after
repetitive initialization steps are completed, significantly speeds up the execution of the STAR
aligner on all experimental platforms, including Amazon Web Services (AWS), Microsoft Azure
and local virtual machines. Our method can be potentially employed in other bioinformatics
applications in which a checkpoint can be inserted after a repetitive initialization phase.

Keywords: software container, reproducibility of research, cloud computing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 3

FINDINGS
Background

With the availability of high-throughput next generation sequencing technologies and the

subsequent explosion of big biomedical data, the processing of biomedical big data has become

a major challenge. Cloud computing plays an important role in addressing this challenge by

offering massive scalable computing and storage, data sharing and on-demand access to

resources and applications [1, 2]. The National Institutes of Health is launching a Data

Commons Pilot Phase to provide access and storage of biomedical data and bioinformatics

tools on the cloud [3]. Additionally, software containers have become increasingly popular for

deploying bioinformatics workflows on the cloud. Docker [4], an open source project, has

become the de facto standard for container software. Docker packages executables with all the

necessary software dependencies ensuring that the same software environment is replicated

regardless of the host hardware and operating system. Other container technologies such as

Singularity containers have also been proposed to enhance mobility and reproducibility of

computational science [5, 6]. Thus, containerization enhances the reproducibility of

bioinformatics workflows [7-9]. In the context of cloud computing, the utility of containers comes

from the ease in which a virtual cloud cluster can be rapidly provisioned with all of the necessary

dependencies for a complicated workflow by simply downloading a set of containers, each of

which take a few seconds to spin up. Recently, Vivian et al. processed over 20,000 RNA

sequencing (RNA-seq) samples from the Cancer Genome Atlas (TCGA) using Docker

containers on the cloud [10]. Tatlow et al. used software containers to study the performance

and cost profiles of different cloud-based configurations in processing RNA-seq data from public

cancer compendia [11].

When containers are deployed, applications are launched de novo each time the container is

spun up. This means that any initial preparatory steps are repeated each time the container is

used. For tasks such as the alignment of reads, these initial steps can be quite substantive as

large sets of indices need to be read before alignments can begin. In an automated large-scale

deployment, these steps are replicated many times. It would be far more efficient if one could

“checkpoint” and save containers in states where the application has already completed the

initialization steps so as to avoid unnecessary repetitions. One could then “hot-start” workflows

from these checkpoints. This is analogous to hot-start PCR where all the necessary reagents

are pre-mixed awaiting only the addition of the template.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 4

Our approach

Our key idea is to save and restore memory states in software containers using the Checkpoint

Restore in Userspace (CRIU) tool. CRIU freezes a running container and saves the checkpoint

as a collection of files on disk [12]. These files can subsequently be used to restore and resume

the application from that checkpoint. CRIU was originally developed for Linux, but has recently

become available for Docker [13]. While it is possible to stop Docker containers with native

Docker commands, this process does not preserve the memory state. Although re-starting from

a ready-to-go state is an intuitive application of checkpointing, we have been unable to find any

previous description of using checkpointing as a general method for improving the efficiency of

container deployments.

We demonstrate that hot-starting from a saved container checkpoint can significantly reduce the

execution time using the STAR aligner [14, 15] for RNA-seq data analyses. We choose STAR

as a proof-of-concept example because it has such a slow initialization step that it includes an

option to retain indices in memory for use when aligning many different files. However, our idea

of using checkpoints has broad applications in optimizing performance using software

containers on the cloud when performing any bioinformatics task where a pause could be

inserted to capture a re-usable state.

The STAR aligner consists of several steps. Indices are generated from the reference genome.

This is typically done just once using the latest version of the reference. The indices are read in

and then read sequences from a specific experiment sample are mapped to the reference

genome. For STAR, the process of reading in the indices is a slow process and STAR has an

option of keeping the indices in memory after they have been generated so that subsequent

sequence alignments do not have to repeat the step of reading the indices. We used the CRIU

tool to create checkpoints after the indices have been read. Instead of launching a new

container and starting STAR from scratch, we restore the container state using CRIU and

resume running STAR after it has loaded the indices. Figure 1 shows an overview of our

approach with and without using checkpoints.

Testing

To test the checkpointing methodology, we used RNA-seq data generated by Himes et al. which

measure the gene expression changes in human airway smooth muscle cells in response to

asthma medications [16]. We compared the time required to align the sequences with a normal

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 5

container where STAR starts from scratch, and the time required when hot-starting from a

container checkpoint where STAR has already generated indices. We performed empirical

studies on multiple cloud platforms including Amazon Web Services (AWS) and Microsoft

Azure, using both local and networked disks. On AWS, we compared performance with data

stored on the local host versus Amazon Elastic Block Store (EBS). On Microsoft Azure, we

compared the performance with data stored on the local host versus Azure File Storage.

Please refer to the Online Methods for details of our experimental setup. Our empirical results

are shown in Figure 2.

Figure 2 shows that the STAR aligner with checkpointing reduces the execution time compared

to STAR without checkpointing. The average running time over five separate runs are shown.

The raw data, average running time and standard deviation across the five runs are available as

Additional File 2. On AWS, we observed a 1.89x speedup with data stored on the local disk and

1.42x speedup with data on a network disk (Amazon EBS). On Microsoft Azure, we achieved a

1.34x speedup with data stored on the local disk, and 3.57x speedup with data on Azure File

Storage. With respect to execution time, we show that hot-starting from checkpoint containers

save 2 minutes on fast local disks and Amazon EBS disks. The saving is almost 20 minutes

when using Azure network storage where the disk caching scheme appears to be much less

favorable to STAR’s indexing process.

In this article, we have presented a novel idea for optimizing cloud deployments using

checkpointing to save containers where the applications are already started. Using CRIU for

Docker, we can save the container with a preloaded genome for STAR alignment and restore

the container from these checkpoint files to any host. We have achieved successful migration

of checkpointed containers to different virtual machine instances running on the Amazon and

Azure cloud platforms while realizing up to a 3.57x speedup using our approach saving up to 20

minutes for a single STAR alignment workflow on Azure with network disks. For STAR

alignment, it is possible to use a checkpointed container to align multiple sequences at once by

retaining the genomic indices in memory. Our approach yields a significant benefit with hot-

starting when as few as one or two files are aligned. Additionally, multiple STAR alignment

tasks can be computed in parallel using the same genome indices hosted by different

processes. For automated schedulers such as Docker Compose [17], “hot-starting” reduces

execution time every single time the STAR container is launched. While it is possible to design

a workflow to perform all the alignments in a single container first, load-balancing would be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 6

made easier by allowing the scheduler to distribute the computation over the cluster as shorter

jobs.

There are a few caveats to the hot-start strategy. First, the CRIU tool produces checkpoint files

that are Linux kernel version dependent [18]. Restoring a checkpoint on a Docker host in a

local cluster, or an instance in the cloud backed by a different kernel version would require a

kernel specific checkpoint file that can be created by running the CRIU tool on the node or

instance. Second, is the requirement for a convenient place in the workflow to insert a pause,

checkpoint and re-start. In the case of STAR, this is provided by a flag that allows the container

to keep genomic indices in shell memory between invocations of STAR. For other workflows,

one could add a flag to pause the computation where the checkpoint is to be created, and a flag

to resume the computation afterwards. With these straightforward modifications, any workflow

could take advantage of checkpointing to avoid repetitive initialization steps. A major advantage

of hot-starting is that it does not require extensive knowledge of the underlying code to optimize

performance. While it may be more efficient to simply re-write the code to eliminate repetitive

steps – this is not always feasible especially for academic or poorly documented legacy

software. Hot-starting from pre-initialized containers represents a novel and unexplored

approach to speeding up bioinformatics workflows deployed on the cloud or local servers.

METHODS

CRIU. CRIU (Checkpoint/Restore In Userspace) is a Linux software tool that freezes a running

application and saves it as a collection of files to disk [12]. The application can later be restored

on the same or on a different host. Docker currently integrates CRIU as an experimental

checkpoint sub-command that saves the state of processes to a collection of files on disk. The

checkpointing command has been used to migrate containers from the source host to a target

host when the resources of the source are limited [19], for fault tolerance purposes [20], and to

provide highly available and scalable micro-services [21].

Cloud configurations tested

In our experiments, we deployed our containers on instances from two cloud platforms:

Microsoft Azure and Amazon Web Services (AWS). Ubuntu 16.04 was the host operating

system in all our tests. Specifically, we used Ubuntu server 16.04 LTS with Ubuntu Kernel

version 4.4.0-28-generic and CRIU version 3.1 "Graphene Swift" in our empirical studies on

Microsoft Azure. We used Ubuntu 16.04.03 LTS with Kernel version 4.4.0-1022-aws and CRIU

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 7

version 3.1 "Graphene Swift" in our empirical studies on AWS. Testing was conducted using a

standard DS13 v2 instance with 8 virtual CPUs and 56 Gb memory on Azure and a m4.4xlarge

instance with 16 virtual CPUs and 64 GB memory on AWS. As disk I/O is an important factor in

the efficiency of CRIU restoration and the generation of indices without CRIU, instances were

tested using both network based disks (EBS for AWS and Microsoft Azure File Storage for

Azure) and locally attached disks.

Creating hot-start containers

We installed CRIU on the host Ubuntu system. Docker Community Edition (Docker CE), which

includes the experimental checkpointing tool, was then installed. The STAR binary was

compiled from source (https://github.com/alexdobin/STAR) using Ubuntu 16.04 and g++ and

then copied into a clean Ubuntu 16.04 container with no intermediate build files. The build code

and Dockerfiles are available from https://github.com/BioDepot/ubuntu-star. To create the

checkpoint, STAR was launched with the genomeLoad flag set to LoadAndKeep. This keeps the

indices in shared memory after STAR exits. To trap the container in this state, we launched

STAR using a parent shell script that did not exit, and checkpointed the container after STAR

exited. This results in the generation of checkpoint files that store the state of the hot-start

container. Due to different Linux kernel versions being used on AWS and Azure, we created

separate hot-start containers for each cloud.

Comparing hot-start containers and standard cold-start containers

The paired-end fastq files were 9 Gb in size comprising 22,935,521 reads. Times were recorded

for the generation of aligned BAM files using STAR in the standard container and using STAR

with the hot-start container. Times include the time required to restore the hot-start container

from the checkpointed files.

AVAILABILITY AND REQUIREMENTS
Project name: Hot-starting software container for STAR Alignment

Project homepage: https://github.com/biodepot/Hotstarting-For-STAR-Alignment

DockerHub URL: https://hub.docker.com/r/biodepot/star-for-criu/

Operating system: Ubuntu 16.04

Programming language: Shell

Other requirements: Docker API version 1.25 or higher, CRIU 2.0 or later, Linux kernel v3.11

or higher are required.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 8

License: MIT License.

RRID on SciCrunch.org: SCR_016294

AVAILABILITY OF SUPPORTING DATA
The fastq files used in our tests were generated by Himes et al. and are publicly available from

GEO with accession number GSE52778

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778). Snapshots of the code and

base containers are hosted in the GigaScience GigaDB repository [22].

ADDITIONAL FILES
Additional File 1: User manual for “Hot-starting software container for STAR Alignment”

Additional File 2: Raw data, average running time, standard error and standard deviation

across five runs of STAR alignment with checkpoint and without checkpoint. Our empirical

experiments were performed on local and network disks using Amazon Web Services (AWS)

and Microsoft Azure.

ABBREVIATIONS:
AWS : Amazon Web Services;
CRIU: Checkpoint/Restore In Userspace;

EBS: Elastic Block Store;

NIH: National Institutes of Health;

STAR: Spliced Transcripts Alignment to a Reference;

TCGA : The Cancer Genome Atlas.

Conflict of interests
The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS
P.Z. and L.H.H. implemented the Docker containers. P.Z. conducted the empirical experiments.

P.Z., L.H.H. and K.Y.Y. drafted the manuscript. K.Y.Y. and L.H.H. designed the case study.

W.L. provided cloud computing expertise. K.Y.Y. coordinated the empirical study. All authors

edited the manuscript.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 9

ACKNOWLEDGEMENTS
L.H.H., W.L. and K.Y.Y. are supported by NIH grant R01GM126019. L.H.H. and K.Y.Y. are also

supported by NIH grant U54HL127624 and the AMEDD Advanced Medical Technology

Initiative. We would like to acknowledge support from the AWS Cloud Credits for Research (to

Lloyd and Yeung) and the Microsoft Azure for Research programs (to Hung and Lloyd) for

providing cloud computing resources. We would like to acknowledge the Student High

Performance Computing Club and the eScience Institute at University of Washington for both

technical assistance and computing resources to Pai Zhang.

REFERENCES

1. Calabrese B and Cannataro M. Cloud Computing in Bioinformatics: current solutions and
challenges. PeerJ Preprints. 2016;4:e2261v1.

2. Shanahan HP, Owen AM and Harrison AP. Bioinformatics on the cloud computing
platform Azure. PLoS One. 2014;9 7:e102642. doi:10.1371/journal.pone.0102642.

3. National Institutes of Health (NIH) Data Commons Pilot.
https://commonfund.nih.gov/commons. Accessed April 6, 2018.

4. Docker. https://http://www.docker.com/. Accessed April 6, 2018.

5. Kurtzer GM, Sochat V and Bauer MW. Singularity: Scientific containers for mobility of
compute. PLoS One. 2017;12 5:e0177459. doi:10.1371/journal.pone.0177459.

6. Sochat VV, Prybol CJ and Kurtzer GM. Enhancing reproducibility in scientific computing:
Metrics and registry for Singularity containers. PLoS One. 2017;12 11:e0188511.
doi:10.1371/journal.pone.0188511.

7. Schulz WL, Durant TJ, Siddon AJ and Torres R. Use of application containers and
workflows for genomic data analysis. Journal of pathology informatics. 2016;7:53.
doi:10.4103/2153-3539.197197.

8. Silver A. Software simplified: Containerization technology takes the hassle out of setting
up software and can boost the reproducibility of data-driven research. Nature.
2017;546:173-4.

9. Piccolo SR and Frampton MB. Tools and techniques for computational reproducibility.
GigaScience. 2016;5 1:30. doi:10.1186/s13742-016-0135-4.

10. Vivian J, Rao A, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Rapid and efficient
analysis of 20,000 RNA-seq samples with Toil. bioRxiv. 2016.

11. Tatlow PJ and Piccolo SR. A cloud-based workflow to quantify transcript-expression
levels in public cancer compendia. Scientific reports. 2016;6:39259.
doi:10.1038/srep39259.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 10

12. Checkpoint Restore in Userspace (CRIU). https://criu.org/Main_Page. Accessed April 6,
2018.

13. CRIU Integration with Docker. https://criu.org/Docker. Accessed April 6, 2018.

14. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics. 2013;29 1:15-21.
doi:10.1093/bioinformatics/bts635.

15. Dobin A and Gingeras TR. Mapping RNA-seq Reads with STAR. Current protocols in
bioinformatics. 2015;51:11 4 1-9. doi:10.1002/0471250953.bi1114s51.

16. Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, et al. RNA-Seq
transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that
modulates cytokine function in airway smooth muscle cells. PLoS One. 2014;9
6:e99625. doi:10.1371/journal.pone.0099625.

17. Docker Compose. https://http://www.docker.com/products/docker-compose. Accessed
April 6, 2018.

18. CRIU: Linux kernel. https://criu.org/Linux_kernel. Accessed April 6, 2018.

19. Al-Dhuraibi Y, Paraiso F, Djarallah N and Merle P. Autonomic Vertical Elasticity of
Docker Containers with ELASTICDOCKER. In: IEEE 10th International Conference on
Cloud Computing Honolulu, CA, USA, 25-30 June 2017 2017, IEEE.

20. Ismail BI, Goortani EM, Karim MBA, Tat WM, Setapa S, Luke JY, et al. Evaluation of
Docker as Edge Computing Platform. In: IEEE Confernece on Open Systems (ICOS)
Bandar Melaka, Malaysia 24-26 Aug. 2015 2015, IEEE.

21. Chen Y. Checkpoint and Restoration of Micro-service in Docker Containers. In: Third
International Conference on Mechatronics and Industrial Informatics 2015.

22. Zhang P, Hung LH, Lloyd W and Yeung KY: Supporting data for"Hot-starting software
containers for STAR aligner" GigaScience Database. http://dx.doi.org/10.5524/100468
(2018).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 11

FIGURE CAPTION

Figure 1. An overview of our approach with and without checkpoints. The left panel shows the

two steps of the STAR aligner [14, 15] after the generation of indices. The right panel shows our

approach using the Checkpoint Restore in Userspace (CRIU) tool that freezes a running

container and saves the checkpoint as a collection of files on disk after the genome indices are

generated using the reference genome. Our “hot-start” containers use these saved files to

restore the application and map the reads from the experimental sample data to the reference.

Figure 2. STAR alignment running time comparison with checkpoint and without checkpoint.

The running time is averaged over five runs. We performed our empirical experiments on two

cloud platforms: Amazon Web Services (AWS) and Microsoft Azure. Both the Azure File

Storage and the Amazon Elastic Block Store (EBS) represent network disks. We observe that

our “hot-start” containers (orange and grey bars) provide a major reduction in execution time,

especially on local disks.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Read genome
indices

Map reads to
genome

Output files

Map reads to
genome

Output files

Reference
genome

Checkpoint
and save

Traditional
STAR alignment

Hot-start STAR alignment

Input reads
from sample

Input reads
from sample

Generate indices

Figure 1 Click here to access/download;Figure;Fig1_Experiment design STAR CRIU.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42010&guid=3dc63aff-4052-48a5-92c5-9c6b551220a3&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42010&guid=3dc63aff-4052-48a5-92c5-9c6b551220a3&scheme=1

0 200 400 600 800 1000 1200 1400

Time without checkpoint

Time to restore from checkpoint

Time for alignment a�er restoring

1.42x

1.34x

3.57x

STAR running time comparison

Azure file storage

Azure local disk

AWS EBS

AWS local disk

Running time (seconds)

1.89x

Figure 2 Click here to access/download;Figure;CRIU-figure2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42011&guid=98790682-8614-4013-8e5d-8538f816f618&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42011&guid=98790682-8614-4013-8e5d-8538f816f618&scheme=1

Additional File 1

Click here to access/download
Supplementary Material

User Manual Hot-start Containers New.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42012&guid=ca19f616-c1e3-4435-b744-26fe4e28402f&scheme=1

Additional File 2

Click here to access/download
Supplementary Material

AdditionalFile2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=42013&guid=bf409b52-a460-4f4c-be3b-ecd7835509ba&scheme=1

