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ABSTRACT  
Background: Using software containers has become standard practice to reproducibly deploy 
and execute biomedical workflows on the cloud. However, some applications which contain 
time-consuming initialization steps will produce unnecessary costs for repeated executions.   
 
Findings: We demonstrate that hot-starting, from containers that have been frozen after the 
application has already begun execution, can speed up bioinformatics workflows by avoiding 
repetitive initialization steps.  We use an open source tool called Checkpoint and Restore in 
Userspace (CRIU) to save the state of the containers as a collection of checkpoint files on disk 
after it has read in the indices. The resulting checkpoint files are migrated to the host and CRIU 
is used to regenerate the containers in that ready-to-run hot-start state.  As a proof-of-concept 
example, we create a hot-start container for the STAR aligner and deploy this container to align 
RNA sequencing data. We compare the performance of the alignment step with and without 
checkpoints on cloud platforms using local and network disks. 
 
Conclusions: We demonstrate that hot-starting Docker containers from snapshots taken after 
repetitive initialization steps are completed, significantly speeds up the execution of the STAR 
aligner on all experimental platforms, including Amazon Web Services (AWS), Microsoft Azure 
and local virtual machines. Our method can be potentially employed in other bioinformatics 
applications in which a checkpoint can be inserted after a repetitive initialization phase.  
 
 

 

 

Keywords: software container, reproducibility of research, cloud computing 
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FINDINGS 
Background 

With the availability of high-throughput next generation sequencing technologies and the 

subsequent explosion of big biomedical data, the processing of biomedical big data has become 

a major challenge.  Cloud computing plays an important role in addressing this challenge by 

offering massive scalable computing and storage, data sharing and on-demand access to 

resources and applications [1, 2].  The National Institutes of Health is launching a Data 

Commons Pilot Phase to provide access and storage of biomedical data and bioinformatics 

tools on the cloud [3].   Additionally, software containers have become increasingly popular for 

deploying bioinformatics workflows on the cloud. Docker [4], an open source project, has 

become the de facto standard for container software. Docker packages executables with all the 

necessary software dependencies ensuring that the same software environment is replicated 

regardless of the host hardware and operating system.  Other container technologies such as 

Singularity containers have also been proposed to enhance mobility and reproducibility of 

computational science [5, 6].  Thus, containerization enhances the reproducibility of 

bioinformatics workflows [7-9]. In the context of cloud computing, the utility of containers comes 

from the ease in which a virtual cloud cluster can be rapidly provisioned with all of the necessary 

dependencies for a complicated workflow by simply downloading a set of containers, each of 

which take a few seconds to spin up. Recently, Vivian et al. processed over 20,000 RNA 

sequencing (RNA-seq) samples from the Cancer Genome Atlas (TCGA) using Docker 

containers on the cloud [10].  Tatlow et al. used software containers to study the performance 

and cost profiles of different cloud-based configurations in processing RNA-seq data from public 

cancer compendia [11].    

  

When containers are deployed, applications are launched de novo each time the container is 

spun up. This means that any initial preparatory steps are repeated each time the container is 

used. For tasks such as the alignment of reads, these initial steps can be quite substantive as 

large sets of indices need to be read before alignments can begin. In an automated large-scale 

deployment, these steps are replicated many times.  It would be far more efficient if one could 

“checkpoint” and save containers in states where the application has already completed the 

initialization steps so as to avoid unnecessary repetitions.  One could then “hot-start” workflows 

from these checkpoints. This is analogous to hot-start PCR where all the necessary reagents 

are pre-mixed awaiting only the addition of the template.  
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Our approach 

Our key idea is to save and restore memory states in software containers using the Checkpoint 

Restore in Userspace (CRIU) tool. CRIU freezes a running container and saves the checkpoint 

as a collection of files on disk [12]. These files can subsequently be used to restore and resume 

the application from that checkpoint.  CRIU was originally developed for Linux, but has recently 

become available for Docker [13]. While it is possible to stop Docker containers with native 

Docker commands, this process does not preserve the memory state. Although re-starting from 

a ready-to-go state is an intuitive application of checkpointing, we have been unable to find any 

previous description of using checkpointing as a general method for improving the efficiency of 

container deployments. 

 

We demonstrate that hot-starting from a saved container checkpoint can significantly reduce the 

execution time using the STAR aligner [14, 15] for RNA-seq data analyses.  We choose STAR 

as a proof-of-concept example because it has such a slow initialization step that it includes an 

option to retain indices in memory for use when aligning many different files. However, our idea 

of using checkpoints has broad applications in optimizing performance using software 

containers on the cloud when performing any bioinformatics task where a pause could be 

inserted to capture a re-usable state. 

 

The STAR aligner consists of several steps. Indices are generated from the reference genome. 

This is typically done just once using the latest version of the reference. The indices are read in 

and then read sequences from a specific experiment sample are mapped to the reference 

genome.  For STAR, the process of reading in the indices is a slow process and STAR has an 

option of keeping the indices in memory after they have been generated so that subsequent 

sequence alignments do not have to repeat the step of reading the indices. We used the CRIU 

tool to create checkpoints after the indices have been read. Instead of launching a new 

container and starting STAR from scratch, we restore the container state using CRIU and 

resume running STAR after it has loaded the indices. Figure 1 shows an overview of our 

approach with and without using checkpoints. 

 

Testing 

To test the checkpointing methodology, we used RNA-seq data generated by Himes et al. which 

measure the gene expression changes in human airway smooth muscle cells in response to 

asthma medications [16].  We compared the time required to align the sequences with a normal 
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container where STAR starts from scratch, and the time required when hot-starting from a 

container checkpoint where STAR has already generated indices. We performed empirical 

studies on multiple cloud platforms including Amazon Web Services (AWS) and Microsoft 

Azure, using both local and networked disks. On AWS, we compared performance with data 

stored on the local host versus Amazon Elastic Block Store (EBS). On Microsoft Azure, we 

compared the performance with data stored on the local host versus Azure File Storage.  

Please refer to the Online Methods for details of our experimental setup. Our empirical results 

are shown in Figure 2. 

 
Figure 2 shows that the STAR aligner with checkpointing reduces the execution time compared 

to STAR without checkpointing. The average running time over five separate runs are shown. 

The raw data, average running time and standard deviation across the five runs are available as 

Additional File 2.  On AWS, we observed a 1.89x speedup with data stored on the local disk and 

1.42x speedup with data on a network disk (Amazon EBS). On Microsoft Azure, we achieved a 

1.34x speedup with data stored on the local disk, and 3.57x speedup with data on Azure File 

Storage.  With respect to execution time, we show that hot-starting from checkpoint containers 

save 2 minutes on fast local disks and Amazon EBS disks.  The saving is almost 20 minutes 

when using Azure network storage where the disk caching scheme appears to be much less 

favorable to STAR’s indexing process.   

 

In this article, we have presented a novel idea for optimizing cloud deployments using 

checkpointing to save containers where the applications are already started.  Using CRIU for 

Docker, we can save the container with a preloaded genome for STAR alignment and restore 

the container from these checkpoint files to any host.  We have achieved successful migration 

of checkpointed containers to different virtual machine instances running on the Amazon and 

Azure cloud platforms while realizing up to a 3.57x speedup using our approach saving up to 20 

minutes for a single STAR alignment workflow on Azure with network disks.  For STAR 

alignment, it is possible to use a checkpointed container to align multiple sequences at once by 

retaining the genomic indices in memory. Our approach yields a significant benefit with hot-

starting when as few as one or two files are aligned.  Additionally, multiple STAR alignment 

tasks can be computed in parallel using the same genome indices hosted by different 

processes.  For automated schedulers such as Docker Compose [17],  “hot-starting” reduces 

execution time every single time the STAR container is launched.  While it is possible to design 

a workflow to perform all the alignments in a single container first, load-balancing would be 
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made easier by allowing the scheduler to distribute the computation over the cluster as shorter 

jobs.  

 

There are a few caveats to the hot-start strategy.  First, the CRIU tool produces checkpoint files 

that are Linux kernel version dependent [18].  Restoring a checkpoint on a Docker host in a 

local cluster, or an instance in the cloud backed by a different kernel version would require a 

kernel specific checkpoint file that can be created by running the CRIU tool on the node or 

instance.   Second, is the requirement for a convenient place in the workflow to insert a pause, 

checkpoint and re-start. In the case of STAR, this is provided by a flag that allows the container 

to keep genomic indices in shell memory between invocations of STAR.  For other workflows, 

one could add a flag to pause the computation where the checkpoint is to be created, and a flag 

to resume the computation afterwards. With these straightforward modifications, any workflow 

could take advantage of checkpointing to avoid repetitive initialization steps.  A major advantage 

of hot-starting is that it does not require extensive knowledge of the underlying code to optimize 

performance.  While it may be more efficient to simply re-write the code to eliminate repetitive 

steps – this is not always feasible especially for academic or poorly documented legacy 

software. Hot-starting from pre-initialized containers represents a novel and unexplored 

approach to speeding up bioinformatics workflows deployed on the cloud or local servers. 

 
METHODS 

CRIU. CRIU (Checkpoint/Restore In Userspace) is a Linux software tool that freezes a running 

application and saves it as a collection of files to disk [12].  The application can later be restored 

on the same or on a different host. Docker currently integrates CRIU as an experimental 

checkpoint sub-command that saves the state of processes to a collection of files on disk. The 

checkpointing command has been used to migrate containers from the source host to a target 

host when the resources of the source are limited [19], for fault tolerance purposes [20], and to 

provide highly available and scalable micro-services [21].   

 

Cloud configurations tested  

In our experiments, we deployed our containers on instances from two cloud platforms: 

Microsoft Azure and Amazon Web Services (AWS).  Ubuntu 16.04 was the host operating 

system in all our tests. Specifically, we used Ubuntu server 16.04 LTS with Ubuntu Kernel 

version 4.4.0-28-generic and CRIU version 3.1 "Graphene Swift" in our empirical studies on 

Microsoft Azure.  We used Ubuntu 16.04.03 LTS with Kernel version 4.4.0-1022-aws and CRIU 
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version 3.1 "Graphene Swift" in our empirical studies on AWS. Testing was conducted using a 

standard DS13 v2 instance with 8 virtual CPUs and 56 Gb memory on Azure and a m4.4xlarge 

instance with 16 virtual CPUs and 64 GB memory on AWS.  As disk I/O is an important factor in 

the efficiency of CRIU restoration and the generation of indices without CRIU, instances were 

tested using both network based disks (EBS for AWS and Microsoft Azure File Storage for 

Azure) and locally attached disks.  

  

Creating hot-start containers 

We installed CRIU on the host Ubuntu system. Docker Community Edition (Docker CE), which 

includes the experimental checkpointing tool, was then installed. The STAR binary was 

compiled from source (https://github.com/alexdobin/STAR) using Ubuntu 16.04 and g++ and 

then copied into a clean Ubuntu 16.04 container with no intermediate build files. The build code 

and Dockerfiles are available from https://github.com/BioDepot/ubuntu-star. To create the 

checkpoint, STAR was launched with the genomeLoad flag set to LoadAndKeep. This keeps the 

indices in shared memory after STAR exits. To trap the container in this state, we launched 

STAR using a parent shell script that did not exit, and checkpointed the container after STAR 

exited. This results in the generation of checkpoint files that store the state of the hot-start 

container. Due to different Linux kernel versions being used on AWS and Azure, we created 

separate hot-start containers for each cloud. 

 

Comparing hot-start containers and standard cold-start containers 

The paired-end fastq files were 9 Gb in size comprising 22,935,521 reads. Times were recorded 

for the generation of aligned BAM files using STAR in the standard container and using STAR 

with the hot-start container. Times include the time required to restore the hot-start container 

from the checkpointed files.  

 
AVAILABILITY AND REQUIREMENTS 
Project name: Hot-starting software container for STAR Alignment 

Project homepage:  https://github.com/biodepot/Hotstarting-For-STAR-Alignment 

DockerHub URL: https://hub.docker.com/r/biodepot/star-for-criu/  

Operating system: Ubuntu 16.04 

Programming language: Shell 

Other requirements: Docker API version 1.25 or higher, CRIU 2.0 or later, Linux kernel v3.11 

or higher are required. 
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License: MIT License.  

RRID on SciCrunch.org: SCR_016294 

 
AVAILABILITY OF SUPPORTING DATA 
The fastq files used in our tests were generated by Himes et al. and are publicly available from 

GEO with accession number GSE52778 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778). Snapshots of the code and 

base containers are hosted in the GigaScience GigaDB repository [22]. 
 

ADDITIONAL FILES 
Additional File 1: User manual for “Hot-starting software container for STAR Alignment” 

Additional File 2:  Raw data, average running time, standard error and standard deviation 

across five runs of STAR alignment with checkpoint and without checkpoint. Our empirical 

experiments were performed on local and network disks using Amazon Web Services (AWS) 

and Microsoft Azure.  

 

ABBREVIATIONS: 
AWS : Amazon Web Services; 
CRIU: Checkpoint/Restore In Userspace; 

EBS: Elastic Block Store; 

NIH: National Institutes of Health; 

STAR: Spliced Transcripts Alignment to a Reference; 

TCGA : The Cancer Genome Atlas. 
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FIGURE CAPTION 
 
Figure 1. An overview of our approach with and without checkpoints.  The left panel shows the 

two steps of the STAR aligner [14, 15] after the generation of indices. The right panel shows our 

approach using the Checkpoint Restore in Userspace (CRIU) tool that freezes a running 

container and saves the checkpoint as a collection of files on disk after the genome indices are 

generated using the reference genome.  Our “hot-start” containers use these saved files to 

restore the application and map the reads from the experimental sample data to the reference.   

 

Figure 2. STAR alignment running time comparison with checkpoint and without checkpoint.  

The running time is averaged over five runs.  We performed our empirical experiments on two 

cloud platforms: Amazon Web Services (AWS) and Microsoft Azure.  Both the Azure File 

Storage and the Amazon Elastic Block Store (EBS) represent network disks.  We observe that 

our “hot-start” containers (orange and grey bars) provide a major reduction in execution time, 

especially on local disks.  
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