
Supplementary Material: Bend-Induced Twist Waves and the Structure of
Nucleosomal DNA

Enrico Skoruppa,1 Stefanos K. Nomidis,1, 2 John F. Marko,3 and Enrico Carlon1

1KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, 3001 Leuven, Belgium
2Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium

3Department of Physics and Astronomy, and Department of Molecular Biosciences,
Northwestern University, Evanston, Illinois 60208, USA

(Dated: July 30, 2018)

CONTENTS

I. Details of the analytical solution 1

II. Alternative constraint 2

III. Fixed curvature and torsion 3

IV. oxDNA 4

V. Monte Carlo simulations 5

VI. Nucleosomal DNA data 6

VII. Comparison with other work 8

References 9

I. DETAILS OF THE ANALYTICAL SOLUTION

In the main text we presented an energy-minimization calculation for bent DNA, leading to [Eqs. (4) of main text]

Ω1 =
µ sin(ω0s)

A1
, Ω2 =

µ cos(ω0s)

A2 −G2/C
, Ω3 = −G

C
Ω2. (S1)

These were obtained by introducing the constraint −µ
∫

Ωb · x̂ ds, which favors the alignment of the bending vector
Ωb = Ω1ê1+Ω2ê2 along a fixed unit vector x̂. Figure S1 shows the 3d shape obtained from the analytical solution (S1).

The constraint, however, does not force the elastic rod to completely lie on the plane orthogonal to x̂, but it is
sufficiently flexible to allow for off-planar conformations. This can be shown by decomposing the bending vector Ωb

as follows

Ωb = [x̂ (Ωb · x̂)] + [Ωb − x̂ (Ωb · x̂)]

= [x̂ (Ωb · x̂)] + [Ωb (x̂ · x̂)− x̂ (Ωb · x̂)]

= (x̂ ·Ωb) x̂ + (x̂×Ωb)× x̂ (S2)

ÏĹ i.e. into a parallel and perpendicular component to x̂. The corresponding lengths of the two components are

κ‖ = |Ωb · x̂| = µ

[
1

lb
+

cos(2ω0s)

ld

]
(S3)

and

κ⊥ = ‖(x̂×Ωb)× x̂‖ = ‖Ωb × x̂‖ =
µ

ld
|sin(2ω0s)| , (S4)
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FIG. S1. (a) Top view: Spatial configuration of the analytical ground-state solution for a DNA minicircle [Eqs. (S1)], obtained
by numerically solving Eq. (S11). (b) Side view: In general Eqs. (S1) do not describe a closed circular shape, however, by
properly choosing the total length and µ, one can minimize the mismatch at the boundary. The gray line represents the
molecular axis, extracted from the tangent vector ê3, whereas the double helix (green and blue lines) was generated from the
triad vector ê1. The length of the minicircle was 29 nm, corresponding to 85 base pairs, and the remaining parameters were
chosen as A1 = 80 nm, A2 = 50 nm, C = 110 nm, G = 40 nm and ω0 = 1.75 nm−1.

where we have used the relations ê1 · x̂ = sin(ω0s), ê2 · x̂ = cos(ω0s), ê1 × x̂ = cos(ω0s)ẑ, ê2 × x̂ = − sin(ω0s)ẑ, with
ẑ a unit vector orthogonal to the plane on which ê1, ê2 and x̂ lie (see Fig. 1 of the main text). The two lengths ld
and lb are defined from the relations

1

ld
≡ 1

2

(
1

A2 −G2/C
− 1

A1

)
, (S5)

1

lb
≡ 1

2

(
1

A2 −G2/C
+

1

A1

)
, (S6)

(recall that the elastic constants as defined in Eq. 2 of the main text have the dimension of lengths). It is interesting
to notice that lb, as defined in Eq. (S6), is also the persistence length of the model, i.e. the characteristic length
obtained from the decay of the tangent-tangent correlation function in a fluctuating open fragment [1]. Note, finally,
that Eq. (S3) allows to fix the value of the Lagrange multiplier µ. Consider a bent (quasi-)planar rod with radius of
curvature R. One has

1

R
= 〈κ‖〉 =

µ

lb
, (S7)

from which we get µ = lb/R. Moreover, that the sum of the amplitudes of the bending waves is equal to the simple
expression

max{Ω1}+ max{Ω2} =
2µ

lb
=

2

R
, (S8)

as can be seen by combining Eqs. (S1), (S6) and (S7).

II. ALTERNATIVE CONSTRAINT

In the main text we introduced a Lagrange multiplier to induce bending, while forcing the rod to lie on average on
a plane. Here we discuss an alternative constraint, which turns out to be less adequate for our problem. Nonetheless
it is useful to illustrate some issues arising when a generic bending is enforced. Consider the following energy

βÊ =
1

2

∫ L

0

[
A1Ω2

1 +A2Ω2
2 + CΩ2

3 + 2GΩ2Ω3 − 2µκ
]

ds, (S9)

where κ ≡ (Ω2
1 + Ω2

2)1/2 is the curvature, and µ > 0 a Lagrange multiplier. Minimization of Eq. (S9) leads to the
following s-independent values

Ω1 = 0, Ω2 =
µ

A2 −G2/C
, Ω3 = −G

C
Ω2 = − µG

A2C −G2
. (S10)

Notice that Ω1 = 0, i.e. there is no bending along the hard axis (recall that A1 > A2) is zero everywhere, since the
direction of bending is unconstrained. In order to determine the shape of the rod corresponding to the above solution,
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we plug Eqs. (S10) into the differential

dêi

ds
= (Ω + ω0ê3)× êi, (S11)

and solving for êi we obtain:

ê1(s) = cos(Λs) ŷ + sin(Λs) ẑ, (S12)
ê2(s) = RΛ x̂− Γ sin(Λs) ŷ + Γ cos(Λs) ẑ, (S13)
ê3(s) = Γ x̂ +RΛ sin(Λs) ŷ −RΛ cos(Λs) ẑ, (S14)

where we have defined

Λ ≡
√

Ω2
2 + (Ω3 + ω0)

2
, R ≡ Ω2

Λ2
, Γ ≡ Ω3 + ω0

Λ
. (S15)

Finally, integrating the tangent vector ê3 yields the position vector

r(s) =

∫ s

0

ds′ ê3(s′) = Γs x̂ +R [1− cos(Λs)] ŷ −R sin(Λs) ẑ, (S16)

which describes a superhelix of radius R and pitch 2πΓ/Λ. The problem with this procedure is that it imposes
a bending without specifying a particular direction. To avoid bending along the stiff direction the rod forms a
superhelical conformation. As we wish to generate a mainly planar bent conformation, the constraint introduced
in (S9) is not adequate for our problem.

III. FIXED CURVATURE AND TORSION

We can also obtain twist waves following the approach described in Ref. [2], which uses the Frenet-Serret variables.
{ê1, ê2, ê3} is the material frame (also known as Darboux frame) of the elastic rod. An alternative description is
obtained by the Frenet-Serret frame {t̂, n̂, b̂} formed by the tangent t̂(= ê3), the normal n̂ and the binormal b̂. This
frame is constructed from derivatives of the unit tangent vector as follows:

dt̂

ds
= κn̂,

dn̂

ds
= −κt̂ + τ b̂,

db̂

ds
= −τ n̂, (S17)

where κ is the curvature, defined below Eq. (S9), and τ the torsion. The two frames are connected to each other
by a rotation by an angle φ around the common tangent vector. The relation between Darboux variables Ωi and
Frenet-Serret vatriables κ, τ and φ is

Ω1 = κ sinφ, Ω2 = κ cosφ, Ω3 = φs − ω0 + τ, (S18)

where φs ≡ dφ/ds. In terms of Frenet-Serret variables the energy functional hence becomes

βE =
1

2

∫ L

0

ds
[
Aκ2 − εκ2 cos 2φ+ C(φs − ω̄)2 + 2Gκ (φs − ω̄) cosφ

]
, (S19)

where we have introduced A ≡ (A1 +A2)/2, ε ≡ (A1 −A2)/2 and ω̄ = ω0 − τ . Similarly to Ref. [2], we minimize the
energy of the rod for fixed κ and τ . The associated Euler-Lagrange equation for φ is [2]

φss =
εκ2

C
sin 2φ+

Gκω̄

C
sinφ. (S20)

Note that φs cosφ in Eq. (S19) does not contribute to the Euler-Lagrange equation, as it can be integrated out yielding
a boundary term. Interpreting the coordinate s as time, the previous equation can be viewed as Newton’s equation
of motion of a particle moving in a periodic potential. Integrating once the previous equation one gets [2]

φ2s = ω2 − εκ2

C
cos 2φ− 2Gκω̄

C
cosφ, (S21)

with ω an integration constant (in the mechanical analogy this relation expresses the conservation of energy).



4

0 π/2 π 3π/2 2π
Phase (φ)

−0. 3

0

0. 3

[1
0
−

2
×

ra
d
ia

n
s/

n
m

]

Ω3

−6

0

6

[10
−

2×
d
egrees/b

p
]

FIG. S2. Plot of Ω3 from simulations of oxDNA1. This model has symmetric grooves, hence one expects G = 0. In this case
Eq. (S24) predicts weaker twist waves with frequency 2ω0. The data shown in the plot support this conclusion.

Let us first consider the case of vanishing torsion τ = 0, which corresponds to a planar curve. In this case ω̄ = ω0.
As assumed in the main text, for a weakly bent rod we expect that φ ≈ ω0s, with a weak modulation due to the
periodic potential. Replacing ω = ω0 in Eq. (S21) we get for the excess twist density

Ω3 = φs − ω0 = ω0

√
1− εκ2

Cω2
0

cos 2φ− 2Gκ

Cω0
cosφ− ω0 ≈ −

Gκ

C
cos(ω0s), (S22)

where we have expanded to lowest order in κ/ω0 and used the lowest-order value φ = ω0s+O(κ/ω0). Note that this
solution is identical to Eq. (4) of the main text. There is however, a crucial difference in the bending amplitudes. In
particular, the bending components are found to be

Ω1 ≈ κ sin(ω0s), Ω2 ≈ κ cos(ω0s). (S23)

i.e. the two waves have equal amplitudes, which naturally follows from the constraint of imposing a constant κ. As
shown in the comparison with simulations, the DNA attains lower energy by having higher bending amplitudes along
the easy bending direction. There is an interesting prediction one can obtain from Eq. (S22). By setting G = 0 in
Eq. (S22) and performing again a κ/ω0 expansion we obtain

Ω3 ≈ −
εκ2

2Cω0
cos(2ω0s), (S24)

which is again a twist wave, albeit with much lower amplitude (being higher order in κ/ω0). The wave is predicted
to have double the frequency of that induced by twist-bend coupling. Figure S2 shows a zoom-in of the Ω3 data for
an oxDNA1 minicircle (same data as the lowest panel of Fig. 2 in the main paper), corresponding to the case G ≈ 0
and ε 6= 0, which indeed show a frequency doubling of the twist waves.

Note that we can extend the solution to a fixed non-vanishing torsion τ 6= 0. In this case one needs to replace
ω0 with ω0 − τ in Eqs. (S22)-(S23). For nucleosomal DNA the ratio between the average torsion and intrinsic twist
density has been estimated to be 〈τ〉/ω0 ≈ 0.01 [3], hence the torsion can be safely set to zero.

IV. OXDNA

Details of Simulations – oxDNA is a coarse-grained model of DNA, consisting of a series of rigid nucleotides.
Excluded-volume effects, backbone bonds, hydrogen interactions, stacking and cross-stacking are modelled by means
of pairwise interactions. In the original version (oxDNA1) the double helix was perfectly symmetric [4], with groove
asymmetry being introduced in a subsequent version (oxDNA2) [5]. This is also illustrated at the top of Fig. S3.

The sampling was performed using NVE molecular dynamics simulations, together with an Andersen-like thermo-
stat. In brief this approach consists of a series of repeated cycles: First Newton’s equations of motion are integrated
several steps, and then the momenta of some particles (chosen at random) are reset from a Maxwell distribution.
This process is repeated many times, and eventually leads to equilibration of the system. As we are interested in the
ground-state configuration, the simulations were performed at a low temperature (10 K). At this temperature one
generates configurations close to the ground state, but with enough thermal fluctuation to allow generation of new
configurations (in total 3× 105 independent conformations were generated).

Comparison with theory – Figure S3 shows a comparison between low-temperature simulations of oxDNA minicircles
(solid lines) and our analytical result [Eqs. (4) of main text, shown with dashed lines]. It should be stressed that
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FIG. S3. Comparison between the analytical result of the main text [Eqs. (4), plotted with dashed lines] and oxDNA simulations
(solid lines). In both oxDNA1 (left) and oxDNA2 (right) the agreement with the theory is good. The two vertical axes show
the angle density in different units, while the horizontal axis corresponds to the local phase φ of each point. Top: Visual
representation of the two oxDNA models, with their respective cross-sectional views.

this comparison contains no free parameters, as the radius, which determines µ, and the elastic parameters, which set
the amplitudes, are fixed. In particular, we used Rmean ≈ 4.6 nm for the radius, corresponding to that of a perfect
minicircle of length 85 bp ≈ 29 nm. The stiffness parameters were taken from the analysis of oxDNA elasticity of
Ref. [6]: A1 = 51 nm, A2 = 30 nm, C = 77 nm and G = 0 for oxDNA1, and A1 = 51 nm, A2 = 37 nm, C = 74 nm
and G = 22 nm for oxDNA2. These are the local stiffness parameters associated to the deformation at the single
base pair level (m = 1 data in supplementary Fig. S3 of Ref. [6]). Simulations have shown that stiffness parameters
at a distance of a single base pair differ from the asymptotic continuum limit value [6]. Figure S3 reveals an overall
good agreement between oxDNA simulations and theory. The small deviations probably arise from some additional
interactions (e.g. stretching and higher-order terms) than those considered in the energy functional [Eq. (2) of main
text]. As already remarked in Fig. 2 of the main text, one notices the absence of twist waves in oxDNA1 (left) and
their presence in oxDNA2 (right). This is a consequence of twist-bend coupling, which has been shown to arise from
the groove asymmetry of the DNA double helix [2]. In fact, it was recently found that the magnitude of twist-bend
coupling is negligible in oxDNA1 and considerable in oxDNA2 [6].

V. MONTE CARLO SIMULATIONS

In order to independently test our analytical results [Eqs. (4) of main text], we additionally performed low-
temperature (10 K) Monte Carlo simulations of a simple, circular-DNA model. The model consists of 84 beads
representing each base pair, and each carrying a frame of three orthogonal unit vectors {ê1, ê2, ê3}. The ground state
for such an open chain is a straight configuration (i.e. all ê3 vectors are parallel), with a 34-degree rotation between
neighboring sets of vectors {ê1, ê2}, corresponding to the intrinsic twist density of the double helix. The energy of a
conformation is obtained by discretizing the continuum energy model

βE =
1

2

∫ L

0

(
A1Ω2

1 +A2Ω2
2 + CΩ2

3 + 2GΩ2Ω3

)
ds. (S25)

For the generation of new configurations we selected a bead at random and updated its position and triad vector
orientation, while keeping the other beads fixed. The acceptance probability was calculated with the Metropolis-
Hastings algorithm. The advantage of this model over oxDNA is that the stiffness constants A1, A2, C and G are
input parameters, allowing us to directly compare with the analytical results of the main text. For our purposes we
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FIG. S4. Comparison between the analytical result of the main text [Eqs. (4), plotted with dashed lines] and Monte Carlo
simulations (solid lines), with zero (left) and nonzero (right) twist-bend coupling. Observable twist waves only appear in the
latter case, in quantitative agreement with the theoretical predictions. The two vertical axes show the angle density in different
units, while the horizontal axis corresponds to the local phase φ of each point. Top: Schematic representation of the computer
model, consisting by a series of triads.

used: A1 = 80 nm, A2 = 50 nm, C = 110 nm, and G either 0 or 40 nm, so as to isolate the effect of twist-bend
coupling. Using Monte Carlo simulations of this model, one can directly put the analytical results [Eqs. (4) of main
text and Eqs. (S1)] to the test. Figure S4 shows a comparison between the obtained values of Ωi (solid lines) and the
analytical results (dashed lines). For the latter, µ was estimated using the input stiffness parameters of the model,
and the expected radius R ≈ 4.3 nm for a perfect circular configuration, in Eqs. (S6) and (S7). Both in presence and
absence of twist-bend coupling (left and right plots, respectively) our analysis reveals an excellent agreement with the
theory.

VI. NUCLEOSOMAL DNA DATA

Figure 3 of the main text shows the bending and twist waves, obtained by averaging over 145 available nucleosomal
structures from X-ray crystallographic data. Here we explain the averaging procedure in more detail, and show some
individual data from selected files. Finally, in Table SI we present a full list of the freely-available PDB [7] files
included in our analysis.

For the extraction of the deformation parameters Ω1, Ω2 and Ω3 at each site, we used the Curves+ freely-distributed
nucleic-acid software [8], and we subsequently computed the discrete Fourier spectrum of the resulting values (as shown
in Fig. S5). Since the spectrum Ω2 was the only one that consistently yielded a clear, dominant peak at the same
frequency, the computation of each phase was based on it. As also mentioned in the main text, we estimated the
frequency ω0 of each wave from the dominant peak, and the global phase ψ from the ratio between the real and
imaginary parts of the Fourier component corresponding to that frequency. This way, the local phase φn associated
with each site n was computed as φn = mod (ψ+naω0, 2π), where a = 0.34 nm is the base pair separation. Finally,
in order to acquire sufficient statistics, the resulting Ω vs. φ data were binned and averaged.

The aforementioned features of nucleosomal DNA, namely the emergence of bending-induced twist waves, are even
visible in most individual nucleosomal data. Figure S5 shows such an example, with a clear, dominant frequency in
the Fourier spectrum of Ω3 at ω0, and a phase difference of π with respect to the Ω2 wave, again in agreement with
our analytical results.
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FIG. S5. Individual example of the analysis performed on 145 nucleosomal data. Top: Graphical representation of the
nucleosome configuration. Bottom: Plot of the rotational degrees of freedom (tilt, roll and twist from top to bottom) extracted
with Curves+, as a function of the base-pair step. The dashed lines indicate the mean values, whereas the red lines show a
harmonic fit to the data. The plots on the right are the corresponding Fourier spectra. These plots were obtained from the
5OMX [9] nucleosomal PDB file.
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TABLE SI. List of PDB files used in our analysis, taken from the Protein Data Bank (PDB). All structures show a strong peak
at ω0 in the Fourier spectrum of Ω2 and Ω3. Only a small fraction (indicated by an asterisk (*)) exhibit a clear peak at ω0 in
Ω1 and were included in the computation of the thin line of Fig. 3 (main text).

1AOI 1P3I 3A6N 3AZN 3MGS* 3W98 4R8P 5AY8 5F99 5XF3
1EQZ 1P3K* 3AFA 3B6F* 3MNN 3W99 4WU8 5B0Y 5GSU 5XF4
1F66 1P3L 3AN2 3B6G* 3MVD 3WA9 4WU9 5B0Z 5GT0 5XF5
1ID3 1P3M 3AV1 3C1B 3O62 3WAA 4X23* 5B1L 5GT3 5XF6
1KX3 1P3O* 3AV2 3C1C 3REH 3WKJ 4XUJ 5B1M 5GTC 6BUZ*
1KX4 1P3P* 3AYW 3KUY 3REI 3WTP 4XZQ 5B2I 5GXQ 6C0W*
1KX5 1S32 3AZE 3KWQ 3REJ 3X1S 4YS3 5B31 5KGF* 6ESF*
1M18 1U35* 3AZF 3KXB 3REK 3X1T 4Z5T 5B32 5MLU* 6ESG*
1M19 1ZLA 3AZG 3LEL 3REL 3X1U 4Z66 5B33 5O9G* 6ESH*
1M1A 2CV5 3AZH 3LJA 3TU4* 3X1V 5AV5 5B40 5OMX 6ESI*
1P34* 2F8N 3AZI 3LZ0 3UT9 4JJN 5AV6 5CP6 5ONG
1P3A 2FJ7 3AZJ 3LZ1* 3UTA 4KGC 5AV8 5CPI 5ONW*
1P3B 2NQB 3AZK 3MGP 3UTB 4KUD 5AV9 5DNM 5X0X
1P3F 2NZD 3AZL 3MGQ 3W96 4LD9* 5AVB 5DNN 5X0Y*
1P3G 2PYO 3AZM 3MGR* 3W97 4QLC 5AVC 5E5A 5X7X

VII. COMPARISON WITH OTHER WORK

In a previous work [10] a different type of constraint was used for the minimization of an elastic rod model with
anisotropic bending (as G = 0 in their model, there are no manifest twist waves). The minimization scheme of Ref. [10]
gives

Ω1 =
λ sin(ω0s)

A+A′ cos(2ω0s)
Ω2 =

λ cos(ω0s)

A+A′ cos(2ω0s)
, (S26)

where λ is a Lagrange multiplier and A ≡ (A1 + A2)/2, A′ ≡ (A1 − A2)/2. This solution represents modulated
sinusoidal waves which differ from Eqs. (S1). Fig. S6 shows a comparison betweeen the two results. One observes
some deviations between the two and as both contain some approximations a priori it is not clear which one is more
suitable. The results of the Monte Carlo simulations shown in Fig. S4 however match the solution proposed in this
work extremely well.
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