
Supplementary Materials for

“Residuals and Diagnostics for Ordinal Regression

Models: A Surrogate Approach”

Part A: Figures and tables

Figure 2: An illustration of the sampling procedure to generate a surrogate variable
S.
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Figure 3: Residual-by-covariate plots using (a) the surrogate residual and (b) the
SBS residual, when the mean structure is misspecified in the assumed model. Loess
curves (red solid) are added as references.
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Figure 4: Model diagnostics when the link function in the assumed model is mis-
specified. The figure includes (a) a plot of our residual versus the covariate X; (b)
a QQ-plot of our residual versus the standard normal distribution; (c) a plot of the
SBS residual versus the covariate X; and (d) a QQ-plot of the SBS residual versus
the U(-1,1) distribution. Loess curves (red solid) are added to plots (a) and (c) as
references.
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Figure 5: QQ plots in the same setting as Example 1 except the range of X restricted
to [3, 5]. The figure includes (a) a QQ-plot of the SBS residual versus the U(-1,1)
distribution; and (b) a QQ-plot of our residual versus the standard normal distribution
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Figure 6: Residual-by-covariate plot of the surrogate residual (a) and the SBS residual
(b) when there exists heteroscedasticity in the true model whereas a homoscedastic
model is fitted to the data. Loess curves (red solid) are added as references.
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Figure 7: Diagnostic plot for checking the proportional assumption. Plotted are
D = S2 − S1 versus X, where D | X ∼ N((β1 − β2)X, 2). A Loess curve (red solid)
is added to illustrate a descending trend of the regression mean.
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Figure 8: Density plot of the surrogate residual (a) and the SBS residual (b) when
the assumed model excludes an indicator variable that represents a mixed-population
effect. As references, we include in (b) the density curve when the assumed model is
specified correctly (red dashed) and a vertical dotted line that represents the mean
of the SBS residuals.
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Figure 9: Residual-by-covariate plots for checking the ordered probit model fitted to
the SAGE data. (a) Boxplot of the probability-based residual (1: male & 2: female);
(b) Density plot of the probability-based residual (solid line: male & dashed line:
female); (c) Boxplot of our residual; (d) Density plot of our residual (dotted line: the
standard normal density). The sample size of male and female subjects is 1539 and
1858, respectively.
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Figure 10: Residual-by-covariate plots when a linear term of age is included in the
ordered probit model fitted to the SAGE data. Shown are the SBS (a) and our (b)
residuals. A horizontal dashed line at y = 0, a vertical dashed line at x = 65 and a
Loess curve (solid) are added for reference.
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Figure 11: Residual-by-covariate plots when both linear and quadratic terms of age
are included in the ordered probit model fitted to the SAGE data. Shown are the
SBS (a) and our (b) residuals. A horizontal dashed line at y = 0, a vertical dashed
line at x = 65 and a Loess curve (solid) are added for reference.
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Figure 12: Evidence of non-proportionality and heteroscedasticity in the overarching
model for all the three studies. Shown are boxplots for (a) D versus the indicator
variable “COGEND”, where D = S3 − S1 is the difference between two surrogate
variables; and (b) our residual versus the covariate study.
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Table 1: Estimates of regression coefficients in separate binary models

Binary models SNP Gender Race COGA COGEND Age Age2

Pr{Y ≤ 1} -0.094 -0.679 0.110 -0.009 0.082 0.058 -0.001

Pr{Y ≤ 2} -0.099 -0.716 -0.127 0.422 -0.286 0.060 -0.001

Pr{Y ≤ 3} -0.095 -0.435 0.121 0.271 -0.756 0.096 -0.001

Remark: Shown are maximum likelihood estimates of the coefficients βj in the binary
probit models Pr{Y ≤ j} = Φ(αj +Xβj), j = 1, 2, 3.
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Part B: Technical details for multiple sampling

The k-th copy of the empirical distribution is obtained by a two-step sampling:

Step 1. Bootstrap the ordinal outcome Y together with its corresponding co-

variates X, and obtain a bootstrap sample {(X∗1,k, Y ∗1,k), . . . , (X∗n,k, Y
∗
n,k)}.

Step 2. Perform the conditional sampling in Section 3.1, using the boot-

strapped sample {(X∗1,k, Y ∗1,k), . . . , (X∗n,k, Y
∗
n,k)} and obtain a sample of residuals

{R∗1,k, . . . , R∗n,k}.

Remark 4. Our procedure of bootstrapping residuals is similar to that for linear

regression models. To bootstrap residuals for a linear model Y = Xθ + ε, we fit the

model to the original data and obtain a parameter estimate θ̂. By defining ε̂i = yi−xiθ̂,

we have a set of residuals {ε̂1, . . . , ε̂n}. Resampling randomly from this residual set (or

observation index) yields a bootstrap copy of residuals (Efron and Tibshirani, 1994,

pp.111-112). Bootstrapping residuals does not require that we resample the outcome-

covariate pairs (X, Y ) or repeatedly re-estimate θ. This makes such a procedure

sensitive to model assumptions (Efron and Tibshirani, 1994, pp.113-115), which is

ideal for model diagnostics. For ordinal regression models, the only difference is that

bootstrapping residuals requires an additional sampling according to a distribution that

depends on the value of (X, Y ). This is why we resample the outcome-covariate pairs

as well.

5.1 Diagnostic plots

For residual-by-covariate plots, we scatter all the K × n residuals on the same plot.

It is valid since each residual is independently drawn from the empirical distribu-

tion of (X, Y ) (nonparametric bootstrap) and the conditional model (parametric

bootstrap). For QQ plots, we use the “median” of the K empirical distributions,
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Figure 13: Diagnostic plots using our residuals based on multiple sampling (K=10)
when the model is specified correctly (n=300). The figure includes (a) a plot of our
residual versus the covariate X, with a Loess curve (red solid); and (b) a QQ-plot of
our residual versus the standard normal distribution.

namely, Q∗n,Mid(t) , Median{Q∗n,1(t), . . . , Q∗n,K(t)}. For any K, Q∗n,Mid(t) converges

to G(c+
∫
u dG(u)) under the null, in view of Theorem 3(c).

For illustration, Figure 13 shows the residual-by-covariate plot and QQ plot in the

setting of Example 1 where the model is specified correctly. Figures 14(a) and (b)

show the residual-by-covariate plot and QQ plot in the setting of Examples 2 and 3,

respectively, where the model is misspecified in the mean structure and link function.

In all the settings, the sample size n = 300 and K = 10. The plots all look similar

to those in Examples 1-3 where n = 2000. We note that the purpose of multiple

samplings is to minimize the sampling error and stabilize the patterns. It should

not be confused with generating more data (evidence). For example, the evidence of

deviation in Figure 14(b) (n×K = 3000) is weaker than that in Figure 4(b) (n=2000).

44



Figure 14: Diagnostic plots using our residuals based on multiple sampling (K=10)
when the model is not specified correctly (n=300). The figure includes (a) a plot of
our residual versus the covariate X when the mean structure is misspecified, with a
Loess curve (red solid); and (b) a QQ-plot of our residual versus the standard normal
distribution when the link function is misspecified.

5.2 Goodness-of-fit measure based on distance notions

As a continuous variable, our residual enables us to make use of existing goodness-of-

fit measures. Let d(F,G) be a metric on the space of distribution functions, measuring

the discrepancy between two distribution functions F (t) andG(t). A classical example

is the Kolmogorov-Smirnov distance dKS(F,G) = supt∈R | F (t)−G(t) |, which gives

rise to a goodness-of-fit statistic

Tn(R1, . . . , Rn) ≡ n1/2dKS(Qn(t;R1, . . . , Rn), G(t)).

If the assumed model (3) agrees with the true model (5), then {R1, . . . , Rn} is an

i.i.d. sample from the distribution G, and thus we have that Pr{Tn ≤ t} → H(t) ≡

1 − 2
∑∞

j=1(−1)j+1 exp (−2j2t2) as n → ∞ (Lehmann and Romano, 2005, pp.585).

This result can be used to examine goodness-of-fit for the ordinal regression model
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(3).

Figure 15: Empirical distribution functions (solid lines) of the bootstrapped goodness-
of-fit test statistics {1−H(T ∗n,1), . . . , 1−H(T ∗n,K)}. The illustrations (a)-(c) correspond
to Examples 1-3, respectively, when the sample size n = 500, X ∼ N(3, 4) and the
bootstrap repetition K = 1000. The diagonal lines (dotted) represent the CDF of
the U(0,1) distribution and serve as references.

Given K bootstrap copies of {R∗1,k, . . . , R∗n,k}, we bootstrap goodness-of-fit statis-

tics {T ∗n,1, . . . , T ∗n,K} where T ∗n,k = Tn(R∗1,k, . . . , R
∗
n,k) = n1/2dKS(Q∗n,k, G). Considering

that the empirical distribution function (EDF) of {T ∗n,1, . . . , T ∗n,K}

Hn,K(t) =
1

K

K∑
k=1

I(T ∗n,k ≤ t)→ Pr{Tn ≤ t},

as both n and K → ∞, we compare Hn,K(t) with H(t). Equivalently, we compare

the EDF of {1 − H(T ∗n,1), . . . , 1 − H(T ∗n,K)} with the CDF of the uniform distribu-

tion U(0,1). Figures 15(a)-(c) display such EDFs (solid curves) for Examples 1-3,

respectively, together with the CDF of the U(0,1) distribution (dotted curves) as a

reference. The discrepancy between the solid and dotted curves in Figures 15(b)-(c)

is a clear indication of model misspecification. We note that for hypothesis testing,

the approximations such as Hn,K(t) → Pr{Tn ≤ t} and Pr{Tn ≤ t} → H(t) may

not be adequate for controlling the type I error, when parameter estimates are used

to derive residuals. To solve this issue, we use some resampling methods to better
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approximate the null distribution and adjust the p-value. The details, together with

power analysis, are presented below.

5.3 Power analysis of goodness-of-fit tests

To better approximate the null distribution and improve the power, we propose (i)

instead of using the U(0,1) distribution as seen in Figure 15, to obtain the null dis-

tribution of {T ∗n,1, . . . , T ∗n,K} by bootstrapping {(X∗1,k, Y ∗1,k), . . . , (X∗n,k, Y
∗
n,k)} in Step

1 under the null model; and (ii) to use the adjusted p-value padj = Pr{P ∗ ≤ p | F̂0}

where we estimate the distribution of the p-value random variable P by resampling

from the null model (Davison and Hinkley, 1997, pp.175-177).

We study the power of our goodness-of-fit test. We compare it with a test derived

from the expectation-based residual in Proposition 2(b). Specifically, the test statistic

for comparison is V = E{R2 | X, Y } and its null distribution is the distribution of

E{R2 | X,F0}, which can be simulated by bootstrapping. We call such a test a SBS-

type test, since the expectation-based residual captures information similar to the SBS

residual (Li and Shepherd, 2012). We also include in the comparison a likelihood ratio

test (Lipsitz et al., 1996) and a Hosmer-Lemeshow-type test (Fagerland and Hosmer,

2013). The result for n = 200 is reported in Table 2.

The third column of Table 2 shows that the SBS-type residual virtually has no

power to detect model misspecification in all the examples considered. In the situation

of the null model (Example 1), the SBS-type test has type I error rate (power) close to

the nominal level only when the true (unknown) value of parameters are used to derive

the null distribution. If parameter estimates are used instead as in our simulation,

its type I error rate becomes zero, so does its power for alternative models. This

observation remains as the sample size increases to n = 5000. The result suggests that

the SBS-type test is not sensitive to model misspecification, as the SBS-type residual
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Table 2: Power analysis of goodness-of-fit tests

Surrogate residual Expected residual Lipsitz et al.’s Fagerland-Hosmer

(Multiple-sampling) (SBS-type test) (Likelihood ratio) (Chi-square)

Significance level Example 1 (The null model))

0.05 0.050 0.000 0.031 0.016

0.10 0.091 0.000 0.066 0.018

Example 2 (Missing quadratic term)

0.05 0.996 0.000 1.000 1.000

0.10 0.996 0.000 1.000 1.000

Example 3 (Wrong link function)

0.05 0.919 0.000 0.290 0.950

0.10 0.940 0.000 0.383 0.962

Example 4 (Presence of heteroscedasticity)

0.05 0.460 0.000 0.078 1.000

0.10 0.559 0.000 0.130 1.000

Example 5 (Violation of proportionality)

0.05 0.193 0.000 0.288 0.209

0.10 0.269 0.000 0.407 0.250

Example 6 (Omission of mixed populations)

0.05 0.066 0.000 0.076 0.161

0.10 0.141 0.000 0.138 0.257

only has the first-moment property and its variance/range/distribution varies across

the values of X as summarized in the properties (P-1) and (P-2). The considerable

difference between the second and third columns of Table 2 demonstrates that our

surrogate residual is more powerful than the SBS-type residual, as our method makes

full use of distributional information.

Table 2 shows that our test is comparable to Lipsitz et al.’s and Fagerland-Hosmer

methods. Consistent with Fagerland and Hosmer (2013), our result shows that there
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may not exist a method that is always the most powerful in all circumstances. The

testing power often depends on the alternative models.
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Part C: Proofs

Proof of Theorem 1. If fa(y) ≡ f0(y) almost surely, then S ∼
∫
fa(z | y)f0(y)dy/mc =∫

fa(z | y)fa(y)dy/mc =
∫
fa(z, y)dy/mc = fa(z). This completes the proof.

Proof of Theorem 2. First we derive the distribution of S when the true model for

Y is (5). Conditional on X, for any arbitrary but fixed c such that αk−1 ≤ c < αk,

1 ≤ k ≤ J ,

Pr{S ≤ c} =
J∑

j=1

Pr{S ≤ c | Y = j}Pr{Y = j}

= Pr{Y ≤ k − 1}+ Pr{S ≤ c | Y = k}Pr{Y = k}

= Pr{Y ≤ k − 1}+
Pr{αk−1 < Z ≤ c}

Pr{αk−1 < Z ≤ αk}
Pr{Y = k}.

Since Pr{Y ≤ k} = G0(α̃k + f0(X, β̃)) and Pr{Z ≤ c} = G (c+ f(X,β)), we obtain

the equations (6) and (7). If the true underlying model (5) agrees with the assumed

model (3), we obtain from (6) that Pr{S ≤ c} = G(c+ f(X,β)), showing that S has

the same distribution as Z. It follows immediately that the residual R follows the

distribution G(c+
∫
u dG(u)) conditional on any X. Since this distribution function

G(c +
∫
u dG(u)) does not rely on X, the unconditional distribution of R remains

the same. This completes the proof of Theorem 2.

Proof of Theorem 3. Parts(a) and (b) are direct results from Theorem 2. Part(c)

follows Glivenko-Cantelli Theorem (Lehmann and Romano, 2005, pp 441).

Proof of Proposition 1. This is a direct result from the observation sk < sj.

Proof of Proposition 2. Part (b) is obvious. We only derive Part (a). Under the as-

sumed model (3), we have Pr{y > Y } = G(αy−1 + f(X,β)). Notice that αy−1 =

min(S | y) = min(R | y)−f(X,β)+
∫
udG(u). Thus Pr{y > Y } = G

(
min(R | y) +

∫
udG(u)

)
.
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Similarly, we can derive Pr{y < Y } = 1−G
(
max(R | y) +

∫
udG(u)

)
. Thus the for-

mula for rP follows. The statements of its conditional and unconditional expectation

follow the results in Li and Shepherd (2012).

Proof of Theorem 4. The result in Part(a) follows from the definition of R. For

Part(b), it is straightforward to show that S | X ∼ U(0, 1). Thus, we have R |

X ∼ U(−1/2, 1/2).

Proof of Proposition 3. We write 2E{S | Y = y,X} = Fa(y−1)+Fa(y) = PrFa{Y <

y}+(1− PrFa{Y > y}) = RP +1. Thus, we have E0{S |X} = 1 and RSBS = 2E{R |

Y,X}.
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Part D: Properties of R̂α̂,β̂

Assume that Y follows the cumulative link regression model

G−1 (Pr{Y ≤ j}) = α̂j + f(X, β̂), (10)

where the parameter estimates α̂ = α+ op(1), β̂ = β+ op(1). Under the assumption

that f(X, β̂) = f(X,β) + op(1), we have the following results for R̂α̂,β̂, which are

parallel to Theorems 2-3 for the residual variable R as presented in Section 3.2.

Theorem 2′. If the true underlying model (5) agrees with the assumed model (10)

(i.e., α = α̃,β = β̃, G = G0, f = f0), then the distribution of R̂α̂,β̂ converges

weakly to G(c +
∫
u dG(u)) as n → ∞, conditional or unconditional on X, i.e.,

Pr{R̂α̂,β̂ ≤ c |X} = Pr{R̂α̂,β̂ ≤ c} = G(c+
∫
u dG(u)) + o(1).

Theorem 3′. If the true underlying model (5) agrees with the assumed model (10)

(i.e., α = α̃,β = β̃, G = G0, f = f0), then R̂α̂,β̂ has the following properties:

(a) E{R |X} = o(1).

(b) V ar{R |X} is a constant, not depending on X, except a vanishing term o(1).

(c) supc∈R | Q̂n(c)−G(c+
∫
u dG(u)) |→ 0 almost surely, where Q̂n(c) = 1

n

∑n
i=1 I(R̂i ≤

c) is the empirical cumulative distribution of {R̂1, . . . , R̂n}.

We prove Theorems 2′-3′ in the following. First, we derive the distribution of

Ŝ that follows the truncated distribution obtained by truncating the distribution of

Ẑ = −f(X, β̂) + ε using the interval (α̂y−1, α̂y) given Y = y. Conditional on X, for
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any arbitrary but fixed c such that αk−1 ≤ c < αk, 1 ≤ k ≤ J ,

| Pr{Ŝ ≤ c} − Pr{S ≤ c} |

≤
J∑

j=1

|Pr{Ŝ ≤ c | Y = j} − Pr{S ≤ c | Y = j} | Pr{Y = j}

≤ Pr{c < Ẑ ≤ α̂k−1}Pr{Y = k − 1}+ Pr{α̂k < Ẑ ≤ c}Pr{Y = k + 1}

+

(
Pr{α̂k−1 < Ẑ ≤ c}

Pr{α̂k−1 < Ẑ ≤ α̂k}
− Pr{αk−1 < Z ≤ c}

Pr{αk−1 < Z ≤ αk}

)
Pr{Y = k}

≤ Pr{αk−1 < Z + op(1) ≤ αk−1 + op(1)}Pr{Y = k − 1}

+ Pr{αk + op(1) < Z + op(1) ≤ αk}Pr{Y = k + 1}

+

(
Pr{αk−1 + op(1) < Z + op(1) ≤ c}

Pr{αk−1 + op(1) < Z + op(1) ≤ αk + op(1)}
− Pr{αk−1 < Z ≤ c}

Pr{αk−1 < Z ≤ αk}

)
Pr{Y = k}

≤ o(1) + o(1) +

(
Pr{αk−1 < Z ≤ c}+ o(1)

Pr{αk−1 < Z ≤ αk}+ o(1)
− Pr{αk−1 < Z ≤ c}

Pr{αk−1 < Z ≤ αk}

)
Pr{Y = k}

= o(1).

Thus, we can establish Pr{R̂α̂,β̂ ≤ c |X} = Pr{R ≤ c |X}+o(1). The unconditional

distribution of R̂α̂,β̂

Pr{R̂α̂,β̂ ≤ c} =

∫
Pr{R̂α̂,β̂ ≤ c | x}dµ(x)→

∫
Pr{Rα,β ≤ c | x}dµ(x) = Pr{R ≤ c},

by Lebesgue’s Dominated Convergence Theorem. Theorem 2′ has been proved.

Based on Theorem 2′, we have E{R̂α̂,β̂ |X} = E{R |X}+ o(1) and V ar{R̂α̂,β̂ |

X} = V ar{R |X}+ o(1). Thus, Theorem 3′(a)-(b) follow. To see Theorem 3′(c),

sup
c∈R
| Q̂n(c)−G(c+

∫
u dG(u)) |

≤ sup
c∈R
| Q̂n(c)− Pr{R̂α̂,β̂ ≤ c} | + sup

c∈R
| Pr{R̂α̂,β̂ ≤ c} −G(c+

∫
u dG(u)) |

→ 0 almost surely,

by Glivenko-Cantelli Theorem and Polyá’s Theorem (Lehmann and Romano, 2005,

pp 429). This completes the proof of Theorem 3′.

53



Part E: An example in support of Remark 3

We show that a QQ-plot of the SBS residuals mentioned in Remark 3 may not be

informative for diagnostics. Specifically, we simulate two data sets(n = 2000) from

the following two models:

Pr{Y ≤ j} = Φ(αj + 8X −X2), j = 1, 2, 3, 4, (α1, α2, α3) = (−16,−12,−8) (11)

Pr{Y ≤ j} = Φ(αj − 0.01X), j = 1, 2, 3, 4, (α1, α2, α3) = (−1.05, 0.46, 1.54) (12)

Figure 16: QQ-plots of the simulated versus empirical SBS residuals. The mean
structure of the fitted model is linear while the mean structure of the true model is
(a) quadratic or (b) linear.

We fit both data sets using the model Pr{Y ≤ j} = Φ(αj+βX) with a linear mean

structure. From this assumed model (with estimated parameters), we simulate SBS

residuals and compare this null distribution to its empirical distribution using QQ-

plots. Figure 16 shows the results. Specifically, Figure 16(a) is the QQ plot when the

true model has a quadratic mean structure (11), i.e., the fitted model is misspecified.

Figure 16(b) is when both the true and fitted models have a linear mean structure
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(12), i.e., the fitted mode is correct. Examining Figure 16(a) alone, we see that it

is not obvious to conclude that the mean structure is misspecified. Furthermore,

comparing Figure 16(a) with (b), we see that the two QQ-plots are quite similar. In

other words, no matter the true model has a linear or quadratic mean structure, we

end up with quite similar QQ-plots. This implies that the approach of using simulated

SBS residuals as a reference is not able to tell the true form of the mean structure.
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