
Fast and exact search for the partition with minimal
information loss

Shohei Hidaka1*, Masafumi Oizumi2,3,

1 Japan Advanced Institute of Science and Technology, Nomi-shi, Ishikawa, Japan
2 Araya Inc., Minato-ku, Tokyo, Japan
3 RIKEN Brain Science Institute, Wako-shi, Saitama, Japan

*shhidaka@jaist.ac.jp

Supporting information 1: Queyranne’s algorithm 1

In this appendix, we briefly describe Queyranne’s algorithm [1]. Suppose we have a
submodular system (V, g) where V is a given set of elements and g is a submodular
function defined for the power set of V . Let f(U) := g(U) + g(V \ U) for every subset
U ⊆ V be a symmetric function constructed with the submodular function g.
Queyranne’s algorithm is used to search the subset U which minimizes the symmetric
submodular function f(U). For example, in this study, we consider the case that
f(U) = 2I(U ;V \ U), identified up to a constant multiplier, and g(U) = I(U ;V \ U)
are both mutual information (Eq. 2)

f(M) := I
(
M ;M

)
, (1)

= H(M) +H
(
M

)
−H

(
M,M

)
. (2)

In the algorithm proposed in [1], the key observation is that a special ordered pair 2

(t, u), called a pendent pair, can be identified for an arbitrary subset U ⊆ V in O(N2) 3

time. Identification of a pendent pair (t, u) of the set V reduces the search space 4

because for the desired subset U minimizing f(U), either case (1) U = {u} or (2) 5

U ⊇ {t, u} holds. Thus, by keeping case (1) as a candidate for the minimal partition, 6

we can further refine case (2), in which we define a new ground set V ′ where the 7

elements {t, u} are treated as an inseparable unit element u′. By using the new 8

merged element u′, V ′ is defined as 9

V ′ := {V \ {t, u}} ∪ {u′}.

After this procedure is applied once, the effective number of elements is reduced to 10

N − 1. By applying this procedure recursively to search the set V ′ with N − 1 11

elements, we would obtain another candidate for the minimal partition and a 12

candidate set V ′′ with N − 2 elements for further search. Thus, by finding the pendent 13

pair for the given set V at each step recursively, we obtain N − 1 candidates for the 14

minimal partition, and then find the minimal one from among them. In summary, this 15

recursive computation takes O(N3) time because it requires the construction of a 16

series of pendent pairs in O(N2), and N − 1 pendent pairs are needed to construct for 17

minimization. 18

Next we illustrate the construction of a pendant pair. An ordered pair (t, u) of 19

elements of V is called a pendent pair for (V, g), if f(u) takes the minimum in all 20

subsets of V which separate t from u, or equivalently 21

f(u) = min{f(U) | U ⊂ V, t ̸∈ U and u ∈ U}.
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There is at least one pendent pair for any symmetric submodular function. Further, a 22

pendent pair can be constructed specifically for an element x ∈ V as follows. For an 23

element x ∈ V , let us write v1 := x, W0 = ∅, and W1 = {v1}. For i > 1, 24

vi := arg min
u∈V \Wi−1

g(Wi−1 ∪ {u})− g({u}),

and Wi := Wi−1 ∪ {vi}. For a set V of the size N = |V |, the (vN−1, vN ) is a pendent 25

pair. This construction of a pendent pair needs O(N2) times of evaluation of the 26

function f . Importantly, for all y ∈ V \Wi and all x ⊆ Wi−1 in the series (Wi)
N
i=1 27

constructed by the procedure above for the submodular system (V, f), the following 28

inequality holds 29

g(Wi) + g(y) ≤ g(Wi \X) + g(X + y).

See [1] for the proof of this inequality. By putting i = N − 1 in the inequality, we can 30

see that the partition (vN , V \ {vN}) gives the minimum among all subsets separating 31

vN from vN−1. 32

By definition of the pendent pair, one of the following two cases, case 1 or 2, holds 33

for a given pendent pair (t, u). 34

1. The set {u} is a solution of the minimization problem. 35

2. Some set U ⊇ {t, u} is a solution of the minimization problem. 36

In the first case, the algorithm reports it. In the second case, the algorithm constructs 37

another submodular system (V ′, f), in which a new element is defined by merging the 38

pendent pair u′ = {t, u} and V ′ = V \ {t, u} ∪ u′. The new system (V ′, f) with the 39

merged pair is also submodular, and thus the same argument for the pendent pair can 40

apply recursively. 41
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