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Supporting information 2: Extension to k-partition 1

algorithm 2

The Queyranne’s algorithm [1] works on minimization of g(U) = f(U) + f(V \U) with 3

respect to non-empty set U ⊂ V or g((U, V \ U) = f(U) + f(V \ U) over bi-partition 4

(U, V \ U) with an arbitrary submodular set function f . Here we show a recursive 5

method extending this symmetric submodular search over a set of bi-partitions to that 6

of 3-partitions. The following argument will be easily extended to that of k-partition. 7

First let us denote the set of k-partitions of a given set V by

Pk,V :=

{
(M0,M1, . . . ,Mk−1)|

∪
i

Mi = V,Mi ∩Mj = ∅ for any i ̸= j and, Mi ̸= ∅ for every i

}
.

For a submodular system (V, f) of a given underlying set V and a submodular set 8

function f : 2V 7→ R, we consider minimization of function g : P3,V 7→ R of the form 9

g ((M0,M1,M2)) =

2∑
i=0

f(Mi) + c, (1)

where c ∈ R is a constant. This is an extension of the bi-partition function 10

g((U, V \ U) = f(U) + f(V \ U) to 3-partition function. In this section, we provide an 11

algorithm to minimize this k-partition function by employing Queyranne’s algorithm. 12

By defining f(M) := H(M) for M ⊆ V , (V, f) is a submodular system, and the
information loss function is written with a constant c = −f(V ) by

g ((M0,M1,M2)) =

2∑
i=0

f(Mi)− f(V ).

For the special case k = 2, g((M0,M1)) = I(M0;M1), this is identical to the minimal 13

loss of information introduced in this study. 14

Our argument below does not depend on any specific form of a particular 15

submodular function f , as long as the objective function takes the form in (1). The 16

basic idea is to reduce the original objective function g : P3,V 7→ R to a set function 17

g3,V : 2V 7→ R by recursively defining g2,U for the remaining two subsets in a given 18

bi-parition. As our goal is to minimize g3,V , such reduction can be written specifically 19

for non-empty U ⊂ V by 20

g3,V (U) := fV (U) + h2,V (U), (2)
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where for any ∅ ⊂ U1 ⊂ U2, fU2
(U1) := f(U1) + f(U2 \ U1) and h1,U2

(U1) := 0 and 21

h2,U2
(U1) :=


min

{
min∅⊂U ′⊂U2\U1

g2,U2\U1
(U ′)

min∅⊂U ′⊂U1
g2,U1

(U ′)
(min(|U1|, |U2 \ U1|) > 1)

min∅⊂U ′⊂U2\U1
g2,U2\U1

(U ′) (|U1| = 1)

min∅⊂U ′⊂U1
g2,U (U

′) (|U2 \ U1| = 1)

. (3)

This function (2) can be interpreted as recursive bi-partitioning across multiple stages: 22

The first partition (U, V \ U) of the set V is made on fV , and the second partition 23

(U ′, U
′
) of either U or V \U on hk−1, and so forth. For |U | = 1 or |V \U | = 1, there is 24

only one set for which the second partition can be made, otherwise smaller one of 25

either fU (M0) or fV \U (M0) has the solution. For k = 2, g2,V (U) = fV (U), and 26

minimization of fV (U) over the set of bi-partitions of V can be computed by the 27

Queyranne’s algorithm. 28

If this function g3,V is symmetric and submodular, we can apply the Queyranne’s 29

algorithm to this function at every recursive step above. Then, the minimum of 30

g3,V (Û) is identical to g((Û ,M0,M1)) with the 3-partition is (Û , M̂0, M̂1) such that 31

Û = arg min
∅⊂U⊂V

g3,V (U) and (M̂0, M̂1) = arg min
(M0,M1)∈P2,V \Û

h2(M0,M1)

or (V \ Û , M̂0, M̂1) such that 32

Û = arg min
∅⊂U⊂V

g3,V (U) and (M̂0, M̂1) = arg min
(M0,M1)∈P2,Û

h2(M0,M1).

As gk,V is obviously symmetric by definition, our main question now is whether it is 33

submodular. The lemma following states that it is submodular. 34

Lemma 1. For a given submodular system (V, f), the function g3,V : 2V 7→ R is 35

submodular. 36

The proof of Lemma 1 needs Lemma 2 which is stated after the proof. 37

Proof. For a pair of set X,Y ⊆ V and k > 2, consider the difference 38

∆ := g3,V (X) + g3,V (Y )− g3,V (X ∪ Y )− g3,V (X ∩ Y ),

and 39

∆h := h3,V (X) + h3,V (Y )− h3,V (X ∪ Y )− h3,V (X ∩ Y ).

As ∆−∆h ≥ 0 due to submodularity of the function f , ∆h ≥ 0 implies ∆ ≥ 0 for any 40

k. We show ∆h ≥ 0 as follows. Now we will show that ∆h ≥ 0, by using the fact that 41

any function g2,U for U ⊆ V is submodular. 42

Let us denote the minimizer of g3,X by

[X] := arg min
∅⊂W⊂X

g3,X(W ).

For all three cases of the function h (3), we consider the case below as the lower bound 43

for ∆h, and the other cases follow the essentially same argument: 44

∆h ≥ g3,X([X]) + g3,Y ([Y ])− g3,X∪Y ([X ∪ Y ])− g3,X∩Y ([X ∩ Y ])

By definition, g3,X([X]) ≤ g3,X(W ) for any non-empty W ⊂ X, and thus for any 45

non-empty W ⊂ X ∪ Y and Z ⊂ X ∩ Y , we have 46

∆h,3 ≥ g3,X([X]) + g3,Y ([Y ])− g3,X∪Y (W )− g3,X∩Y (Z).

By Lemma 2, ∆h ≥ 0 due to submodularity of g2,U for any U ⊆ V . 47
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The last line in the proof of Lemma 1 is shown as follows. 48

Lemma 2. For an arbitrary submodular system (V, f), f(∅) = 0 and ∅ ⊂ W ⊂ Z ⊆ V ,
write

fZ(W ) := f(W ) + f(Z \W ).

For any given pair of partitions (W,W ) ∈ P2,X∪Y and (Z,Z) ∈ P2,X∩Y , there is some 49

pair (A,A) ∈ P2,X and (B,B) ∈ P2,Y which holds the inequality 50

fX(A) + fY (B) ≥ fX∪Y (W ) + fX∩Y (Z).

Vice versa, for any given pair of partitions (A,A) ∈ P2,X and (B,B) ∈ P2,Y , there is 51

some pair (W,W ) ∈ P2,X∪Y and (Z,Z) ∈ P2,X∩Y which holds the inequality above. 52

This lemma states about a kind of submodularity on the bi-partition function fX 53

by existence of some pair W and Z for any pair A and B or vice versa. The proof of 54

Lemma 2 is beyond the scope of this section, and will be reported elsewhere. 55

The Lemma 1 states that Queyranne’s algorithm can be used to minimize the 56

symmetric submodular set function gm,U (U
′) with respect to non-empty U ′ ⊂ U at 57

each step of the function gk,V (U). This observation further applies recursively for a 58

k-partition problem, which can be reduced to the minimization of (k − 1)−partition 59

problem by defining an appropriate function. As minimization of a k-partition 60

function includes the minimization of (k − 1)-partition function, the computational 61

time of this recursive algorithm for the minimal k-partition of n elements would take 62

the order O(n3(k−1)). 63
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