
Supplemental	Methods	for:	
	
Lee,	JZ	et	al.	Metagenomic	binning	of	microbial	mats	reveals	resource	partitioning	
and	novel	diversity	in	mat	phototrophy.	PLOS	ONE	
	
Supplemental	Methods	

These	methods	supplement	the	methods	given	in	the	manuscript	and	are	also	

paired	with	a	bioinformatics	guide	online	along	with	the	code	base	used	in	this	

study	on	GitHub	(http://github.com/leejz/meta-omics-scripts).		

Metagenomic	assembly,	coverage,	and	binning	methods	

Quality	filtered	reads	were	assembly	with	Ray-Meta	[1]	on	the	NERSC	Edison	

supercomputing	cluster.	Sequences	from	metagenomes	of	microbial	mat	samples	

were	pooled	together	and	co-assembled	with	Ray-Meta	three	times	using	different	

assembly	word	sizes	(k=29,	45,	63).	Assembly	word	sizes	were	assessed	using	

KmerGenie	[2]	(S2	Fig).	Each	individual	metagenome	sample	was	then	mapped	

using	Bowtie2	[3]	back	to	each	assembled	scaffolds	to	determine	sample	specific	

coverage.	Prodigal	[4]	was	then	used	to	predict	open	reading	frames	(ORFs),	and	an	

HMM	model	[5]	was	used	to	find	the	essential	single	copy	genes	[6].	All	ORFs	were	

submitted	to	MG-RAST	[7]	for	annotation	using	a	BLAT	90%	clustering	protocol.	

The	mapping	process	was	repeated	for	open	reading	frames	(ORFs)	detected	by	

Prodigal.	MG-RAST	custom	md5	matches	were	quality	filtered,	de-replicated,	and	

parsed	to	a	tab-delimited	ORF	database	of	ORF	name,	protein	annotation,	ontology	

annotation,	taxonomy,	and	coverage	using	a	custom	script.		

Previous	work	examining	binning	has	shown	several	successes	using	k-mer	

nucleotide	frequency,	%GC,	read	coverage,	taxonomy,	or	a	combination	of	these	

strategies	as	biosignatures	of	genomes	within	metagenomes.	The	pipeline	used	in	



this	study	combines	supervised	learning	[8],	dimensionality	reduction	[9],	and	the	

coverage	binning	[6]	using	R	and	CRAN	analysis	packages.		

As	was	noted	in	a	previous	study	[8],	preliminary	results	suggested	that	

larger	scaffolds	harbored	strong	phylogenetic	signal	(S2A	Fig),	so	these	scaffolds	

were	used	to	recruit	clusters	representing	bins	from	the	metagenomes.	Log	

normalization	and	principle	component	analysis	(PCA)	dimensionality	reduction	

using	scaled	values	of	%GC	and	differential	sample	coverage	aided	to	resolve	

binning	‘spears’	seen	in	metagenomic	data.	DBScan,	noted	for	being	sensitive	to	

cluster	density	and	used	on	noisy	datasets	[10],	was	selected	to	cluster	large	(>5	

kbp)	scaffolds	in	PCA	space.	The	remaining	scaffolds	>1.5	kbp	were	recruited	using	

a	SVM	machine-learning	algorithm	[11]	trained	on	the	larger	scaffolds	(S3B	Fig)	and	

was	tuned	by	maximizing	single	copy	essential	gene	membership	and	minimizing	

gene	copy	duplication.	This	was	repeated	for	the	3	assemblies	(performed	at	

different	word	sizes	(k=29,	45,	63));	the	best	corresponding	bin	(maximum	single	

copy	genes,	minimum	duplication)	from	each	assembly	was	extracted	and	pooled	

with	both	background	and	unbinned	scaffolds	from	the	k=29	assembly.	Binning	

procedure	and	quality	analysis	were	based	on	analysis	of	~100	essential	single	copy	

genes	[6,12].		These	data	when	charted	together	produce	informationally	dense	PCA	

graphs	overlaying	the	clustering	of	scaffolds	with	scaffold	information	(taxonomy,	

scaffold	size,	etc.)	which	we	refer	to	as	“galaxy”	plots.	

Annotation	search	and	collation	

Since	a	number	of	different	ontology	systems	and	gene	annotation	databases	

were	used	to	annotate	genes,	querying	single	annotation	sets	(e.g.	KEGG)	produced	



partial	results.	To	maximize	search	coverage,	a	customized	Python	regular	

expression	search	algorithm	was	developed.	This	algorithm	emphasized	matching	

KEGG	and	EC	ontologies	(e.g.	K02586	and	1.18.6.1,	with	subunit	or	chain	

designation),	but	can	also	search	for	multiple	text	patterns	in	protein	annotations	by	

keyword	and	subunit	(e.g.	nitrogenase	alpha	chain),	and	protein	abbreviation	(e.g.	

nifD).	The	algorithm	also	allows	for	nested	searches	(e.g.	first	cytochrome	c	oxidase,	

then	cbb3	subtype),	as	well	as	exclusion	terms	(e.g.	‘precursor’	proteins).	Results	

were	cross-referenced	with	bin	annotation	and	written	to	tab-delimited	files	for	

heatmap	generation	in	Excel.	A	list	of	genes	associated	with	biogeochemical	cycling	

(sulfur	metabolism,	nitrogen	metabolism,	phototrophy,	autotrophy,	and	

hetrotrophy)	and	with	starch	utilization	were	determined	and	used	to	query	

annotation	records.	

Phylogenetic	analysis	

Due	to	taxonomic	ambiguity	and	novelty	of	bins,	some	bins	were	subjected	to	

follow-on	phylogenetic	analysis.	The	AMPHORA2	pipeline	[13]	was	used	to	extract	

amino	acid	sequences	of	highly	conserved	single-copy	genes	from	scaffolds	

belonging	to	these	bins	and	related	PATRIC	genomes	for	comparison.	These	genes	

were	aligned	individually	with	MUSCLE	[14]	and	then	filtered	for	positions	with	

>10%	gaps	in	the	alignment.	Next,	RAxML	[15]	was	used	to	construct	phylogenetic	

trees	(model:	PROTCATBLOSUM62,	with	100	rapid	bootstrap	trees)	of	bins	and	

reference	genomes.	The	best	model	was	labeled	with	bootstrap	annotation	and	used	

for	nearest-neighbor	identification	of	bins	of	interest.	

Read	mapping	and	variant	analysis	



Recent	studies	have	examined	the	possibility	of	using	variant	callers	typically	seen	

in	human	genomic	variant	analysis	for	the	detection	of	strain	variation	across	

genomes	[16]	and	for	differing	populations	of	Bacteria	in	the	human	gut	

microbiome	[17].	We	used	these	insights	and	approach	to	call	the	coverage	and	

density	of	variants	in	genes	and	in	subsystems	that	differed	from	the	mapping	

reference.	The	complete	metagenomic	dataset	from	the	selected	four	mat	samples	

were	pooled	and	mapped	to	the	C.	chthonoplastes	PCC	7420	[18,19]	genome	using	

Bowtie2	with	default	settings.	This	strain	was	first	isolated	by	Waterbury	as	

Microcoleus	chthonoplastes		in	1974	and	with	genome	sequencing	by	JCVI	

(GCA_000155555.1,	ASM15555v1).		Single	nucleotide	polymorphisms	(SNPs)	were	

called	with	FreeBayes	using	haploid	continuous	pooled	variant	calling	settings	[20].	

Variants	were	filtered	for	poorly	called	variants	and	selected	for	SNPs	using	

Samtools	and	BCFtools	[21,22].	Bedtools	[23]	was	used	to	count	the	number	of	

variants	per	gene	in	the	PCC	7420	genome.	Variants	were	summarized	by	gene	and	

SEED	subsystems	using	PATRIC	annotations	[24]	cross-referenced	with	NCBI	

annotations	(with	a	cutoff	>70%	annotation	overlap	using	Bedtools).	SNPs	were	

then	filtered	for	coverage	between	50-200	reads	and	the	ratio	of	SNPs	per	all	bases	

in	a	gene	(SNP	density)	was	calculated.	These	gene	SNP	density	values	were	

matched	to	subsystem	ontology.	Each	gene	was	binned	by	SNP	density	into	4	

groups,	(0-1%,	1-2%,	2-3%,	3%+)	variants	/	gene	length.	A	score	was	developed	

based	on	the	aggregation	of	gene	variant	density	in	subsystems	to	estimate	the	level	

of	genetic	variation	in	each	subsystem	as	compared	to	genome-wide	variation	levels	

(Equation	1)	
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	where:	g	is	a	subsystem	gene	set	from	all	gene	sets	G,	n	is	the	variant	density	bin	

described	above,	and	Vg,n	is	the	number	of	genes	in	set	g	also	in	bin	n,	and	Cn	is	a	

weighting	coefficient	for	each	bin	(here,	Cn=	1,	unweighted).	A	variation	ratio	of	Vg,n	

to	number	of	genes	in	n	for	G	(VG,n)	was	calculated	and	offset	by	the	variation	ratio	of	

all	gene	bins	in	subsystem	g	and	then	summed	for	each	bin.	The	result	was	scaled	by	

an	arbitrary	factor	of	1,000	for	convenience	to	generate	a	final	score	for	each	gene	

set	g.	Positive	scores	indicated	more	genes	with	variation	in	a	subsystem	than	the	

genome-wide	average,	negative	scores	indicated	fewer	genes	with	variation	than	the	

genome-wide	average.	
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