SUPPLEMENTARY INFORMATION

for the following manuscript:

Structure of *Mycobacterium smegmatis* 70S ribosomes in complex with HPF, tmRNA and P-tRNA

Satabdi Mishra^{1#}, Tofayel Ahmed^{1#}, Anu Tyagi¹, Jian Shi² and Shashi Bhushan^{1,3,*}

¹School of Biological Sciences, Nanyang Technological University, Singapore
²Center for Biolmaging Sciences, National University of Singapore, Singapore
³NTU Institute of Structural Biology, Nanyang Technological University, Singapore

[#] Equal contributions

* To whom correspondence should be addressed. Tel: +65 6592 3673; Fax: +65 6791 3856;

E-mail: sbhushan@ntu.edu.sg

Protein/RNA name	Chain ID in SSU	Uniprot ID (GenBank ID)	Complete size	Modeled	Homologous Ec size	comments
16S rRNA	а	X52922.1	1528	9-1518	1541	
uS2	b	A0QVB8	277	1-228	241	
uS3	С	A0QSD7	275	1-210	233	
uS4	d	A0QSL7	201	2-201	206	
uS5	е	A0QSG6	214	17-214	167	
bS6	f	A0A0D6J3X3	96	1-96	135	
uS7	g	A0QS97	156	1-156	179	
uS8	h	A0QSG3	132	3-132	130	
uS9	i	A0QSP9	150	25-150	130	
uS10	j	A0QSD0	101	5-101	103	
uS11	k	A0QSL6	138	22-138	129	
uS12	I	A0QS96	124	2-123	124	
uS13	m	A0QSL5	124	2-117	118	
uS14	n	A0QSG2	61	2-61	101	
uS15	0	A0QVQ3	89	2-88	89	
bS16	р	A0QV37	156	2-114	52	
uS17	q	A0QSE0	98	6-97	84	
bS18	r	A0R7F7	84	16-79	75	
uS19	S	A0QSD5	93	6-83	92	
bS20	t	A0R102	86	3-86	87	
bS22	u	A0QR10	33	2-33	-	
P-site tRNA ^{fMet}	v	CP011124.1	77	1-77	77	Ec P-tRNA ^{fMet}

Supplementary Table S1. Composition of P/P state SSU model.

Supplementary Table S2. Composition of P/P state LSU model.

Protein/RNA name	Chain ID in LSU	Uniprot ID (GenBank ID)	Complete size	Modeled	Homologous <i>Ec</i> size	comments
23S rRNA	A	NR_076104.1	3120	2-3119	2897	
5S rRNA	В	NR_075650.1	118	1-117	120	
uL1	-	A0QS46	235	-		not visible
uL2	С	A0QSD4	278	3-275	273	
uL3	D	A0QSD1	217	2-215	209	
uL4	E	A0QSD2	215	3-209	201	
uL5	F	A0QSG1	187	6-186	179	
uL6	G	A0QSG4	179	2-177	177	
bL7/bL12	-			-		not visible
bL9	Н	A0R7F6	151	1-151	149	
uL10	Ι	A0QS62	175	1-126	165	
uL11	J	A0QS45	142	10-142	142	
uL13	К	A0QSP8	147	1-147	147	
uL14	L	A0QSF9	122	1-121	123	
uL15	М	A0QSG8	147	3-147	144	
uL16	N	A0QSD8	138	1-134	136	
bL17	0	A0QSL9	199	2-118	127	
uL18	Р	A0QSG5	127	2-127	117	
bL19	Q	A0QV42	113	1-113	115	
bL20	R	A0QYU6	129	2-125	118	
bL21	S	A0R151	103	2-103	103	
uL22	Т	A0QSD6	153	6-119	110	
uL23	U	A0QSD3	100	4-97	100	
uL24	V	A0QSG0	105	1-105	104	
bL25	W	A0R3D2	215	6-193	94	
bL27	Х	A0R150	88	5-86	85	
bL28	Y	A0QV03	64	2-64	78	
uL29	Z	A0QSD9	77	5-57	63	
uL30	1	A0QSG7	61	2-61	59	
bL31	2	A0R215	82	1-66	70	
bL32	3	A0R3I9	57	2-55	57	
bL33	4	A0QS39	55	6-55	55	
bL34	5	A0R7K0	47	3-47	46	
bL35	6	A0QYU7	64	2-64	65	
bL36	7	A0QSL4	37	1-37	38	
bL37	8	A0QTP4	24	2-24	-	

Supplementary Table S3. Composition of hibernating state LSU model.

Protein/RNA name	Chain ID in 50S	Uniprot ID (GenBank ID)	Complete size	Modeled	Homologous <i>Ec</i> size	comments
23S rRNA	А	NR_076104.1	3120	2-3119	2897	
5S rRNA	В	NR_075650.1	118	1-117	120	
uL1	-	A0QS46	235	-		not visible
uL2	С	A0QSD4	278	3-275	273	
uL3	D	A0QSD1	217	2-215	209	
uL4	E	A0QSD2	215	3-209	201	
uL5	F	A0QSG1	187	6-186	179	
uL6	G	A0QSG4	179	2-177	177	
bL7/bL12	-			-		not visible
bL9	Н	A0R7F6	151	1-151	149	
uL10	I	A0QS62	175	1-126	165	
uL11	J	A0QS45	142	10-142	142	
uL13	К	A0QSP8	147	1-147	147	
uL14	L	A0QSF9	122	1-121	123	
uL15	М	A0QSG8	147	3-147	144	
uL16	N	A0QSD8	138	1-134	136	
bL17	0	A0QSL9	199	2-118	127	
uL18	Р	A0QSG5	127	2-127	117	
bL19	Q	A0QV42	113	1-113	115	
bL20	R	A0QYU6	129	2-125	118	
bL21	S	A0R151	103	2-103	103	
uL22	Т	A0QSD6	153	6-119	110	
uL23	U	A0QSD3	100	4-97	100	
uL24	V	A0QSG0	105	1-105	104	
bL25	W	A0R3D2	215	6-193	94	
bL27	Х	A0R150	88	5-86	85	
bL28	Y	A0QV03	64	2-64	78	
uL29	Z	A0QSD9	77	5-57	63	
uL30	v	A0QSG7	61	2-61	59	
bL31	у	A0R215	82	1-66	70	
bL32	Z	A0R3I9	57	2-55	57	
bL33	1	A0QS39	55	6-55	55	
bL34	2	A0R7K0	47	3-47	46	
bL35	3	A0QYU7	64	2-64	65	
bL36	4	A0QSL4	37	1-37	38	
bL37	5	A0QTP4	24	2-24	-	

Supplementary Table S4. Composition of hibernating state SSU model.

Protein/RNA name	Chain ID in SSU	Uniprot ID (GenBank ID)	Complete size	Modeled	Homologous <i>Ec</i> size	comments
16S rRNA	а	X52922.1	1528	9-1518	1541	
uS2	b	A0QVB8	277	1-228	241	
uS3	С	A0QSD7	275	1-210	233	
uS4	d	A0QSL7	201	2-201	206	
uS5	е	A0QSG6	214	17-214	167	
bS6	f	A0A0D6J3X3	96	1-96	135	
uS7	g	A0QS97	156	1-156	179	
uS8	h	A0QSG3	132	3-132	130	
uS9	i	A0QSP9	150	25-150	130	
uS10	j	A0QSD0	101	5-101	103	
uS11	k	A0QSL6	138	22-138	129	
uS12	I	A0QS96	124	2-123	124	
uS13	m	A0QSL5	124	2-117	118	
uS14	n	A0QSG2	61	2-61	101	
uS15	0	A0QVQ3	89	2-88	89	
bS16	р	A0QV37	156	2-114	52	
uS17	q	A0QSE0	98	6-97	84	
bS18	r	A0R7F7	84	16-79	75	
uS19	S	A0QSD5	93	6-83	92	
bS20	t	A0R102	86	3-86	87	
bS22	u	A0QR10	33	2-33	-	
E-site tRNA ^{™et}	w	CP011124.1	77	1-77	77	Ec E-tRNA ^{™et}
HPF	х	A0QTK6	230	31-130	95	Rigid body fitted
bS1	0	A0QYY6	479	223 residues	556	Rigid body fitted

Protein/RNA name	Chain ID in SSU	Uniprot ID (GenBank ID)	Complete size	Modeled	Homologous <i>Ec</i> size	comments
tmRNA	А	HG522090.1	369	1-369	363	Rigid body fitted
A-site tRNA ^{fMet}	В	CP011124.1	77	1-77	77	<i>Ec</i> A-tRNA ^{fMet} , Rigid body fitted
SmpB	С	A0QU63	161	1-161	160	Rigid body fitted

Supplementary Table S5. Composition of trans-translating state model.

Supplementary Table S6. Model refinement statistics for the *Ms* 50S and 30S ribosome subunits and the complete 70S ribosome in P/P state.

Field	SSU	LSU	70S Ribosome
Data Collection			
Particles	391,837	391,837	391,837
Pixel Size (Å)	1.05	1.05	1.05
Defocus Range (um)	0.3 - 4.3	0.3 – 4.3	0.3 – 4.3
Voltage (kV)	300	300	300
Electron Dose (e ⁻ Å ⁻²)	35	35	35
Model Composition			
Non-hydrogen atoms	52,674	97,108	148,419
Protein residues	2,406	3,687	6,093
RNA bases	1,506	3,207	4,713
Model Refinement	· ·		,
Resolution (Å)	3.28	3.7	3.4
Map sharpening B-	-134.86	-85.95	-84.62
factor (Å ²)			
CC _{map_model}	0.789	0.775	0.804
RMS deviation			
Bonds (Å)	0.02	0	0.01
Angles (°)	1.04	0.71	1.03
Validation			
(proteins)			
Molprobity score	2.22 (63 rd	2.64 (39 th	2.57 (43 rd
	percentile)	percentile)	percentile)
Clashscore, all atoms	16.04 (45 th	16.47 (43 rd	18.45 (36 th
	percentile)	percentile)	percentile)
Poor rotamers (%)	0.90	3.4	2.39
Favoured rotamers	94.05	90.42	91.89
(%)			
Ramachandran plot			
Favoured (%)	91.08	90.91	90.98
Outliers (%)	0.42	1.13	0.85
Validation (RNA)			
Correct sugar	98.8	99.35	99.77
puckers (%)			
Good backbone	74.04	75.05	74.72
conformations (%)			
Bond Outliners (%)	0	0	0
Angle Outliners (%)	0.02	0.01	0.01

5231 total micrographs

Figure S1: Cryo-EM data processing pipeline for the 70S-log dataset. Out of 5231 collected micrographs, 3503 micrographs were selected as good micrographs showing minimal drift and no astigmatism. 392K particles were picked semiautomatically using EMAN 2.1¹. Images were processed further in RELION 1.4². 2Xbinned particles were sorted with 2D classification. 330K good particles were selected and subjected to several rounds of 3D classification with an empty *Ec* 70S ribosome as reference³. In the 3rd round of 3D classification, fine angular sampling was applied and one 3D class (with 1313 particles, 0.6% particles) was identified as the trans-translating state of ribosome. The final resolution obtained for this class after un-binned 3D refinement was 12.5 Å. The rest of the un-binned particles were 3D-refined generating a 70S map at 3.62 Å resolution. Movie frames were then included in the 3D refinement, which yielded in a 3.41 Å resolved map for the 70S ribosome. Focused mask refinement of LSU and SSU resulted in two maps resolved to 3.28 and 3.71 Å, respectively.

Figure S2: Estimation of resolution and validation against model-overfitting. (a-c) Local resolution estimation with ResMap⁴ for the 50S and 30S subunits, and 70S ribosome. Both solvent side views (left) and sliced views (right) are shown. The core regions across all three maps are well-resolved (sliced view) compared to the peripheral regions. (d-f) Average resolution of the final refined Cryo-EM maps and validation against model-overfitting. Red: Fourier Shell Correlation (FSC) curves for 50S, 30S and 70S maps with estimated average resolutions of 3.3, 3.7, and 3.4 Å, respectively, calculated according to the FSC = 0.143 criterion⁵. Black: FSC curve computed between the final Cryo-EM maps and maps generated from refined atomic coordinates with resolution calculated according to the FSC = 0.5 criterion.

Figure S3.

Figure S3: Resolution estimation for the trans-translation and hibernation states 70S ribosome maps. FSC curves for **(a)** trans-translation and **(b)** hibernation state 70S ribosome map as indicated, using FSC= 0.143 criterion⁵.

Figure S4.

Ms	MSSHSMDSSRTMVVEDDRESTAGTTPERPHAEVVVKGRNVEVPDHFRTYVSEKLSRLERF	60
Sa	MIRFEIHGDNLTITDAIRNYIEEKIGKLERY	31
Tth	MNIYKLIGRNLEITDAIRDYVEKKLARLDRY	31
	* * * * * * * * * * * * * * * * * * * *	
Ms	DKTIYLFDVELDHERNRRQRKNCQHVEITARGRGPVVRGEACADSFYTAFESAVQKLEGR	120
Sa	FNDVPNAVAHVKVKTYSNSATKIEVTIPLKNVTLRAEERNDDLYAGIDLINNKLERQ	88
Tth	QDGELMAKVVLSLAGSP-HVEKKARAEIQVDLPGGLVRVEEEDADLYAAIDRAVDRLETQ	90
Ms	LRRAKDRRKIHYGDKTPVSLAEATAKDPLAGLDVSREDGEARYNDGVAEHEPGRIV	176
Sa	VRKYKTRVNRKSRDRGDQEVFVAELQEMQETPVDNETYDDNEIEII	134
Tth	VKRFRERRYVGKRHSYQGPPPPEVRDLEALRKPEEEEGPRIV	132
	*** * * * * * * * * * * * * * * * *	
Ms	RIKDHPATPMTVDDALYEMELVGHDFFLFHDKETDRPSVVYRRHAFDYGLIRLA	230
Sa	RSKEFSLKPMDSEEAVLQMNLLGHDFFVFTDRETDGTSIVYRRKDGKYGLIQTSEQ	190
Tth	RVKRFEMKPMDPEEAAFQMEALGHSFFVFRNAKTDEINVIYRRKDGNYGLIEPA	186
	* * 。 。** 。。** 。**。 ***。** 。 *** 。 ****。 。****。	

Figure S4: Sequence alignment of HPF from *Ms*, *Sa* and *Tth*. The sequence alignment between HPF from *M. smegmatis*, *S. aureus* and *T. thermophilus*. The sequence similarity between *Ms* and *Sa* is 43.5% and between *Ms* and *Tth* is 40.2%

Figure S5: Ribosome purification under high and low salt conditions for *Ms* **cultures harvested at different growth periods.** Ribosomes purified from *Ms* culture harvested at different growth periods of 24, 48, and 66 h, as indicated. For each growth period, ribosomes were purified under low (50 mM Potassium acetate) and high salt (500 mM Potassium acetate) conditions. Crude ribosomes were then analysed by linear sucrose gradient (10 - 40%) to observe ribosomal profile under these conditions. Neither any of the ribosomal subunits (30S and 50S) nor the 100S ribosomal dimers could be detected under these conditions even after extended stationary phase (66 h growth) while 70S seems to be stably present during stationary phases.

Figure S6.

Figure S6: Comparison between Ms HPF, Sa HPF and LI HPF. (a) Ribosome dimer from Sa (PDB: 5NG8) showing the HPFs from the two small subunits interacting with uS2 protein to form stable dimer⁶. CTD-HPF-1 (red) from SSU-1 interact with CTD-HPF-2 (purple) of SSU-2 of ribosome dimer. (b) Ribosome dimer from LI (PDB: 5MYJ) showing the CTD-HPF-1 (red) and uS2-1 (yellow) protein at the dimer interface⁷. (c) Super-position of Sa CTD-HPF-1 (red) and Sa uS2-1 (yellow) with Ms bS1 OB-domain I (blue) and Ms uS2 (dark green), OB domain-I of Ms bS1 overlaps with the Sa CTD-HPF-1. (d) OB domains-I and II overlap the Sa CTD-HPF-2 (purple). (e) Super-position of LI CTD-HPF (red) and LI uS2 (yellow) with OB domain-I of Ms bS1 (blue) and Ms uS2 (dark green). (f) Super-position of Ms bS1 (blue) and *Ms* uS2 (dark green) with *Sa* CTD-HPF-1 (red), *Sa* CTD-HPF-2 (purple) and Sa uS2 (yellow). (g) Super-position of Ms bS1 (blue) and Ms uS2 (dark green) with LI CTD-HPF (red) and LI uS2 (yellow) (c-g) show that Ms bS1 sterically clashes with the interaction of CTD of HPF from Sa and LI in their ribosome dimers. (h) sequence comparison of CTD between Ms (M. smegmatis), Mtb (M. tuberculosis), Sa (S. aureus) and LI (L. lactis). One out of five conserved residues involved in HPF dimer interaction is not conserved in Ms and Mtb (shown in red dotted box)^{\prime}.

Figure S7. Analysis of the extra density near the mRNA exit channel in the Hibernating state map. The models of Ms HPF CTD (a) and Ms bS1 OB-I (b) were fitted into the extra density observed near the mRNA exit site of the hibernating state 70S map. The Ms bS1 fitted well into this density compared to Ms HPF CTD. The Ms HPF CTD is shown in the same orientation as found in the *S. aureus* and *L. lactis* 100S dimers^{6,7}.

Figure S8: Comparison of S1 structure in association with the ribosome as captured in different studies. (a) *Ms* bS1 N-terminal α -helix (blue) in P/P map (filtered to 10 Å), along with H54a (deep red) and uS2 (yellow). (b) *Ms* bS1 (deep-blue) with its four OB domains in hibernating map along with H54a (deep red) and uS2 protein (yellow). (c) Cryo-EM density for bS1 in RNA polymerase-bound *Ec* SSU (PDB ID: 6AWB)⁸. Model for bS1 is shown in dark green and uS2 in yellow. (d) Cryo-EM density of bS1 in *Ec* SSU (PDB ID: 4TOI)⁹. (e) Cryo-EM bS1 density on the *Ec* ribosome bound to translocon SecY (PDB ID: 3J46)¹⁰. (f) Cryo-EM density of bS1c in the chloroplast SSU (PDB ID: 5X8R)¹¹.

Figure S9.

Matched peptides shown in Bold Red								
1	MPSPSVTSPQ	VAVNDIGSAE	DFLAAIDKTI	KYFNDGDIVE	GTIVKVDRDE			
51	VLLDIGYKTE	GVIPSRELSI	KHDVDPNEVV	SVGDEVEALV	LTKEDKEGRL			
101	ILSKKRAQYE	RAWGTIEELK	EKDEAVKGTV	IEVVKGGLIL	DIGLRGFLPA			
151	SLVEMRRVRD	LQPYIGKEIE	AKIIELDKNR	NNVVLSRRAW	LEQTQSEVRS			
201	EFLNQLQK GA	IRKGVVSSIV	NFGAFVDLGG	VDGLVHVSEL	SWKHIDHPSE			
251	VVQVGDEVTV	EVLDVDMDRE	RVSLSLKATQ	EDPWRHFART	HAIGQIVPGK			
301	VTKLVPFGAF	VRVEEGIEGL	VHISELSERH	VEVPDQVVQV	GDDAMVKVID			
351	IDLERRRISL	SLKQANEDYT	EEFDPSK YGM	ADSYDEQGNY	IFPEGFDPET			
401	NEWLEGFDKQ	REEWEARYAE	AERR HKMHTA	QMEK FAAAEA	EAANAPVSNG			
451	SSRSEESSGG	TLASDAQLAA	LREK LAGNA					

Gel Id Plate	lx/Pos [#] Name	273/L1 [1] mw2		Instr./Gel Origin Instrument Sample Name	ak072/180404		Proc Spec	ess Statu tra	s Anal <u>y</u> 11	sis Succeed	ed
Rank	Protein N	lame	Species	3	Accession No.	Protein MW	Protein Score	Protein Score C. I. %	Total Ion Score	Total Ion C C. I. %	Confirmed
1	30S ribos smegmat PE=1 SV	omal protein S1 OS=Mycobacterium is (strain ATCC 700084 / mc(2)155) GN=rpsA			sp A0QYY6 RS1_ MYCS2	53283.3	941	100	617	100	.T.

sequence coverage = 75%

Figure S9: Mass spectrometry analysis of bS1 protein from stationary phase 70S ribosomes. The sequences colored in bold red are the matched peptides from peptide mass fingerprinting. The sequence coverage obtained was 75%, with the highest hit for bS1 protein from *Mycobacterium smegmatis*.

Figure S10.

Ms_bS1	MPSPSVTSPQVAVNDIGSAEDFLAAIDKTIKYFNDGDIVEGTIVKVDRDEVLL-DIGYKT	59
Sa_bS1	MTE-EFNESMINDIKEGDKVTGEVQQVEDKQVVVHINGGKF	40
Ll_bS1	MN-EFETLLNSVEDVKVRDVVKGEILSVENGQATVAIVGTGV	41
	: : . : : * * * : .*: * *	
Ms_bS1	EGVIPSRELSIKHDVDPNEVVSVGDEVEALVLTKEDKEGRLILSKKRAQYERAWG	114
Sa_bS1	NGIIPISQLSTHHIDSPSEVVKEGDEVEAYVTKVEFD-EENETGAYILSRRQLETEKSYS	99
Ll_bS1	EGVLTLREITNDKDADINTFVKPGDVLDLLVIKQIVGKEAEGANVYLLSLKRLEARKAWT	101
	:*:: ::::::::::::::::::::::::::::::::::	
Ms_bS1	TIEELKEKDEAVKGTVIEVVKGGLILDI-GLRGFLPASLVEMRRVRDLQPYIGKEIEAKI	173
Sa_bS1	YLQEKLDNNEIIEAKVTEVVKGGLVVDV-GQRGFVPASLISTDFIEDFSVFDGQTIRIKV	158
Ll_bS1	QLEGKEGEIVTVKVTKDVKGGLSVDYNGVRGFIPASMIDTYFVKDTKKFVGEEIEAKI	159
	:: .:.* : .* : ***** :* * ***:***::. :.* . : *: *. *:	
Ms bS1	IELDKNRNNVVLSRRAWLEQTQSEVRSEFLNQLQKGAIRKGVVSSIVNFGAFVDLGGVDG	233
Sa bS1	EELDPENNRVILSRKAVEQEENDAKKDOLLQSLNEGDVIDGKVARLTQFGAFIDIGGVDG	218
Ll bS1	IEVNASENRFILSRRAVVEAEAIEMRKEAFAQLQEGDIVEGTVSRVTNFGAFVDLGGIDG	219
—	*** •****** * * *** * *****************	
Ms_bS1	LVHVSELSWKHIDHPSEVVQVGDEVTVEVLDVDMDRERVSLSLKATQEDPWRHFARTHAI	293
Sa_bS1	LVHVSELSHEHVQTPEEVVSIGQDVKVKIKSIDRDTERISLSIKDTLPTPFENIKGQFHE	278
Ll_bS1	LVHVSELSHSRIKRPSDAVKPGDVVNVKILKLDPEAGRLSLSLKATQPGPWEQVEEKAPV	279

Ms_bS1	GQIVPGKVTKLVPFGAFVRVEEGIEGLVHISELSERHVEVPDQVVQVGDDAMVKVIDIDL	353
Sa_bS1	NDVIEGVVVRLANFGAFVEIAPGVQGLVHISEIAHKHIGTPGEVLEPGQQVNVKILGIDE	338
Ll_bS1	GSTVEGTVKRLTDFGAFVELYPGVEGLVHVSQISWERVENPKDVLKVGQVVNVKVLDVKP	339
	* * :*. ***** ****************	
Ms_bS1	ERRRISLSLKQANEDYTEEFDPSK-YGMADSYDEQGNYIFPEGFDPETNEWLE	405
Sa_bS1	ENERVSLSIKATLPNEDVVESDPSTTKAYLENEEEDNPTIGDMI	382
Ll_bS1	AEERISLSIKALEEAPARPARNNDNDGEKRDRKPRAPRKAAKPSYDLPETQEGFSLADFL	399
	· * * * * * * * * * * * * * * * * * * *	
Ms bS1	GFDKQREEWEARYAEAERRHKMHTAQMEKFAAAEAEAANAPVSNGSSRSEESSGGTLASD	465
Sa bS1	GDKLKNLKL	391
Ll bS1	GEDFDINDL	408
_	*	
Ms_bS1	AQLAALREKLAGNA 479	
Sa_bS1	391	
Ll_bS1	408	

Figure S10: Sequence alignment of bS1 from *Ms*, *Sa* and *LI*. The sequence alignment between bS1 from *M. smegmatis (Ms)*, *S. aureus (Sa)* and *L. lactis (LI)* shows that *Ms* bS1 is significantly different when compared with *Sa* and *LI* bS1.

Figure S11.

Figure S11: Secondary structure diagram of *Ms* **tmRNA.** Secondary structure of tmRNA from *Ms*, highlighting the structural domains TLD, MLD, pseudoknots and helices. MLD coding for protein degradation tag (ADSNQRDYALAA) is underlined with resume codon shown in red and stop codon in black. The different domains are colored similar to fig. 3b. The dots denote counts after every 10 nucleotides. Watson-crick base pairs are shown in lines (-), G₀U base pairs with rings (₀), and non-standard base pairs with dots (•). The figure is adapted from tmRNA database website¹².

Figure S12.

Figure S12: Structure of tmRNA in the trans-translating 70S map. (a) Fitted tmRNA model with the extracted density filtered to 15 Å. tmRNA density is shown in transparent grey surface and different domains of tmRNA are colored similar to fig. 3b. **(b)** Comparison of tmRNA from *Ms* (purple) and *Tth* (grey) (PDB: 3IYR) and sequence comparison of the degradation tags encoded by MLD. An insertion of 9 nucleotides is boxed in the MLD of Ms^{13} .

Figure S13.

Figure S13: mRNA exit site. (a) Atomic models of the *Ms* (light blue) and *Ec* ribosomes (grey, PDB ID: 4YBB)¹⁴ are super-positioned to show the overall conserved architecture of the mRNA exit site. Protein bS21 (highlighted in deep-grey) is absent in *Ms*. Models for the helix H54a and protein bS1 are hidden for clarity. (b) The super-position between *Ms* and *Ec* ribosome models as in (a) but with the presence of *Ms* bS1 (deep-blue) and *Ms* H54a (deep-red).

Figure S14: bS1 density in the P/P state 70S ribosome. bS1 density in P/P state 70S map when filtered to 10 Å and shown at 0.01 threshold in UCSF Chimera¹⁵. The density of N-terminal α -helix appears at this resolution. A fragmented density is observed for the first OB domain.

Figure S15: Quality of the P/P state (3.4 Å) and hibernating state (4.1 Å) maps. (a and d) A part of 23S rRNA (Helix 11) showing the quality of map and fitting of nucleotides. (b and e) Density and fitting of a small part of 23S rRNA (C2271-A2305) extracted in chimera. (c and f) Density and fitting of LSU protein bL28 extracted in chimera. a-c, P/P state (3.4 Å) map; d-f hibernating state (4.1 Å) map.

Local correlation between map-model

Figure S16: Local agreement between the cryo-EM maps and models. The 50S subunit **(a)**, 30S subunit **(b)**, and 70S **(c)** cryo-EM maps from P/P state are colored based on the local correlation values between the cryo-EM maps and respective atomic models (calculated using UCSF Chimera¹⁵) to indicate the presence of minimal overfitting in the final models.

References

- 1 Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single particle refinement in EMAN2.1. *Methods* **100**, 25-34, doi:10.1016/j.ymeth.2016.02.018 (2016).
- 2 Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. *Elife* **5**, doi:10.7554/eLife.18722 (2016).
- 3 Fischer, N. *et al.* Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. *Nature* **520**, 567-570, doi:10.1038/nature14275 (2015).
- 4 Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. *Nat Methods* **11**, 63-65, doi:10.1038/nmeth.2727 (2014).
- 5 Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. *J Mol Biol* **333**, 721-745 (2003).
- 6 Matzov, D. *et al.* The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. *Nat Commun* **8**, 723, doi:10.1038/s41467-017-00753-8 (2017).
- 7 Franken, L. E. *et al.* A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. *Nat Commun* **8**, 722, doi:10.1038/s41467-017-00718-x (2017).
- 8 Demo, G. *et al.* Structure of RNA polymerase bound to ribosomal 30S subunit. *Elife* **6**, doi:10.7554/eLife.28560 (2017).
- 9 Byrgazov, K. *et al.* Structural basis for the interaction of protein S1 with the Escherichia coli ribosome. *Nucleic Acids Res* **43**, 661-673, doi:10.1093/nar/gku1314 (2015).
- 10 Park, E. *et al.* Structure of the SecY channel during initiation of protein translocation. *Nature* **506**, 102-106, doi:10.1038/nature12720 (2014).
- 11 Ahmed, T., Shi, J. & Bhushan, S. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation. *Nucleic Acids Res* **45**, 8581-8595, doi:10.1093/nar/gkx499 (2017).
- 12 Hudson, C. M. & Williams, K. P. The tmRNA website. *Nucleic Acids Res* **43**, D138-140, doi:10.1093/nar/gku1109 (2015).
- 13 Weis, F. *et al.* tmRNA-SmpB: a journey to the centre of the bacterial ribosome. *EMBO* J **29**, 3810-3818, doi:10.1038/emboj.2010.252 (2010).

- 14 Noeske, J. *et al.* High-resolution structure of the Escherichia coli ribosome. *Nat Struct Mol Biol* **22**, 336-341, doi:10.1038/nsmb.2994 (2015).
- 15 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).