SUPPLEMENTARY INFORMATION FOR

The Swr1 chromatin-remodeling complex prevents genome instability induced by replication fork progression defects

By

Anjana Srivatsan¹, Binzhong Li¹, Barnabas Szakal², Dana Branzei², Christopher D. Putnam^{1,3}, and Richard D. Kolodner^{1,4,5,6}

From

Ludwig Institute for Cancer Research¹, Departments of Medicine¹ and Cellular and Molecular Medicine⁴, Moores-UCSD Cancer Center⁵ and Institute of Genomic Medicine⁶, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669

And

The FIRC Institute of Molecular Oncology Foundation², Via Adamello 16, 20139 Milan, Italy

Address correspondence to: Richard D. Kolodner rkolodner@ucsd.edu (858) 534-7804 (phone) (858) 822-4479 (fax)

						Chr	V				Chrlll	ChrlV	ChrX	IV	ChrXV
		yei	068c::CAN	1/URA3			can1::P	J2-NAT		ura3∆0	leu2∆0	trp1∆63	lyp1::Tl	RP1	his3∆200
			42					- - D							
								1 ' LE	U2						
					<u> </u>										
Ju	inction:	5-A	5-B	5-C	5-DE	5-D	5-E	5-F	5-G	5-H	3-A	4-A	14-A	14-B	15-A
A	ASY987	262/200	220/211	427/215	139/199	49/131	15/0	137/109	397/117	228/117	208/67	352/121	208/171	71/313	271/107
	ASY988	455/212	522/219	850/222	185/279	119/160	40/127	155/91	666/88	437/145	251/51	548/117	308/203	191/357	545/162
	ASY989	234/142	272/165	421/153	104/18	65/79	17/0	106/79	354/71	302/103	180/32	315/93	221/152	103/301	261/95
	ASYG281	-/-	-/-	-/-	-/-	-/-	-/-	145/59	692/94	381/133	131/27	261/80	143/128	69/258	264/104
	ASYG282	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	197/65	99/37	264/59	148/91	108/196	187/61
	ASYG283	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	228/81	142/34	356/93	160/111	152/307	349/106
	ASYG284	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	241/95	118/32	21/62	163/115	100/256	248/83
	ASYG285	-/-	-/-	-/-	276/220	75/113	37/120	254/77	580/66	316/74	153/25	546/134	277/191	265/348	477/151
	ASYG286	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	389/142	250/80	530/153	316/201	177/367	482/148
	ASYG287	-/-	-/-	-/-	-/-	-/-	-/-	446/158	1108/192	792/208	288/80	628/157	304/215	143/381	469/136
ç	ASYG288	-/-	-/-	-/-	-/-	-/-	-/-	199/46	700/107	260/76	178/51	319/88	202/143	138/276	295/98
ŝ	ASYG289	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	335/140	285/67	534/142	316/166	160/377	585/151
ב	ASYG291	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	224/78	200/37	325/84	159/131	86/258	256/83
	ASYG292	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	594/135	363/60	918/167	489/232	353/412	867/210
	ASYG293	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	384/124	314/56	529/194	289/196	157/310	469/148
	ASYG294	-/-	-/-	-/-	-/-	-/-	-/-	36/10	423/64	298/111	186/34	361/90	220/144	110/287	285/109
	ASYG470	-/-	-/-	-/-	161/225	88/146	33/92	124/79	454/78	347/115	260/69	394/47	309/169	123/307	355/115
	ASYG471	606/218	739/235	1005/231	264/265	127/157	66/132	213/90	777/100	531/119	291/61	691/127	379/234	318/374	687/162
	ASYG472	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	384/128	328/62	571/115	316/194	228/349	524/118
	ASYG473	-/-	-/-	-/-	114/2	92/141	23/0	107/78	483/77	278/101	260/49	380/94	206/161	99/311	331/117
	ASYG4/4	-/-	-/-	-/-	146/220	47/162	20/0	145/83	360/90	292/122	251/72	385/119	242/1/0	86/32/	325/88
	ASYG475	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	266/101	232/56	279/97	226/142	73/292	257/101
R	AST0470	-/-	-/-	-/-	229/405	102/204	25/0	220/167	045/120	2/0/100	204/41	671/161	266/217	360/205	760/211
U	AST1110	579/200	501/2//	021/216	212/204	105/204	54/126	251/102	711/06	400/137	277/70	6/5/153	303/207	200/203	607/1/2
	AST119 ASV1120	380/173	412/173	607/171	130/221	94/161	37/110	121/82	469/65	304/97	2/7/70	401/104	284/151	141/346	331/107
	ASYG308	-/-	-/-	-/-	-/-	-/-	-/-	370/63	1253/165	907/233	261/63	733/164	369/219	316/423	539/164
	ASYG309	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	203/80	77/45	344/93	204/131	138/269	316/96
	ASYG310	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	282/103	142/29	353/91	218/159	149/331	321/132
	ASYG311	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	318/103	207/60	399/129	279/168	131/310	343/124
	ASYG312	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	231/82	154/31	302/89	148/138	96/272	300/112
	ASYG313	-/-	-/-	-/-	142/221	81/83	44/123	143/85	456/73	294/109	181/30	420/90	225/152	131/305	333/103
	ASYG314	-/-	-/-	559/232	235/270	67/183	18/0	217/111	476/125	420/159	327/94	502/143	355/215	105/347	390/135
5	ASYG315	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	284/117	288/67	385/110	231/162	83/313	322/117
110	ASYG316	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	198/84	138/35	276/63	132/122	75/215	190/68
	ASYG317	-/-	-/-	-/-	-/-	-/-	-/-	162/42	896/107	359/133	245/55	506/125	298/182	162/349	397/109
	ASYG318	-/-	-/-	-/-	126/235	96/144	31/113	147/69	460/61	311/114	240/51	451/105	245/186	170/306	427/106
	ASYG484	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	369/144	223/80	449/116	310/224	196/332	442/131
	ASYG485	-/-	-/-	-/-	-/-	-/-	-/-	371/45	1216/114	1057/229	339/64	719/136	476/226	293/363	523/132
	ASYG486	-/-	-/-	-/-	-/-	-/-	-/-	176/74	472/115	360/136	345/72	517/132	332/202	103/353	396/138
	ASYG487	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	400/151	411/73	637/150	354/4	144/390	415/153
	ASYG488	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	267/143	225/75	365/145	254/225	99/533	257/105
	ASYG489	-/-	-/-	-/-	-/-	-/-	-/-	-/-	521/93	353/119	310/52	599/114	322/189	176/368	449/135
	ASYG490	-/-	-/-	-/-	-/-	-/-	-/-	161/126	1072/140	689/204	299/56	489/117	273/201	184/366	462/117

ChrV Chr	III ChrlV ChrXIV ChrXV
yel068c::CAN1/URA3 can1::P _{LEU2} -NAT ura3∆0 leu2i	Δ0 trp1Δ63 lyp1::TRP1 his3Δ200
LIRAS CANI	TRP1 TRP1 HURS
Junction: 5-A 5-B 5-C 5-DE 5-D 5-E 5-F 5-G 5-H 3-A	A 4-A 14-A 14-B 15-A
ASY1112 411/197 433/210 545/202 374/303 97/151 72/160 317/137 49/131 262/105 201/-	61 551/135 273/183 191/356 426/131
ASY1113 483/260 610/260 705/218 493/365 116/181 142/203 459/182 850/222 281/132 243/	67 669/186 252/196 206/407 539/180
ASY1114 279/153 320/166 385/140 234/257 54/106 50/155 246/125 421/153 202/86 172/-	42 391/86 210/124 99/301 282/100
ASYG295 -//////- 537/217 335/	65 563/132 327/190 231/368 471/127
ASYG296 -//////- 579/180 216/	52 547/106 333/206 188/330 383/110
ASYG297 -//- 346/231 93/107 64/136 302/87 482/58 292/105 190/	36 549/121 268/181 179/321 437/123
ASYG298 -//- 400/311 84/151 66/169 344/96 527/57 318/111 200/-	42 613/121 329/188 247/339 473/136
ASYG299 -//- 249/265 97/146 53/129 230/95 504/63 294/102 239/	50 493/103 293/172 164/332 414/110
ASYG300 -/////- 294/54 739/96 227/106 175/	51 432/131 355/196 190/338 370/111
ASYG301 -//////- 64/90 87/2	22 97/62 22/60 24/165 178/81
ASYG302 -//- 180/189 489/371 132/193 431/150 826/87 263/89 196/-	46 525/98 297/146 194/310 403/121
E ASYG303 -//////- 221/71 139/	24 408/77 240/142 146/293 323/111
ASYG306 -/////- 127/77 280/78 217/88 182/0	69 359/115 216/173 114/291 263/105
ASYG307 -///////- 490/159 192/	55 437/102 263/135 150/294 334/110
ASYG477 -//////- 36/45 199/12/ 203/9	91 419/146 268/193 130/334 305/129
ASYG4/8 -///////- S9/18 165//9 123/.	39 301/71 160/122 105/261 259/73 27 291/90 225/127 116/250 202/90
ASYG4/9 -////////- 354/119 134/.	Z/ 381/80 ZZS/1Z/ 110/239 303/88 22 516/126 206/141 147/261 247/101
ASYG480 -//- 423/208 124/122 00/152 431/112 438/52 308/120 100/.	32 310/120 200/141 147/201 347/101
ASTG461 -//////- 233/34 041/34 423/142 131/.	23 286/70 175/121 103/258 258/77
AS10462 -//////- 136/34 530/09 500/101 132/.	25 260/70 173/121 103/230 250/77 37 552/121 284/140 163/291 360/88
$D = \frac{ASY1202}{ASY1202} \frac{445/151}{479/173} \frac{479/173}{715/180} \frac{389/241}{389/241} \frac{90/105}{62/142} \frac{62/142}{285/95} \frac{505/51}{505/51} \frac{267/90}{267/90} \frac{132/1}{132/100} \frac{132}{100} \frac{100}{100} \frac$	25 433/104 209/159 194/296 449/127
ASY1203 442/176 456/240 753/213 304/273 64/139 46/154 255/120 516/72 298/105 140/	31 510/323 252/171 177/368 367/142
ASY1204 579/187 705/199 923/202 493/298 89/149 87/168 394/122 661/61 377/99 176/-	40 672/141 283/191 279/380 660/161
ASYG320 -/////- 281/108 222/	39 497/137 246/161 122/302 350/121
ASYG321 -//////- 353/100 171/-	62 550/136 298/182 158/340 389/135
ASYG322 -//- 300/222 118/119 56/122 269/86 505/40 439/109 157/-	41 637/123 340/164 292/319 492/139
ASYG323 -/////- 23/45 481/54 381/102 159/	34 565/113 299/194 283/337 489/117
ASYG324 -//- 250/233 64/131 27/102 185/69 501/62 336/95 126/-	40 520/116 325/335 253/190 408/123
ASYG325 -//////- 370/113 98/2	25 309/70 179/113 129/241 239/93
ASYG326 -//////- 281/92 118/	28 456/89 249/156 207/331 378/99
ASYG327 527/166 -//- 341/298 130/178 45/144 303/92 633/80 445/150 302/	54 645/113 366/215 290/407 586/169
SYG328 -///////- 248/93 188/	38 438/110 245/174 164/335 322/114
ASYG329 -//////- 383/146 227/	53 703/184 402/235 218/411 661/188
C ASYG330 -///////- 414/181 346/	70 626/150 414/235 173/372 454/157
ASYG331 -//- 373/127 120/160 78/106 17/0 103/57 295/65 410/139 185/	34 451/133 247/140 121/306 385/144
ASYG332 -//////- 319/115 278/	59 466/139 354/205 151/356 370/122
ASYG333 610/246 -/- 821/260 507/368 118/198 74/175 440/114 614/90 486/161 290/	70 705/169 492/253 286/437 584/164
ASYG547 -//- 593/190 425/340 126/184 65/165 440/128 544/83 531/122 280/	56 800/148 460/215 278/396 560/153
ASYG548 -//- 193/278 113/153 62/137 173/103 520/87 346/118 287/4	42 506/130 291/183 118/332 400/111
ASYG549 281/133 439//1 421/154 175/186 68/126 23/0 152/68 385/66 276/90 205/.	36 367/99 256/155 131/311 314/104 31 416/112 252/155 131/311 314/104
ASVCEE1 / / / / / / / / / / / / / / / // // 331/109 486/1	U1 416/113 252/16/ 103/315 319/113 44 545/124 255/164 141/241 462/167
ASVESEA / -///////- 334/115 357/-	44 545/124 255/184 141/341 462/167 52 632/140 201/200 202/271 402/125
۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ ۵۵۷/۵۶۶۶ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ -	30 022/140 301/200 208/371 498/125 30 377/00 331/107 151/370 330/94
ASYG319 212/135 323/86 406/117 105/172 66/91 8/0 76/50 295/54 226/77 166/	51 289/80 170/129 102/253 244/89

ASY987	—
ASY988	_
ASY989	_
ASYG281	
ASYG282	
ASYG283	
ASYG284	
ASYG285	_
ASYG286	
ASYG287	
ASYG288	
ASYG289	
ASYG291	
ASYG292	
ASYG293	
ASYG294	
ASYG470	
ASYG471	_
ASYG472	
ASYG472	_
ASYG473	
ASYG474	
ASYG475	
ASYG476	

ASY1118	
ASY1119	
ASY1120	
ASYG308	
ASYG309	
ASYG310	
ASYG311	
ASYG312	
ASYG313	
ASYG314	
ASYG315	
ASYG316	
ASYG317	
ASYG318	
ASYG484	
ASYG485	
ASYG486	
ASYG487	
ASYG488	
ASYG489	
ASYG490	

ASY1112	
ASY1113	
ASY1114	
ASYG295	_
ASYG296	_
ASYG297	
ASYG298	
ASYG299	
ASYG300	
ASYG301	
ASYG302	
ASYG303	_
ASYG306	
ASYG307	
ASYG477	
ASYG478	
ASYG479	
ASYG480	
ASYG481	_
ASYG482	
ASYG483	

ASY1202	
ASY1203	
ASY1204	
ASYG319	
ASYG320	
ASYG321	
ASYG322	
ASYG323	
ASYG324	
ASYG325	
ASYG326	
ASYG327	
ASYG328	_
ASYG329	
ASYG330	
ASYG331	
ASYG332	
ASYG333	_
ASYG547	
ASYG548	
ASYG550	
ASYG551	
ASYG554	
ASYG555	_

Supplementary Figure 1. Identification of the engineered chromosomal features in uGCR assay strains by WGS. A-E, H, K, N. For each junction, the evidence in the paired-end sequencing data is reported. The number preceding the slash is the number of junction-defining read pairs (those for which one read maps to one side of the junction and the other read maps to the other side of the junction). The number following the slash is the number of junction-sequencing reads (those that can be aligned to derive the sequence of the junction). "-/-" indicates a junction that could have been observed but was not observed, which is typically due to a GCR-related deletion. Note that some sequences are short enough that some read pairs span multiple junctions, e.g. junction 5-DE contains read pairs that span both junctions 5-D and 5-E. F, G, I, J, L-P. Read-depth analysis of the regions including *MRC1* and *SWR1*, indicating that the expected deletions were observed for strains of each relevant genotype. In some cases, GCR-associated chromosomal rearrangements increase the copy number of sequences adjacent to the deletion to 2n.

	ChrV								Chrlll	ChrlV	ChrX	IV	ChrXV		
		yel	1068c::CAN	1/URA3			can1::P _{LEU}	-NAT		ura3∆0	leu2∆0	trp1∆63	lyp1::T	RP1	his3∆200
		- UR	АЗ НСА			$-\Gamma$	NA		-112	URA3	-LE02>	TPP1	- TRP	7	HJB3
		\sim												_/	
Ju A	inction:	ш 5-А	ى 5-B	ت 5-C	5-DE	ےں 5-D	 5-Е	ى 5-F	ے۔ 5-G	с 5-Н	ш 3-А	Ц 4-А	ш 14-А	ш 14-В	ىك 15-A
Λ	ASY566	12/20	21/21	27/14	9/5	12/4	12/7	13/7	14/9	24/9	25/2	32/11	11/30	16/12	20/2
	ASYG176	-/-	-/-	-/-	-/-	-/-	-/-	4/0	9/2	38/9	16/12	21/6	6/27	14/8	11/3
	ASYG178	-/-	-/-	-/-	-/-	-/-	-/-	-/-	22/11	55/25	28/5	19/9	4/0	12/15	14/3
	ASYG179	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	26/8	33/11	24/9	8/17	21/6	12/6
	ASYG180	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	21/5	16/10	26/8	2/0	15/10	16/4
r1	ASYG261	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	19/7	12/4	15/5	7/20	6/7	20/6
SN	ASYG262	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	35/15	24/10	16/6	5/0	14/21	15/7
	ASYG271	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	20/5	26/10	16/7	3/0	14/11	22/5
	ASYG272	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	18/7	28/10	18/9	4/0	9/11	15/9
	ASYG273	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	21/11	11/6	10/3	2/0	17/14	11/8
	ASYG274	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	13/2	21/2	17/8	3/0	7/4	10/19
В	ASYG275	-/-	-/-	-/-	-/-	-/-	17/60	-/-	-/-	20/5	170/58	206/70	122/119	F9/256	101/76
-	ASVG158	-/-	170/144	230/1300	-/-	/4/09	-/-	-/-	201/70	218/88	160/62	200/79	122/110	56/244	200/11/
	ASYG159	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	141/68	100/02	187/57	112/74	35/184	149/75
	ASYG160	-/-	-/-	-/-	-/-	-/-	-/-	-/-	, 94/40	119/47	59/25	157/61	78/61	36/136	128/66
11	ASYG161	-/-	-/-	-/-	-/-	-/-	-/-	-/-	167/52	179/74	151/57	149/100	134/91	34/200	170/93
5	ASYG162	-/-	-/-	-/-	-/-	-/-	-/-	-/-	103/44	177/57	148/44	215/82	147/99	41/198	135/81
	ASYG163	-/-	-/-	-/-	-/-	-/-	-/-	-/-	143/53	171/77	158/49	206/131	171/151	56/246	158/43
	ASYG164	-/-	-/-	-/-	-/-	-/-	-/-	-/-	194/56	206/123	229/52	306/89	182/131	71/260	227/68
	ASYG266	-/-	-/-	-/-	-/-	-/-	-/-	-/-	172/108	198/66	208/60	220/72	178/121	42/211	165/57
	ASYG267	-/-	-/-	-/-	43/31	4/0	20/0	112/39	153/53	198/66	196/52	230/67	159/127	41/218	186/56
	ASYG268	-/-	-/-	194/95	93/95	65/65	14/0	91/39	142/65	269/76	239/50	283/92	164/100	58/235	197/53
	ASYG269	-/-	-/-	-/-	-/-	-/-	-/-	-/-	48/42	220/65	175/51	264/120	151/105	47/228	169/54
С	ASY639	204/183	269/269	373/204	126/251	61/126	33/129	186/165	163/188	225/132	182/53	246/78	147/140	82/249	235/128
	ASYG187	-/-	-/-	-/-	-/-	-/-	-/-	-/-	203/113	205/102	211/71	242/92	169/136	89/256	244/111
	ASYG188	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	211/118	201/89	211/96	148/138	37/386	170/114
	ASYG189	-/-	-/-	-/-	-/-	-/-	-/-	-/-	60/38	320/127	201/89	387/93	237/131	136/272	321/145
4	ASYG190	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	170/66	170/70	184/89	137/131	44/349	146/92
ĩ	ASYG191	-/-	-/-	-/-	-/-	-/-	-/-	-/-	54/44	1/9/69	1/4/54	240/82	07/112	49/335	117/01
Ē	ASYG263	-/-	-/-	-/-	-/-	-/-	-/-	-/-	/9/51	100/101	106/100	120/90	9//11Z	17/0	130/88
mr	ASTG204	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	121/102	135/50	107/02	103/100	21/220	1/2/112
	ASYG277	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	108/88	120/73	117/74	97/95	22/231	110/86
	ASYG278	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	163/84	154/69	189/90	137/130	57/321	167/103
	ASYG279	-/-	-/-	-/-	-/-	-/-	-/-	-/-	90/39	115/66	118/53	133/60	102/117	34/315	128/80
D	ASY749	136/89	118/81	197/73	110/89	67/57	31/0	102/41	126/37	129/48	160/24	205/75	141/88	67/203	148/66
U	ASYG230	-/-	-/-	-/-	274/184	150/111	70/55	252/78	252/106	143/61	203/52	250/82	189/116	106/259	212/100
	ASYG231	-/-	-/-	233/84	96/111	24/36	59/136	62/108	69/32	51/27	69/33	86/23	18/36	18/169	76/28
5	ASYG232	-/-	-/-	287/128	137/142	58/67	51/62	139/62	136/51	147/67	125/47	194/65	142/127	56/233	170/95
CIANI	ASYG233	-/-	-/-	-/-	-/-	-/-	-/-	-/-	101/71	201/77	210/74	262/129	120/117	46/247	215/60
5	ASYG234	-/-	-/-	359/166	223/180	131/99	58/0	206/103	273/86	291/120	352/103	388/125	288/161	89/337	262/66
la la	ASYG235	-/-	-/-	-/-	-/-	-/-	-/-	-/-	216/85	211/109	268/49	341/90	217/128	72/290	223/64
	ASYG236	-/-	-/-	-/-	-/-	-/-	-/-	-/-	127/58	139/50	149/38	223/100	139/106	43/210	188/88
	ASYG237	-/-	-/-	-/-	233/164	113/79	54/94	211/88	189/85	207/97	287/51	326/108	239/146	102/290	259/66
	ASYG238	-/-	-/-	-/-	-/-	-/-	-/-	-/-	99/53	210/60	314/75	310/87	206/144	81/280	207/99
	ASYG239	-/-	-/-	-/-	-/-	-/-	-/-	-/-	181/90	175/71	289/63	272/77	172/137	41/0	192/60
F	ASY746	100/69	122/93	205/91	62/90	69/54	21/0	64/40	94/41	228/71	206/44	248/68	130/106	45/247	177/61
-	ASYG200	-/-	-/-	-/-	-/-	-/-	99/94	249/101	541/137	497/161	268/62	544/340	180/122	185/340	468/100
Wr1	ASYG201	-/-	-/-	-/-	-/-	-/-	82/176	333/63	2/6/108	354/109	107/21	389/87	182/132	161/300	344/67
15 4	ASYG202	-/-	-/-	-/-	192/182	104/91	65/99	202/95	246/98	299/84	317/66	424/103	210/153	93/312	391/93
15	ASYG203	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	444/113	260/54	332/106	1/5/113	109/275	296/60
-1-	ASYG204	-/-	-/-	-/-	-/-	-/-	-/-	393/74	454/134	337/88	357/91	502/112	413/148	152/390	303/119
mr	ASTG205	-/-	-/-	-/-	322/251 _/_	-/-	-/-	293/119	104/50	327/84 2/1/75	220/44	302/112	200/182	69/277	109/40
	ASVC200	-/-		-,-		,			104/51	241/73	220/44	225/122	102/152	60/267	220/02
	ASVC200	-/-	-/-	-/-	-/-	-/-	-/-	-/-	566/171	586/234	101/65	200/89	132/146	32/0	177/63
	ASYG210	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	503/118	321/85	352/128	210/164	80/294	289/82
			,	· ·									.,		

R

31

2r

0nL 1132

SWR1

1136

1140

Chromosome IV coordinate (kbp)

S

	ASYG179	_
	ASYG180	_
	ASYG261	_
	ASYG262	_
	ASYG271	_
	ASYG272	_
	ASYG273	_
	ASYG274	_
	ASYG275	_
ł	1010275	
3		
'		
	ASY558	

ASY566

ASYG176

ASYG178

			ASYG158
			ASYG159
L L AL			ASYG160
	التناشيانا	ha.	ASYG161
JI. MUMU	I MARANA		ASYG162
			ASYG163
101.14	W 7 9 W 4	una -	ASYG164
Markin	الالبابيال		ASYG266
ANN AN	21.127.00	di Ma	ASYG267
alda, altaa	al a baada a ba	AMA	ASYG268
		11	ASYG269
1136	1140	1144	

ASY639

ASYG187

ASYG188

ASYG189

ASYG190

ASYG191

ASYG263

ASYG264 ASYG276

ASYG277

ASYG278

ASYG279 _

			ASY746 — ASYG200 — ASYG201 — ASYG202 — ASYG203 — ASYG204 — ASYG206 — ASYG208 — ASYG208 —
114	40	1144	ASYG210

1144

Chromosome IV coordinate (kbp)

Supplementary Figure 2. Identification of the engineered chromosomal features in sGCR assay strains by WGS. A-J. Evidence for each engineered junction displayed as in Supplementary Fig. 1. K-T. Read-depth analysis of the *MRC1* and *SWR1*-containing chromosomal regions displayed as in Supplementary Fig. 1.

Supplementary Figure 3. Analysis of wild-type GCRs isolated in the uGCR assay. Analysis of *de novo* telomere additions (**A**), interstitial deletions and hairpin-mediated inverted duplications (**B**) isolated from a wild-type uGCR parental strain (RDKY8625). Copy-number analysis of the sequenced parental strain and GCR-containing strains shows that all GCRs include deletion of the *CAN1/URA3*-containing portion of chromosome V L (left) and either duplication of a terminal region of a target chromosome or addition of a *de novo* telomere or an interstitial deletion whose junction sequences can be identified (right). The thick-hashed blue arrow indicates sequences within the GCR; the thin dashed blue arrow indicates connectivity between portions of the GCR that map to different regions of the reference chromosome(s). Multi-copy sequences involved in GCR-related HR events are shown as triangles; red triangles are Ty-related homologies and green triangles are other homologies.

Supplementary Figure 4.

:ChrV 25,840+

Microhomology-containing translocation

Supplementary Figure 4. Analysis of *swr1* Δ GCRs isolated in the uGCR assay. GCRs derived from a *swr1* Δ uGCR parent strain (RDKY8808) are depicted as described in Supplementary Fig. 3. Observed rearrangements include *de novo* telomere addition-mediated GCRs and interstitial deletions (A); hairpin-mediated inverted duplications (B); and microhomology-containing translocations (C). When more than one GCR is present, the second rearrangement is shown with green arrows.

B.

Supplementary Figure 5. Analysis of mrc1/ GCRs isolated in the uGCR assay. GCRs

derived from an *mrc1*/2 uGCR parent strain (RDKY8804) are depicted as described in Supplementary Fig. 3. Observed rearrangements include hairpin-mediated inverted duplications (**A and B**); and *de novo* telomere addition-mediated GCRs and microhomology-containing translocations (**C**). When more than one GCR is present, the second rearrangement is shown with green arrows.

Supplementary Figure 6. Analysis of $mrc1\Delta$ $swr1\Delta$ GCRs isolated in the uGCR assay. GCRs derived from an $mrc1\Delta$ $swr1\Delta$ uGCR parent strain (RDKY9085) are depicted as described in Supplementary Fig. 3. Observed rearrangements include *de novo* telomere addition-mediated GCRs and interstitial deletions (A); microhomology-containing translocations (B); and hairpin-mediated inverted duplications (C). When more than one GCR is present, the second rearrangement is shown with green arrows.

А

Supplementary Figure 7. Analysis of *swr1* Δ GCRs isolated in the sGCR assay. GCRs derived from a *swr1* Δ sGCR parent strain (RDKY9077) are depicted as described in Supplementary Fig. 3. Observed rearrangements include *de novo* telomere addition-mediated GCRs and interstitial deletions, hairpin-mediated inverted duplications, and homology-mediated inverted duplications (**A**); homology-mediated translocations (**B**).

В

Supplementary Figure 8. Analysis of $mrc1\Delta$ GCRs isolated in the sGCR assay. GCRs derived from an $mrc1\Delta$ sGCR parent strain (RDKY9081) are depicted as described in Supplementary Fig. 3. Observed rearrangements include homology-mediated inverted duplications (**A**); and *de novo* telomere addition-mediated GCRs and interstitial deletions (**B**).

Supplementary Figure 9. Analysis of *mrc1-1-843* GCRs isolated in the sGCR assay. GCRs derived from an *mrc1-1-843* sGCR parent strain (RDKY9102) are depicted as described in Supplementary Fig. 3. Observed rearrangements include homology-mediated translocations (A); and *de novo* telomere addition-mediated GCRs and microhomology-mediated translocations (B).

Α

Supplementary Figure 10. Analysis of mrc1A swr1A GCRs isolated in the sGCR assay.

GCRs derived from an $mrc1\Delta$ swr1 Δ sGCR parent strain (RDKY9083) are depicted as described in Supplementary Fig. 3. Observed rearrangements include hairpin-mediated inverted duplications and homology-mediated inverted duplications (**A**); and *de novo* telomere additionmediated GCRs and interstitial deletions (**B**). А

Supplementary Figure 11. Analysis of *mrc1-1-843 swr1*△ GCRs isolated in the sGCR assay. GCRs derived from an *mrc1-1-843 swr1*△ sGCR parent strain (RDKY9104) are depicted as described in Supplementary Fig. 3. Observed rearrangements include hairpin-mediated inverted duplications (A); and interstitial deletions and homology-mediated translocations (B).

Potential mechanism of inversion formation

Supplementary Figure 12G

Supplementary Figure 12I

Supplementary Figure 12. Structures of hairpin intermediates in hairpin-mediated inverted duplications. A. Potential mechanism for the formation of a hairpin-mediated inverted duplication. **B.-J**. Top for each isolate: junction sequences recovered from NGS of the hairpin-mediated inverted duplication GCRs (middle line) and alignments to the two portions of the reference genome (top and bottom lines). The sequence between the colons corresponds to the microhomology at the junction, which likely corresponds to the annealed position of the hairpin intermediate. Bottom for each isolate: structures of the key hairpin intermediates. Loop sizes are not drawn to scale.

Supplementary Figure 13.

Supplementary Figure 13. Analysis of the aneuploidy in *mrc1* Δ *swr1* Δ parental strains and GCR-containing isolates. Copy number histogram plots for all chromosomes of the sequenced *mrc1* Δ *swr1* Δ uGCR parental strains (ASY1202-ASY1204) and the GCR-containing isolates derived from these strains. The parental strain for each isolate is indicated in parentheses. The x-value at the peak position for each plot corresponds to the average number of times base pairs in unique sequences were present in sequence reads. Secondary peaks specified by the arrow and accompanying description indicate copy number alterations in specific chromosomes, which are either GCR-related or due to aneuploidy.

Supplementary Figure 14. Defects in Tof1-Csm3 cause constitutive DNA-damage

checkpoint activation. A. Distribution of Ddc2-GFP foci in strains with a $tof1\Delta$ or $csm3\Delta$ mutation with or without the $swr1\Delta$ mutation. **B.** Hug1-GFP induction in strains with a $tof1\Delta$ or $csm3\Delta$ mutation with or without the $swr1\Delta$ mutation, shown as the fold change in the mean Hug1-GFP level measured by FACS. The mean fold changes were calculated from at least 2 independent experiments using at least 2 independent isolates for each strain. Individual observations are shown as dots overlaid on the bar graphs. The error bars represent the standard error of the mean. Asterisks represent significant differences with respect to the wild-type strain as follows: * p < 0.005, ** p < 0.0005 (2-tailed t-test).

Supplementary Figure 15

Supplementary Figure 15. Defects in Tof1-Csm3 and SWR-C/Htz1 cause synergistic

sensitivity to replication stress. A, B. Ten-fold serial dilutions of wild-type and mutant strains containing the $tof1\Delta$ or $csm3\Delta$ mutation with or without the $swr1\Delta$ mutation (A) or $htz1\Delta$ mutation (B) were plated on media containing 0-0.03% MMS or 0-100 mM HU. Plates were imaged after 2 days of growth at 30°C. C. Doubling times of the indicated strains in the absence of DNA-damaging agents. Individual observations as shown as dots overlaid on the bar graphs. The error bars represent the standard error of the mean.

A $\log \rightarrow G1 \rightarrow HU$ (4hr at 28 °C) \rightarrow release in YPD (at 28 °C)

Supplementary Figure 16. S-phase progression in the presence of HU and after transient HU treatment. Logarithmically growing cells of the indicated genotypes were arrested in G1 phase, allowed to replicate in the presence of 200 mM HU for 4 hr and then released in normal media. Samples were taken at the indicated time-points for FACS analysis.

 $\log \rightarrow G1 \rightarrow$ release into 200 mM HU

Supplementary Figure 17. Profile of replication intermediates in *mrc1* strains proficient or deficient in the SWR-C/Htz1. 2D gels and FACS profiles of strains of the indicated genotype, replicating in the presence of 200 mM HU. The profile of replication intermediates revealed by 2D gels corresponds to the ARS305 region, as in Fig. 5A.

Supplementary Figure 18

 $\log \rightarrow G1 \rightarrow$ release into 200 mM HU (4 hr) \rightarrow release into YPD

Supplementary Figure 18. Profile of replication intermediates after release from HU treatment in *tof1* **strains proficient or deficient in the SWR-C/Htz1.** 2D gels and FACS profiles of the indicated strains released into normal YPD medium after treatment with 200 mM HU for 4 hours. The profile of replication intermediates revealed by 2D gels corresponds to the ARS305 region as in Fig. 5A.

Supplementary Figure 19

Supplementary Figure 19. The mrc1-1-843 truncation is a replication-defective separation-of-function allele. A. Sequences of the previously published Mrc1-c14 mutant protein (upper)¹ and the Mrc1-1-843 construct generated in this study (lower). In each case, the amino acid sequence downstream of Mrc1 amino acid 843 is shown. B. Replication profiles of the wild-type (BY4741), mrc1-1-843 (RDKY9285) and BY4741 mrc1A (obtained from the BY4741 MATa yeast deletion collection) strains after release from alpha-factor-mediated arrest. Log-phase cultures were arrested in G1, released into fresh YPD medium, and samples were taken at the indicated time-points for FACS analysis. C. The mrc1-1-843 mutation does not cause sensitivity to HU. Ten-fold serial dilutions of wild-type (RDKY7635), mrc1A (RDKY8301), and mrc1-1-843 (RDKY8967) were plated on YPD and plates containing 100 or 200 mM HU. Plates were imaged after 2 days of growth at 30°C. The white horizontal line indicates the position where images from the same plate were spliced together for clarity. **D**. The mrc1-1-843 mutation does not cause synthetic lethality when combined with deletion of RAD9. Gel images showing the PCR reactions used to verify the mrc1-1-843 truncation mutation (upper) and the deletion of RAD9 (lower) in 5 independent isolates containing mrc1-1-843.kanMX4 and rad9A::HIS3 (RDKY9286-9290). For each isolate, 3 pairs of PCR reactions were performed: one each to verify the 5' (left) and 3' (middle) insertion junctions and a third reaction (right) to amplify across the kanMX4 insertion site in the mrc1-1-843.kanMX4 locus or the entire rad9A::HIS3 deletion. A control reaction was performed for all primer pairs using wild-type genomic DNA as a template. The product sizes expected for the 5' junction, 3' junction, and full-length PCRs were 637 bp (0 bp in wild-type), 678 bp (0 bp in wild-type) and 1902 bp (1155 bp in wild-type), respectively, for mrc1-1-843.kanMX4 and 500 bp (0 bp in wild-type), 396 bp (0 bp in wild-type), and 1467 bp (4143 bp in wild-type), respectively, for rad9::HIS3.

		SWR1 ⁺			swr14			
Relevant Genotype	RDKY	Rate (x 10 ⁻⁸) ^{&}	Fold change [#]	RDKY	Rate (x 10 ⁻⁸)	Fold change		
wild-type	7635	8.1 [6.4-15]	1	7785	16 [11-34]	2.0		
$mrc1\Delta$	8301	26 [18-44]	3.2	8302	409 [152-964]	50.3		
htz1Δ	8969	14 [9.9-22]	1.7	9138	14 [11-24]	1.7		
$mrc1\Delta$ htz1 Δ	8975	350 [269-456]	43.1	9140	246 [163-591]	30.3		
tof1∆	8963	22 [16-37]	2.7	8971	51 [36-116]	6.3		
$mrc1\Delta$ tof 1Δ	9141	155 [122-316]	19	9143	1080 [542-2180]	132.9		
mrc1-aq	8305	18 [12-34]	2.2	8306	19 [12-43]	2.3		
$mrc1$ - aq tof1 Δ	9145	39 [22-80]	4.8	9147	91 [49-154]	11		
mrc1-1-843	8967	22 [16-30]	2.7	8973	219 [132-341]	27		
mrc1-1-843 tof1∆	9150	158 [123-230]	20	9152	1340 [560-1810]	164.5		
$csm3\Delta$	8965	34 [20-76]	4.2	8972	72 [50-95]	8.9		
$mrc1\Delta$ csm3 Δ	9154	131 [86-168]	16	9156	1730 [978-3360]	212.5		
$mrc1$ - aq $csm3\Delta$	9158	30 [20-112]	3.7	9160	60 [29-153]	7.4		
mrc1-1-843 csm3∆	9163	147 [134-218]	18.0	9166	933 [819-4590]	115		

Supplementary Table 1. dGCR rates for strains with single and multiple mutations affecting *MRC1*, *TOF1*, *CSM3*, *SWR1*, and *HTZ1*[^].

[^] P values for significance calculated using the Mann-Whitney 2-tailed test are presented in Supplementary Data 1.

[&] The numbers in square brackets represent the 95% confidence interval for each rate.

[#] Fold change = fold change with respect to the wild-type dGCR rate.

Supplementary Table 2. dGCR rates for mutations affecting Htz1 sumoylation,

acetylation, and retention in chromatin[^].

Relevant Genotype		WT		mrc1 /	te	of1∆	csm3⊿	
	RDKY	Rate	RDKY	RDKY Rate		Rate	RDKY	Rate
		$(x \ 10^{-8})^{\&\#}$		(x 10 ⁻⁸)		(x 10 ⁻⁸)		(x 10 ⁻⁸)
HT71+	7635	8.1 [6.4-15]	8301	26 [18-44]	8963	22 [16-37]	8965	34 [20-76]
	7055	(1)	0501	(3.2)	8705	(2.7)	0705	(4.2)
htz 1 A	8060	14 [9.9-22]	8075	350 [269-	0110	105 [48-	013/	90 [59-
112121	8909	(1.7)	0915	456] (43)	9119	201] (13)	9154	202] (11)
$h_{t_{\tau}} I_{-K}(126, 133) R$	9169	8.7 [5.6-12]	9171	26 [18-50]	9173	23 [22-91]	9174	38 [24-94]
<i>m21</i> - <i>K</i> (<i>120,155)K</i>	5105	(1.1)	9171	(3.2)	7175	(2.9)	7174	(4.7)
htz1-K(491115)R	9248	11 [6.6-21]	9256	41 [32-54] (5)		nd		nd
<i>m21</i> -m(+,>,11,13)m	9240	(1.3)	9250	41 [52 54] (5)		n.u.		n.u.
htz1-K(4 9 11 15)()	9251	6.4 [3.6-16]	9258	32 [25-36] (4)		nd		nd
m21 m(1,2,11,10)g	7231	(0.8)	9230	52 [25 50] (1)		11.4.		n.u.
htz1-	9260	18 [12-28]	9263	56 [34-79]		nd		nd
<i>K</i> (4,9,11,15,126,133) <i>R</i>	9200	(2.2)	9205	(6.9)		11.4.		11.4.
htz1_1_14	9265	10 [6.9-21]	9269	240 [162-		nd		nd
	,205	(1.3)	,20)	305] (30)		11.4.		11.4.
htz1_1_120	9267	10 [6.5-18]	9271	79 [50-111]		nd		nd
1121-120	7207	(1.2)	7271	(10)		11.u.		11.4.

[^] P values for significance calculated using the Mann-Whitney 2-tailed test are presented in Supplementary Data 1.

[&] The numbers in square brackets represent the 95% confidence interval for each rate.

[#] The numbers within parentheses represent the fold change in rate with respect to the wild-type rate.

*The dGCR rate of a strain (RDKY9167) with wild-type HTZ1 tagged with HIS3 analogously to the HIS3-

tagged *htz1* sumoylation, acetylation, and truncation mutants is 9.0 [6.6-18] x 10^{-8} (1.1).

	1	1	1	1	1		
Sample	Relevant Genotype	No. Read Pairs	% Read 1 Mapped	% Read 2 Mapped	No. Uniquely Mapping Read Pairs	Median Intra- Read Pair Distance (bp)	Median Read Depth
ASY987	uGCR wild-type	23,376,079 (24,496,086)	98.12%	93.63%	19,050,833	298	178
ASY988	uGCR wild-type	30,104,520 (34,582,188)	99.40%	94.86%	25,187,017	414	239
ASY989	uGCR wild-type	18,935,568 (20,303,221)	99.31%	93.97%	15,608,784	348	141
ASYG281	uGCR wild-type (from ASY989)	17,126,153 (18,420,892)	99.30%	93.15%	13,866,101	372	123
ASYG282	uGCR wild-type (from ASY989)	12,424,567 (12,927,135)	99.11%	90.73%	9,846,983	419	93
ASYG283	uGCR wild-type (from ASY989)	19,627,703 (21,105,027)	99.06%	90.93%	15,646,363	416	149
ASYG284	uGCR wild-type (from ASY989)	16,057,803 (16,862,585)	99.01%	92.69%	13,015,468	370	117
ASYG285	uGCR wild-type (from ASY989)	20,722,556 (23,455,425)	99.34%	92.35%	16,738,649	401	139
ASYG286	uGCR wild-type (from ASY989)	28,872,532 (32,459,697)	99.09%	92.80%	23,636,298	342	213
ASYG287	uGCR wild-type (from ASY989)	31,291,982 (37,403,924)	99.08%	93.63%	25,938,879	337	230
ASYG288	uGCR wild-type (from ASY987)	17,920,347 (20,922,770)	99.26%	93.91%	14,573,648	349	129
ASYG289	uGCR wild-type (from ASY987)	28,430,642 (32,134,880)	99.34%	93.78%	23,589,825	362	224
ASYG291	uGCR wild-type (from ASY987)	18,387,074 (19,236,609)	99.27%	93.98%	15,352,397	346	144
ASYG292	uGCR wild-type (from ASY987)	41,478,740 (52,132,280)	99.45%	94.57%	34,948,818	409	330
ASYG293	uGCR wild-type (from ASY987)	30,859,997 (35,252,546)	99.40%	94.99%	26,038,189	390	249
ASYG294	uGCR wild-type (from ASY987)	218,15,526 (23,794,909)	99.27%	94.33%	17,986,885	400	164
ASYG470	uGCR wild-type (from ASY988)	24,572,077 (26,199,707)	99.26%	94.90%	20,490,971	373	189
ASYG471	uGCR wild-type (from ASY988)	34,296,268 (40,891,308)	99.47%	94.27%	28,720,356	435	273
ASYG472	uGCR wild-type (from ASY988)	28,277,304 (31,820,162)	99.40%	94.89%	23,858,706	390	220
ASYG473	uGCR wild-type (from ASY988)	25,038,346 (27,784,280)	99.36%	95.32%	20,947,262	367	196
ASYG474	uGCR wild-type (from ASY988)	23,821,750 (25,245,187)	98.84%	95.20%	19,758,486	326	177
ASYG475	uGCR wild-type (from ASY988)	21,370,789 (22,545,474)	99.28%	96.09%	17,857,241	327	165
ASYG476	uGCR wild-type (from ASY988)	20,661,165 (22,175,618)	99.40%	95.93%	17,377,040	362	156
ASY1118	uGCR swr1	44,704,402 (52,521,068)	99.05%	93.93%	40,748,537	364	341
ASY1119	uGCR swr1	31,892,154 (36,536,444)	99.07%	93.22%	26,252,341	408	245
ASY1120	uGCR swr1	24,071,282 (26,346,057)	98.86%	94.27%	19,852,334	387	182
ASYG308	uGCR <i>swr1</i> (from ASY1118)	32,308,775 (37,186,153)	98.42%	91.70%	26,047,256	383	229
ASYG309	uGCR swr1	18,330,773	97.87%	89.83%	14,110,468	427	125

Supplementary Table 3. Statistics for Whole-Genome Sequencing results.

	(from ASY1118)	(19.949.184)					
ASYG310	uGCR swr1	23 209 649	98 45%	91 70%	18 563 880	428	168
1010510	(from ASY1118)	(25, 397, 978)	20.1570	21.7070	10,505,000	120	100
ASVG311	uGCR swr1	25,397,970)	07 80%	01 70%	20 308 338	370	180
A310511	$(\text{from } \Lambda \text{SV}1118)$	(27, 475, 310)	91.0970	91.1970	20,300,330	570	109
ASVC212	(110111 AS 11110)	(27,475,515)	00 0 1 07	02.800	17 017 112	200	160
AS1G312	UGCK SWII	21,984,120	98.84%	92.89%	17,817,112	388	160
<u>+ 01/0010</u>	(from ASY1118)	(24,362,202)	00.120	00.40.01	10 706 464	202	170
ASYG313	uGCR <i>swr1</i>	22,685,112	99.13%	93.40%	18,736,464	393	176
	(from ASY1118)	(24,279,571)					
ASYG314	uGCR <i>swr1</i>	31,184,705	98.82%	94.91%	26,184,530	326	243
	(from ASY1119)	(32,776,331)					
ASYG315	uGCR swr1	24,784,865	99.03%	94.47%	20,687,585	347	189
	(from ASY1119)	(26,404,563)					
ASYG316	uGCR swr1	19.342.810	99.02%	93.50%	15,504,598	392	136
	(from ASY1119)	(21.791.165)			, ,		
ASYG317	uGCR swr1	28 261 504	98 91%	94 07%	23 345 609	377	215
11010517	(from ASY1119)	(31,299,346)	20.2170	51.0770	25,515,005	511	215
ASVG318	uGCR swr1	26 190 588	08 51%	02.86%	21 465 271	401	102
AS10510	$(\text{from } \Lambda \text{SV}1110)$	(28,000,750)	90.5470	92.00 %	21,403,271	401	192
ASVC 494	(110111 AS 11113)	(20,900,739)	08 4007	02 2107	22.050.712	401	200
AS I G484	UGCK SWII	20,940,220	98.49%	95.51%	22,050,712	401	208
1.0110.105	(from ASY1120)	(29,168,815)	00.06%	00.01.01	25.444.525	10.5	216
ASYG485	uGCR <i>swr1</i>	32,899,599	98.96%	93.81%	27,441,725	405	246
	(from ASY1120)	(36,420,672)					
ASYG486	uGCR swr1	30,633,914	98.88%	95.00%	25,664,687	329	233
	(from ASY1120)	(33,057,051)					
ASYG487	uGCR swr1	36,057,219	98.98%	95.24%	30,299,834	335	285
	(from ASY1120)	(38,915,348)					
ASYG488	uGCR swr1	24.971.894	97.64%	93.76%	19.686.956	343	184
11010.00	(from ASY1120)	$(24\ 971\ 894)$	2110110	2011070	1,000,000	0.0	10.
4SVG489	uGCR swr1	29 507 000	98 97%	95 09%	24 760 814	369	229
1010407	$(\text{from } \Delta \text{SV}1120)$	(32, 170, 400)	JO.J170	15.0110	24,700,014	507	
ASVC400	uCCD avr1	(32,170,77)	00.040%	04.0407-	24 520 467	276	226
AS 10490	$(f_{max} \land GV1120)$	(21, 704, 841)	99.04%	94.94%	24,550,407	570	220
	(from ASY1120)	(31,724,841)	00.50.00	04.000	21 4 60 550	2.15	100
ASY1112	uGCR mrc1	25,906,981	98.70%	94.08%	21,460,558	347	190
		(28,124,516)					
ASY1113	uGCR mrc1	31,156,000	98.90%	94.43%	26,181,552	332	235
		(34,060,558)					
ASY1114	uGCR mrc1	19,700,113	98.95%	94.44%	16,167,693	359	139
		(21, 139, 074)					
ASYG295	uGCR mrc1	30.365.528	98.74%	93.83%	25.593.476	348	224
	(from ASY1112)	(33,363,371)			,,		
ASYG296	uGCR mrc1	24 987 273	99.11%	94 54%	21 028 483	384	188
11010290	(from ASY1112)	(26, 222, 585)	<i>>>.</i> 11 <i>1</i> 0	51.5170	21,020,105	501	100
ASVG207	uGCP mrol	22,222,303)	00.08%	03.00%	18 /6/ 630	308	163
ASTU297	$(f_{max} \land SV1112)$	(24,585,461)	99.00%	93.9970	10,404,030	398	105
A GMC 200	$\frac{(\text{IIOIII AS I III2)}}{(\text{IIOIII AS I III2)}}$	(24,363,401)	00.070	04 1507	20.002.472	200	174
ASYG298	UGCR mrc1	23,894,055	99.07%	94.15%	20,003,472	398	1/4
	(from ASY1112)	(26,023,966)					
ASYG299	uGCR mrc1	24,322,179	99.07%	94.39%	20,454,848	384	179
	(from ASY1112)	(26,014,929)					
ASYG300	uGCR mrc1	22,873,645	98.28%	93.44%	18,972,703	366	169
	(from ASY1112)	(23,934,690)					
ASYG301	uGCR mrc1	19.319.261	99.15%	96.16%	16.131.882	338	103
	(from ASY1112)	(21.673.803)			,,		
ASVG302	uGCR mrc1	23 442 892	99 10%	94 24%	19 453 428	396	168
1010502	(from ASV1113)	(25,613,614)	JJ.1070	77.2770	17,755,720	570	100
ASVC202	uCCP mro1	12 001 002	00 140%	04 570%	15 024 266	202	125
A910303	(from A CV1112)	(10,701,002	77.14%	74.31%	15,954,500	202	155
AGVC204	$\frac{(110111 \text{ AS Y 1113})}{(10011 \text{ AS Y 1113})}$	(19,121,110)	07.570	07 (00	10.000.004	2(7	1(0
ASYG304	UGCK mrc1	23,566,390	91.51%	87.69%	18,062,964	267	169
	(from ASY1113)	(33,014,488)			10.10		1.6-
ASYG305	uGCR mrc1	18,869,963	93.08%	80.11%	13,125,113	317	123
	(from ASY1113)	(25,043,473)					
ASYG306	uGCR mrc1	25,491,767	95.59%	85.17%	18,997,775	195	175
	(from ASY1113)	(36,914,552)					

ASYG307	uGCR mrc1	22 977 152	97 15%	86 31%	17 756 996	370	155
A510307	$(f \land G \lor 1112)$	(27, 200, 200)	97.1570	00.5170	17,750,990	570	155
	(from ASY1113)	(27,280,208)					
ASYG477	uGCR mrc1	(31,488,670)	96.46%	87.88%	24,090,011	171	220
	(from ASY1114)	À7 Ó20 Ó09 Í					
ACVC 470		17,020,007	06 6907	05 1701	12 950 490	200	117
ASIG4/8	UGCR mrc1	17,021,917	90.08%	83.47%	12,830,489	380	11/
	(from ASY1114)	(20,197,463)					
ASYG479	uGCR mrc1	18.117.222	98.91%	89.87%	14.501.441	391	129
1.0101.0	$(f_{rom} \land SV1114)$	(10,556,262)	200210	0,00,00	1,001,011	0,1	
	(110111 AS 1 1 1 1 4)	(19,330,303)				10.0	1.5.5
ASYG480	uGCR <i>mrc1</i>	17,825,332	98.74%	89.03%	14,200,885	400	125
	(from ASY1114)	(19.467.799)					
ASVG481	uGCR mrc1	18 101 059	00 10%	80.05%	14 827 287	370	131
A510401		(10,006,059)	<i>99.10 /0</i>	09.95 10	14,027,207	519	151
	(from ASY1114)	(19,086,258)					
ASYG482	uGCR mrc1	15,911,684	98.98%	90.71%	12,806,725	381	109
	(from ASV1114)	(16768127)			<i>· · ·</i>		
ACVC 492		10 721 166	00.1207	20.0207	15 517 120	405	127
AS I 0465	UGCR IIICI	19,751,100	99.15%	89.02%	15,517,159	405	157
	(from ASY1114)	(21,910,983)					
ASY1202	uGCR mrc1 swr1	20.187.141	99.30%	95.11%	16.831.125	393	143
		(21, 035, 238)					
4.03/1002		(21,955,258)	00.000	05.000	10,400 741	202	1.57
ASY1203	uGCR mrc1 swr1	23,147,635	99.23%	95.09%	19,488,741	382	157
		(24,599,624)					
ASV1204	uGCR mrc1 swr1	26 231 330	99.29%	94 28%	22 054 922	420	186
1011204	uGCR mier swii	(20, 112, (0))	JJ.2J 10	74.2070	22,034,722	720	100
		(30,112,660)					
ASYG319	uGCR mrc1 swr1	18,894,086	98.37%	93.05%	15,503,966	381	140
	(from ASY1202)	(20078195)			<i>· · ·</i>		
ACVC220		22,474,020	00.020	05 200	10 020 502	262	170
ASYG320	UGCR mrc1 swr1	23,474,939	99.03%	95.20%	19,838,503	363	172
	(from ASY1202)	(25,142,429)					
ASYG321	uGCR mrc1 swr1	23 371 386	99 20%	95 09%	19 988 330	386	175
11010521	$(\text{from } \Lambda \text{SV} 1202)$	(24, 322, 843)	<i>>></i> .2070	22.0270	17,500,550	500	175
	(II0III AS 11202)	(24,322,843)					
ASYG322	uGCR <i>mrc1</i> swr1	21,143,713	99.21%	94.15%	17,570,103	420	147
	(from ASY1202)	(26.764.877)					
ASVC323	uCCP mrol surl	20.628.010	08 810%	03 140%	16 070 040	410	145
A510525		20,028,010	90.0170	93.1470	10,970,940	419	145
	(from ASY1202)	(25,303,427)					
ASYG324	uGCR mrc1 swr1	21.169.437	99.05%	94.27%	17.748.137	429	158
	$(from \Delta SV1202)$	(22018969)			, ,		
AGMC205		(22,010,00)	00 ((0)	00 700	11 407 570	400	100
ASYG325	uGCR mrc1 swr1	13,793,159	98.66%	92.78%	11,427,573	428	100
	(from ASY1202)	(14,256,293)					
ASYG326	uGCR mrc1 swr1	18 306 956	98.85%	93 27%	15 270 946	420	138
1010520	$(f_{\text{max}} \land \text{SV} 1202)$	(10,000,750)	20.0570	JJ.2110	15,270,240	720	150
	(Irom AS Y 1202)	(19,960,761)					
ASYG327	uGCR mrc1 swr1	29,768,563	99.29%	95.26%	25,501,083	391	234
	(from ASY1203)	(33728163)					
ASVC222	uCCP mrol curi	(33,720,100)	00.040%	05 2007	18 770 022	250	169
AS 10526		22,037,490	99.04%	95.50%	16,779,033	339	108
	(from ASY1203)	(22,848,479)					
ASYG329	uGCR mrc1 swr1	32.005.773	99.38%	95.66%	27.344.928	365	250
	$(from \Delta SV1203)$	(33 955 557)			, ,		
AGMC2220		(55,55,557)	00.2407	06.06	20.200.751	245	050
ASYG330	uGCR mrc1 swr1	32,929,303	99.34%	96.06%	28,389,751	345	253
	(from ASY1203)	(34,769,495)					
ASVG331	uGCR mrc1 swr1	22.012.191	99 27%	95 14%	18 717 169	372	159
1010551	$(f_{max} \wedge SV1202)$	(22,012,171)	JJ.2170	JJ.1470	10,717,107	512	157
	(Irom AS Y 1203)	(23,223,768)					
ASYG332	uGCR mrc1 swr1	26,415,686	99.29%	96.38%	22,811,727	338	202
	(from ASY1203)	(27.635.712)					
ACVC222	wCCD mag1 swm1	21 654 102	00.2007	05 5201	27 174 255	202	241
AS 10555		51,054,102	99.39%	95.55%	27,174,555	362	241
	(from ASY1203)	(33,309,334)					
ASYG547	uGCR mrc1 swr1	27.730.453	99.28%	94.86%	23,498,772	398	201
11010011	(from ASV1204)	(31,707,796)		1.0070		0,00	
1.01/0540	(110111 AS 11204)	(51,707,790)	00.469	05.060	00 051 450	075	202
ASYG548	uGCR mrc1 swr1	26,062,351	99.46%	95.86%	22,351,458	375	202
	(from ASY1204)	(28, 254, 234)					
ASYG549	UGCR mrc1 ewr1	19 475 864	00 33%	95 88%	16 513 147	364	145
	$(f_{max} \land GV1204)$	(20, 248, 250)	11.5510	25.00 /0	10,515,177	504	1-1-5
	(ITOIII AS Y 1204)	(20,240,230)					
ASYG550	uGCR mrc1 swr1	22,937,487	99.38%	95.88%	19,575,957	342	171
	(from ASY1204)	(23 906 687)					
ASVC551	UCCD man 1 1	20,000,007	00.2107	05 400	24 040 217	260	221
A910331	UUUK mrc1 swr1	20,002,332	99.21%	93.49%	24,040,217	302	221
	(from ASY1204)	(30,271,895)					
ASYG554	uGCR mrc1 swr1	27.058.220	99.28%	95,79%	23,095,220	379	206
					,		_00

	(from ASY1204)	(30,421,857)					
ASYG555	uGCR mrc1 swr1	17,953,909	99.40%	95.78%	15,270,616	381	139
	(from ASY1204)	(18,583,766)			, ,		
ASY566	sGCR swr1	8,132,022	99.65%	17.72%	1,219,615	325	34
ASYG176	sGCR <i>swr1</i> (from ASY566)	6,083,208 (6,417,764)	99.66%	18.67%	1,058,529	298	24
ASYG178	sGCR <i>swr1</i> (from ASY566)	7,840,029	99.65%	18.66%	1,371,814	282	34
ASYG179	sGCR <i>swr1</i> (from ASY566)	6,401,948 (6,812,554)	99.61%	18.22%	1,086,278	317	28
ASYG180	sGCR <i>swr1</i> (from ASY566)	6,523,795 (6,886,909)	99.66%	18.11%	1,107,001	323	29
ASYG261	sGCR <i>swr1</i> (from ASY566)	5,534,129 (5,890,067)	99.70%	17.79%	914,939	337	24
ASYG262	sGCR <i>swr1</i> (from ASY566)	8,364,439 (8,901,945)	99.56%	18.89%	1,476,391	283	37
ASYG271	sGCR <i>swr1</i> (from ASY566)	7,743,516 (8,214,877)	99.67%	19.12%	1,387,035	279	35
ASYG272	sGCR <i>swr1</i> (from ASY566)	7,602,776 (8,077,050)	99.66%	17.98%	1,281,728	310	34
ASYG273	sGCR <i>swr1</i> (from ASY566)	6,180,114 (6,575,046)	99.52%	18.39%	1,055,044	306	26
ASYG274	sGCR <i>swr1</i> (from ASY566)	6,546,628 (6,919,868)	99.63%	18.61%	1,136,823	308	28
ASYG275	sGCR <i>swr1</i> (from ASY566)	5,124,147 (5,405,300)	99.58%	18.35%	873,930	320	22
ASY558	sGCR mrc1	14,333,092 (15,127,144)	99.37%	87.40%	11,165,893	324	100
ASYG158	sGCR mrc1 (from ASY558)	16,106,100 (16,770,424)	99.33%	86.44%	12,077,980	346	109
ASYG159	sGCR <i>mrc1</i> (from ASY558)	12,357,394 (12,460,487)	99.31%	86.12%	9,317,786	343	78
ASYG160	sGCR mrc1 (from ASY558)	9,399,184 (9,550,774)	99.09%	80.76%	6,516,200	361	58
ASYG161	sGCR <i>mrc1</i> (from ASY558)	15,649,712 (15,823,834)	99.74%	85.93%	12,285,214	305	99
ASYG162	sGCR <i>mrc1</i> (from ASY558)	15,274,592 (15,481,627)	99.76%	86.36%	11,898,470	305	98
ASYG163	sGCR <i>mrc1</i> (from ASY558)	15,602,016 (15,781,092)	99.75%	85.81%	12,068,700	307	105
ASYG164	sGCR <i>mrc1</i> (from ASY558)	18,501,076 (18,873,712)	99.75%	86.22%	14,464,523	304	126
ASYG266	sGCR <i>mrc1</i> (from ASY558)	17,399,408 (17,641,092)	99.75%	85.32%	13,578,075	296	117
ASYG267	sGCR <i>mrc1</i> (from ASY558)	17,320,966 (17,532,548)	99.70%	85.98%	13,442,946	288	121
ASYG268	sGCR <i>mrc1</i> (from ASY558)	18,536,042 (18,834,645)	99.71%	86.29%	14,395,392	298	128
ASYG269	sGCR <i>mrc1</i> (from ASY558)	16,614,439 (16,889,090)	99.69%	85.53%	12,814,861	302	114
ASY639	sGCR <i>mrc1-1-843</i>	16,598,566 (17,132,570)	99.66%	94.86%	13,656,572	318	117
ASYG187	sGCR <i>mrc1-1-843</i> (from ASY639)	17,36 <u>3,334</u> (18,202,096)	99.57%	94.78%	14,357,597	323	122
ASYG188	sGCR <i>mrc1-1-843</i> (from ASY639)	16,970,060 (17,373,928)	99.48%	95.81%	14,291,186	311	124
ASYG189	sGCR <i>mrc1-1-843</i> (from ASY639)	20,364,927 (23,974,334)	99.57%	94.55%	16,667,128	340	137
ASYG190	sGCR <i>mrc1-1-843</i> (from ASY639)	15,444,735 (15,863,721)	99.49%	96.11%	12,879,723	285	103
ASYG191	sGCR <i>mrc1-1-843</i> (from ASY639)	14,92 <u>2,40</u> 3 (15,259,055)	99.63%	95.12%	12,451,784	324	103

ASYG263	sGCR <i>mrc1-1-843</i> (from ASY639)	15,739,640	99.26%	96.79%	13,292,124	227	106
ASVG264	sGCR mrc1-1-843	15 336 826	99 44%	96 57%	12 908 815	203	102
1010204	(from ASY639)	(15 851 380)	JJ.++ //	<i>J</i> 0. <i>J</i> 1 <i>1</i> 0	12,700,015	205	102
ASVG276	$sGCR mrc1_{-1}-843$	14 882 008	99 54%	95 93%	12 356 206	268	103
A510270	(from ASY639)	(15, 255, 734)	<i>99.</i> .94 <i>1</i> 0	95.95 10	12,550,200	200	105
ASVG277	(110111 AS 1 037)	(13,235,734)	00 30%	96 18%	11 373 600	224	05
A3102//	$(\text{from } \Lambda \text{SV630})$	(13,910,114)	99.39%	90.1070	11,575,099	224	95
ACVC 279	(110111 AS 1039)	(13,017,330)	00 550	05 4107	12 960 262	202	104
ASIG278	SUCK $mrc1-1-843$	15,505,197	99.55%	95.41%	12,800,302	323	104
A 01/0070	(Irom AS (039)	(13,008,733)	00.400	05 5501	11 171 707	216	00
ASYG279	SGCK <i>mrc1-1-843</i>	13,327,796	99.49%	95.55%	11,1/1,/3/	310	90
	(from ASY639)	(13,594,348)	00.04%		11 11 - 21 1		100
ASY749	sGCR mrc1 swr1	16,019,761	98.84%	75.29%	11,417,214	334	103
		(16,297,017)					
ASYG230	sGCR mrc1 swr1	22,341,396	96.71%	76.18%	15,631,724	340	142
	(from ASY749)	(23,145,370)					
ASYG231	sGCR mrc1 swr1	16,810,296	96.90%	81.85%	11,765,989	307	67
	(from ASY749)	(19,049,178)					
ASYG232	sGCR mrc1 swr1	18,379,715	98.60%	82.50%	13,763,311	309	124
	(from ASY749)	(18,999,395)					
ASYG233	sGCR mrc1 swr1	24,416,574	98.72%	85.22%	18,692,689	278	176
	(from ASY749)	(25,847,204)					
ASYG234	sGCR mrc1 swr1	29,110,586	99.19%	83.72%	22,436,223	294	202
	(from ASY749)	(29,988,422)					
ASYG235	sGCR mrc1 swr1	26,066,871	99.11%	81.22%	19,321,575	317	181
	(from ASY749)	(26,687,664)					
ASYG236	sGCR mrc1 swr1	18,536,267	98.68%	81.49%	13,972,877	316	129
	(from ASY749)	(18,829,756)					
ASYG237	sGCR mrc1 swr1	25,489,689	98.76%	80.41%	18.953.624	323	169
	(from ASY749)	(26.256.946)			, ,		
ASYG238	sGCR mrc1 swr1	25.154.023	98.97%	81.84%	19.026.698	313	166
	(from ASY749)	(25.793.412)			, ,		
ASYG239	sGCR mrc1 swr1	24 159 794	98 88%	83 17%	18 733 120	283	168
1010207	(from ASY749)	(24.619.315)	2010070	0011770	10,700,120	200	100
ASYG240	sGCR mrc1 swr1	25 459 051	99.09%	80 29%	18 900 653	315	169
11010210	(from ASY749)	$(26\ 194\ 764)$	55.0570	00.2370	10,900,055	515	105
ASY746	SGCR mrc1-1-843	18 906 039	98 94%	82 72%	14 242 860	320	128
1101/10	swr1	(19,253,813)	50.5170	02.7270	11,212,000	520	120
ASYG200	sGCR mrc1-1-843	36 698 543	99.13%	80 54%	26 469 373	356	248
11510200	suck mer-r-045	(30,470,655)	JJ.1570	00.5470	20,407,575	550	240
	(from ASV746)	(39,470,033)					
ASVG201	(1101117151740)	20 837 549	00.06%	70 50%	14 582 871	368	125
AS10201	SUCK IIIC1-1-045	(20,057,549)	99.00 %	19.3970	14,002,071	508	125
	(from ASV746)	(22,300,337)					
ASVG202	(110111 AS 1 740)	31 777 246	00 130%	85 07%	24 865 110	308	238
AST0202	SUCK IIIC1-1-043	(32,625,570)	99.13 %	05.9170	24,005,115	508	230
	$(\text{from } \Lambda \text{SV746})$	(32,023,370)					
ASVC202	$\frac{(110111 \text{ AS } 1740)}{(110111 \text{ AS } 1740)}$	22 270 717	00.05%	82 170%	16 200 000	241	151
AS 10203	SUCK IIIIC1-1-043	(24,006,022)	99.03%	02.4770	10,509,000	341	151
	$(\text{from } \Lambda \text{SV746})$	(24,000,033)					
ASVG204	(1011 AS 1740)	27 884 008	00.2007	81 1602	20.065.206	202	260
AS 10204	SUCK IIIIC1-1-043	22,004,990	99.20%	04.40%	29,003,290	323	209
	SWII (from ASV746)	(30,997,141)					
ASVC205	(110111 AS 1/40)	22 170 006	00.1107	QA 2701	25 261 225	227	027
AS 10203	SUCK IIIIC1-1-043	(24 660 412)	99.11%	04.3770	25,201,255	321	237
	SWII (from ASV746)	(34,009,412)					
ASVCOOL	$\frac{(110111 \text{ AS I} /40)}{\alpha \text{CCD} \text{ mms}^{1} 1.942}$	21 080 276	00 1407	81 2601	16 177 114	221	115
ASI 0200	SUCK IIIIC1-1-843	21,000,270	99.14%	04.30%	10,177,114	551	145
	SWII (from ASV746)	(21,410,383)					
ACVCOOR	(110111 AS I /40)	24.020.040	00 1007	02 7207	19 102 267	200	166
A310208	SUCK IIIIC1-1-843	24,020,049	99.10%	03.13%	10,102,207	322	100
	SWII (from ASV746)	(24,/02,/38)					
ACVC200	$\frac{(110111 \text{ AS I} /40)}{\alpha \text{ CCD} = 1.1.942}$	20 740 401	00 0107	06040	16 010 (77	075	1 1 5
ASI 0209	SUCK <i>mrc1-1-843</i>	20,749,491	98.91%	80.04%	10,212,007	213	145

	swr1	(21,113,394)					
	(Irom ASY/46)						
ASYG210	sGCR mrc1-1-843	26,864,647	99.09%	85.78%	20,886,454	301	177
	swr1	(27,600,826)					
	(from ASY746)						

[•]Numbers in parentheses indicate the number of read pairs prior to culling PCR duplicates. Reads were 50 bases long. [•]Median read depth is the median number of times that each base in uniquely mapping regions of the nuclear genome was present within a read.

Supplementary Table 4. GCR structures for Can^{*} 5FOA^{*} isolates from the uGCR assay with sequenced genomes.

Sample (Relevant	GCR description	GCR Junction Evidence
genotype)		
ASVG281	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NAT</i> at <i>can1::P</i> _{uw2} - <i>NAT</i> , 36-base loop)	Copy number (Supplementary Fig. 3b) Junction sequence (17 reads; Supplementary Fig. 12D)
(wild-type)	Homology-mediated translocation between chr V L YELWdelta1/2 and chr V L YELCdelta4	Copy number (Supplementary Fig. 3b) Discordant read pairs (6 read pairs)
	chr X R <i>IMT3</i>	Discordant read pairs (205 read pairs)
ASYG282 (wild-type)	<i>Denovo</i> telomere addition on chr V L at 34,800 bp (inside NPR2)	Junction sequence (16 reads; Supplementary Fig. 3a)
ASYG283 (wild-type)	<i>de novo</i> telomere addition on chr V L at 34,872 bp (inside <i>NPR2</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (54 reads; Supplementary Fig. 3a)
ASYG284 (wild-type)	de novo telomere addition on chr V L at 39,748 bp	Copy number (Supplementary Fig. 3a) Junction sequence (18 reads; Supplementary Fig. 3a)
ASYG285 (wild-type)	<i>de novo</i> telomere addition on chr V L at 26,384 bp (inside <i>YEL067C</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (56 reads; Supplementary Fig. 3a)
ASYG286 (wild-type)	<i>de novo</i> telomere addition on chr V L at 34,850 bp (inside <i>NPR2</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (43 reads; Supplementary Fig. 3a)
ASYG287 (wild-type)	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NAT</i> at <i>can1::Puez-NAT</i> , 135-base loop)	Copy number (Supplementary Fig. 3b) Discordant read pairs (72 read pairs) Junction sequence (52 reads; Supplementary Fig. 12D)
	Homology-mediated translocation between chr V L YELCdelta4 and chr V R YERCdelta14	Copy number (Supplementary Fig. 3b) Discordant read pairs (23 read pairs)
ASYG288	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NAT</i> at <i>can1::P</i> _{uve} - <i>NAT</i> , 22-base loop)	Copy number (Supplementary Fig. 3b) Junction sequence (9 reads; Supplementary Fig. 12E)
(wild-type)	Homology-mediated translocation between chr V L PAU2 and chr I R PAU8	Copy number (Supplementary Fig. 3b) Discordant read pairs (31 read pairs)
ASYG289 (wild-type)	<i>de novo</i> telomere addition on chr V L at 34,842 bp (inside <i>NPR2</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (130 reads; Supplementary Fig. 3a)
ASYG291 (wild-type)	<i>de novo</i> telomere addition on chr V L at 34,845 bp (inside <i>NPR2</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (56 reads; Supplementary Fig. 3a)
ASYG292 (wild-type)	<i>de novo</i> telomere addition on chr V L at 34,849 bp (inside <i>NPR2</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (196 reads; Supplementary Fig. 3a)
ASYG293 (wild-type)	<i>de novo</i> telomere addition on chr V L at 34,835 bp (inside <i>NPR2</i>)	Copy number (Supplementary Fig. 3a) Junction sequence (71 reads; Supplementary Fig. 3a)
ASYG294 (wild-type)	<i>de novo</i> telomere addition on chr V L inside NAT at <i>can1::P</i> _{LEU} - NAT	Copy number (Supplementary Fig. 3a) Junction sequence (16 reads; Supplementary Fig. 3a)
ASYG470 (wild-type)	<i>de novo</i> telomere addition on chr V L at 26,524 bp inside <i>YEL067C</i>	Copy number (Supplementary Fig. 3a) Junction sequence (28 reads; Supplementary Fig. 3a)
ASYG471 (wild-type)	No GCR; point mutations inside <i>CAN1</i> (c.1000G>C, GGC- >CGC, p.334G>R) and <i>URA3</i> (c.179C>A, ACA->AAA, p.60T>K)	Genome sequence
ASYG472 (wild-type)	<i>de novo</i> telomere addition on chr V L at 35,574 bp inside <i>NPR2</i>	Copy number (Supplementary Fig. 3a) Junction sequence (47 reads;

		Supplementary Fig. 3a)
ASYG473	<i>de novo</i> telomere addition on chr V L at 26,386 bp inside	Copy number (Supplementary Fig. 3a)
(wild-type)	YEL06/C	Junction sequence (84 reads;
	de novo telomere addition on chr V L at 26 031 hp inside HPA3	Copy number (Supplementary Fig. 3a)
ASYG474	ac novo teromete addition on em V E at 20,551 op inside III A5	Iunction sequence (35 reads:
(wild-type)		Supplementary Fig. 3a)
ASVC 475	Interstitial deletion from 21,011 bp (inside <i>DSF1</i>) to 40,300 bp,	Copy number (Supplementary Fig. 3b)
ASIG4/3	8 bp microhomology	Junction sequence (61 reads;
(wild-type)		Supplementary Fig. 3b)
ASYG476	<i>de novo</i> telomere addition on chr V L at 27,780 bp inside <i>SITT</i>	Copy number (Supplementary Fig. 3a)
(wild-type)		Junction sequence (54 reads; Supplementary Fig. 3a)
	Hairpin-mediated inverted duplication on chr V L (hairpin	Copy number (Supplementary Fig. 4b)
1.01/02000	inside NAT at $can1::P_{inv}$ -NAT. 36-base loop)	Junction sequence (6 reads: Supplementary
ASYG308		Fig. 12G)
(SWr1)	Homology-mediated translocation between chr V L	Copy number (Supplementary Fig. 4b)
	YELCdelta4 and chr II L YBLWdelta2	Discordant read pairs (66 read pairs)
ASYG309	Microhomology-containing translocation between chr V L	Copy number (Supplementary Fig. 4b)
(<i>swr1</i>)	(42,293 bp) and chr XIII L (141,052 bp, inside SMA2) with 2	Discordant read pairs (353 read pairs)
	bp micronomology	Convinue (Supplementary Fig. 4b)
	inside NPR 2 12 base loop)	Discordant read pairs (51 read pairs)
ASYG310	histae 111 H2, 12 base 100p)	Junction sequence (41 reads)
(swr1)	Homology-mediated translocation between chr V L	Conversion (Supplementary Fig. 4b)
	YELWdelta1/YELWdelta2 and chr V R "YERWdelta27", an	Discordant read pairs (52 read pairs)
	unannotated delta at chrV:449,322-449,631	Discordant read pairs (52 read pairs)
ASYG311	Interstitial deletion on chr V L from 20,497 bp (inside DSF1) –	Copy number (Supplementary Fig. 4a)
(<i>swr1</i>)	36,162 bp (inside <i>NPR2</i>) with 5 bp micronomology	Supplementary Fig. 4a)
	Microhomology-containing translocation between chr V I	Copy number (Supplementary Fig. 4b)
ASYG312	(36.578 bp) and an unidentified full-length Ty	Junction sequence
(swr1)	Homology-mediated translocation between a Ty element and	Community (Second and Attended to the second and the second and the second and the second attended to the second a
	chr III R YCRWdelta8, 9, or 10	Copy number (Supplementary Fig. 46)
ASYG313	<i>de novo</i> telomere addition on chr V L at 29,943 bp inside <i>AVT2</i>	Copy number (Supplementary Fig. 4a)
(swr1)		Junction sequence (59 reads;
	Interstitial delation on abr VI from 15 407 hp to 22 566 hp	Convinue (Supplementary Fig. 4a)
ASYG314	inside CAN1 at vel068c··CAN1-URA3	Discordant read pairs (663 read pairs)
(swr1)		Junction sequence (169 reads;
		Supplementary Fig. 4a)
ASYG315	de novo telomere addition on chr V L at 34,845 bp inside NPR2	Copy number (Supplementary Fig. 4a)
(swr1)		Junction sequence (46 reads;
()		Supplementary Fig. 4a)
	Hairpin-mediated inverted duplication on cnr V L (nairpin inside $PRB1/25$ base loop)	Copy number (Supplementary Fig. 40) Discordant read pairs (78 read pairs)
		Junction sequence (116 reads:
ASYG316		Supplementary Fig. 12G)
(SWFI)	de novo telomere addition at 83,912 bp inside ANP1 on chr V L	Copy number (Supplementary Fig. 4b)
		Junction sequence (190 reads;
		Supplementary Fig. 4b)
	Hairpin-mediated inverted duplication on cnr V L (nairpin inside NAT at cap1::P NAT 254 base loop)	Copy number (Supplementary Fig. 4b)
	$\begin{array}{c} \text{Inside IVAI at callf}_{\text{IBU2}}\text{-IVAI}, 254 \text{ base 100p} \end{array}$	Fig 12H
ASYG317	Homology-mediated translocation between chr V L PAU2 and	11g. 1211
(SWr1)	either chr IX-L PAU14 or chr X-L PAU1; sequences from	Copy number (Supplementary Fig. 4b)
	telomere to PAU1/PAU14 are identical, hence the junction is	Junction sequence
	not distinguishable	
A SVC-219	Victoronomology-containing translocation between chr V L	Copy number (Supplementary Fig. 4b)
ASIUSIO (cwrl)	(23,040 op III TELOUOC at yeld000C::CANT-UKAS) and CIIT IVR (903 251 hp inside RAD9) with 12 hp of imperfect	Discordant read pairs (679 read pairs)
(3111)	microhomology (11/12 bp)	Junction sequence (89 reads)
ASYG484	de novo telomere addition on chr V L at 34,421 bp inside NPR2	Copy number (Supplementary Fig. 4a)

(swr1)		Junction sequence (19 reads;
		Supplementary Fig. 4a)
	Hairpin-mediated inverted duplication on chr V L (hairpin	Copy number (Supplementary Fig. 4b)
A CIV/CI 40.5	inside NAT at can1:: P_{LEU2} -NAT, 130-base loop)	Discordant read pairs (96 read pairs)
ASYG485		Supplementary Fig. 121)
(SWI1)	Homology mediated translocation between abr VI tP(UCU)F	Copy number (Supplementary Fig. 12J)
	and chr XI L $tR(UCU)K$	Discordant read pairs (544 read pairs)
1.0370.407	<i>de novo</i> telomere addition on chr V L inside NAT at can1::Prop-	Copy number (Supplementary Fig. 4a)
ASYG486	NAT	Junction sequence (56 reads;
(SWI1)		Supplementary Fig. 4a)
ASYG487	<i>de novo</i> telomere addition on chr V L at 34,831 bp inside <i>NPR2</i>	Copy number (Supplementary Fig. 4a)
(<i>swr1</i>)		Junction sequence (57 reads;
	de nove telemente addition en altr VI et 24 921 ha inside NDD2	Supplementary Fig. 4a)
ASYG488	<i>de novo</i> teromere addition on chr v L at 54,851 op inside <i>NPR2</i>	Lunction sequence (61 reads:
(swr1)		Supplementary Fig. 4a)
A GN/C 400	<i>de novo</i> telomere addition on chr V L at 91,326 bp in P _{lett} in	Copy number (Supplementary Fig. 4a)
ASYG489	can1::P _{LRU} -NAT	Junction sequence (35 reads;
(\$W11)		Supplementary Fig. 4a)
	Hairpin-mediated inverted duplication on chr V L (hairpin	Copy number (Supplementary Fig. 4b)
ASYG490	inside <i>NAT</i> at <i>can1::P</i> _{LEU2} - <i>NAT</i> , 298-base loop)	Junction sequence (7 reads; Supplementary
(<i>swr1</i>)	Homology modiated translocation between abr V I	Fig. 12J)
	YFI Wdelta6 and chr XV I YOI Cdelta1	Discordant read pairs (347 read pairs)
	Hairpin-mediated inverted duplication on chr V L (hairpin	Copy number (Supplementary Fig. 5a)
	inside NPR2, 269-base loop) followed by whole-chromosome	Discordant read pairs (469 read pairs)
	duplication	Junction sequence (201 reads;
ASYG295		Supplementary Fig. 12E)
(mrc1)	Deletion of one copy of CEN5	Copy number (Supplementary Fig. 5a)
		Discordant read pairs (353 read pairs)
	Interstitial deletion (deleting one copy) on chr V R between	Junction sequence (129 reads)
	YERCTy1-1 and YERCTy1-2	Copy number (Supplementary Fig. 5a)
	Hairpin-mediated inverted duplication on chr V L (hairpin	Copy number (Supplementary Fig. 5a)
ASVG206	Inside PRB1, 20-base 100p)	Junction sequence (132 reads:
(mrc1)		Supplementary Fig. 12E)
(Homology-mediated translocation between chr V L	Copy number (Supplementary Fig. 5a)
	YELCdelta4 and chr II L YBLWdelta1	Discordant read pairs (59 read pairs)
	Microhomology-containing translocation between chr V L	
	(30,089 bp, inside AVT2) and chr IV R (either YDRWTy2-2 or	Copy number (Supplementary Fig. 5c)
	<i>YDRC1y1-3</i>); and chr V R (<i>YERC1y1-1</i>) with 13 bp identity	Junction sequence (23 reads;
ASYG297	iunction is not known	Supplementary Fig. 5c)
(<i>mrc1</i>)	Homology mediated translocation between chr IV P (either	
	YDRWTy2-2 or YDRCTy1-3) and chr V R YERCTy1-1	
	presence of other intermediate Ty elements in the junction is not	Copy number (Supplementary Fig. 5c)
	known	
	First altered chromosome (contains chrV R and centromeric	Copy number (Supplementary Fig. 5c)
	portion of chrV L): Microhomology-containing translocation	Junction sequence (16 reads;
A SVC209	between chr V L (26,042 bp) and chr IV R (YDRWIyI-5)	Supplementary Fig. 5c)
ASIG298	VI): Homology mediated translocation between telomeric and	
(IIII e I)	of chr V L and chr XIV R (using <i>DSF1-HXT13</i> region on chr V	Copy number (Supplementary Fig. 5c)
	L and YNR073C-HXT17 region on chr XIV R), with deletion of	
	terminal region of chr XIV	
	First altered chromosome (contains chrV R and centromeric	Copy number (Supplementary Fig. 5c)
A SVC2000	portion of chrV L): Microhomology-containing translocation	Junction sequence (5 reads; Supplementary $E_{12}^{(2)}$
(mrc1)	Second altered chromosome (contains telemeric portion of chr	<u>гід. эс</u> ј
	VL): Homology-mediated translocation between telomeric end	Copy number (Supplementary Fig. 5c)
	of chr V L and chr XIV R (using <i>DSF1-HXT13</i> region on chr V	

	L and <i>YNR073C-HXT17</i> region on chr XIV R), with deletion of terminal region of chr XIV	
ASYG300	Hairpin-mediated inverted duplication (hairpin within NAT at $can1::P_{usc}$ - NAT , 70-base loop)	Copy number (Supplementary Fig. 5a) Junction sequence (44 reads; Supplementary Fig. 12F)
(mici)	Homology-mediated translocation between chr V L PAU2 and subtelomeric PAU gene, most likely chrII L PAU9	Copy number (Supplementary Fig. 5a)
ASYG301	Hairpin-mediated inverted duplication on chr V L (41-base loop)	Copy number (Supplementary Fig. 5a) Junction sequence (4 reads; Supplementary Fig. 12F)
(mici)	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-2	Copy number (Supplementary Fig. 5a)
ASYG302	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>SIT1</i> , 31-base loop)	Copy number (Supplementary Fig. 5a) Discordant read pairs (104 read pairs) Junction sequence (94 reads; Supplementary Fig. 12F)
(IIIICT)	Homology-mediated translocation between chr V L YELWdelta1/2 and chr V R "YERWdelta27", an unannotated delta at chrV:449,322-449,631	Copy number (Supplementary Fig. 5a) Discordant read pairs (46 read pairs)
ASYG303 (mrc1)	Microhomology-containing translocation between chr V L (41,897 bp, inside <i>PRB1</i>) and chr IV R (1,257,951 bp, inside <i>YDR319C</i>)	Copy number (Supplementary Fig. 5c) Discordant read pairs (559 read pairs) Junction sequence (79 reads; Supplementary Fig. 5c)
ASYG306 (mrc1)	<i>de novo</i> telomere addition inside <i>NAT</i> (369 bp) at <i>can1::P</i> _{we} - <i>NAT</i>	Copy number (Supplementary Fig. 5c) Junction sequence (24 read pairs)
ASYG307 (<i>mrc1</i>)	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>HHY1</i> , 13-base loop)	Copy number (Supplementary Fig. 5a) Discordant read pairs (57 read pairs) Junction sequence (65 reads; Supplementary Fig. 12G)
	Homology-mediated translocation between chr V L YELCdelta4 and chr IV L YDRCTy1-3	Copy number (Supplementary Fig. 5a)
ASYG477 (mrc1)	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NPR2</i> , 12-base loop)	Copy number (Supplementary Fig. 5b) Discordant read pairs (51 read pairs) Junction sequence (80 reads; Supplementary Fig. 12H)
(inter)	Homology-mediated translocation between chr V L YELWdelta1 chr V R "YERWdelta27", an unannotated delta at chrV:449,322-449,631	Copy number (Supplementary Fig. 5b) Discordant read pairs (41 read pairs)
ASYG478 (mrc1)	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>PRB1</i> , 9-base loop)	Copy number (Supplementary Fig. 5b) Discordant read pairs (39 read pairs) Junction sequence (81 reads; Supplementary Fig. 12I)
	Homology-mediated translocation between chr V L PAU2 and chr XII R PAU4	Copy number (Supplementary Fig. 5b) Discordant read pairs (64 read pairs)
ASYG479 (mrc1)	Hairpin-mediated inverted duplication on chr V L (hairpin from <i>PRB1-PCM1</i> : 1,823-base loop)	Copy number (Supplementary Fig. 5b) Discordant read pairs (579 read pairs) Junction sequence (78 reads; Supplementary Fig. 12I)
	Homology-mediated translocation between chr V L YELCdelta4 and chr XII R YLRCTy2-2	Copy number (Supplementary Fig. 5b)
ASYG480	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>HPA3</i> , 111-base loop)	Copy number (Supplementary Fig. 5b) Discordant read pairs (143 read pairs) Junction sequence (58 reads)
(<i>mrc1</i>)	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-2 or YDRWTy2-3	Copy number (Supplementary Fig. 5b)
	Homology-mediated translocation between chr IV R YDRWTy2-3 or YDRCTy1-2 and chr V R YERWdelta22	Copy number (Supplementary Fig. 5b)
ASYG481	Hairpin-mediated inverted duplication on chr V L (hairpin inside NAT at can1:: P_{LW2} -NAT, 163-base loop)	Copy number (Supplementary Fig. 5b)
(mrc1)	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-3	Copy number (Supplementary Fig. 5b)
ASYG482 (mrc1)	Hairpin-mediated inverted duplication on chr V L (hairpin inside NAT at $can1::P_{uuv}-NAT$, 163-base loop)	Copy number (Supplementary Fig. 5b) Discordant read pairs (11 read pairs)

		Junction sequence (11 reads; Supplementary Fig. 12I)	
	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTv1-3	Copy number (Supplementary Fig. 5b)	
ASYG483 (mrc1)	Hairpin-mediated inverted duplication on chr V L (hairpin inside NAT at can1:: P_{uuv} -NAT, 61-base loop)	Copy number (Supplementary Fig. 5b) Junction sequence (23 reads; Supplementary Fig. 12J)	
	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-2	Copy number	
ASYG319 (mrc1 swr1)	Interstitial deletion on chr V L inside <i>yel072w::CANI-URA3</i> from 116,282 bp (inside <i>URA3</i>) to 33,176 bp (inside <i>CANI</i>) with 12 bp microhomology	Copy number (Supplementary Fig. 6a) Discordant read pairs (323 read pairs) Junction sequence (120 reads; Supplementary Fig. 6a)	
ASYG320 (mrc1 swr1)	Interstitial deletion (23,321-35,586 bp) 6 bp microhomology	Copy number (Supplementary Fig. 6a) Discordant read pairs (216 read pairs) Junction sequence (50 reads; Supplementary Fig. 6a)	
	Duplication on chr IV R (885,000 to 992,000 bp flanked by a pair of inverted Ty elements at each end)	Copy number (data not shown)	
ASYG321	Microhomology-containing translocation between chrV L (34997, inside <i>NPR2</i>) and chr XVI L (240,584 bp, inside <i>MLH3</i>)- 10 bp identity	Copy number (Supplementary Fig. 6b) Discordant read pairs (418 read pairs) Junction sequence (220 reads; Supplementary Fig. 6b)	
(mrc1 swr1)	Microhomology-containing translocation inside <i>MLH3</i> between 240,627 and 240,577; 7 bp microhomology	Copy number (Supplementary Fig. 6b) Discordant read pairs (418 read pairs) Junction sequence (220 reads; Supplementary Fig. 6b)	
ASYG322 (mrc1 swr1)	Microhomology-containing translocation between chr V L (27,282 bp) and chr IV L (5,121 bp) or chr X R (740,680 bp), 13 bp imperfect homology (12/13 bp microhomology)	Copy number (Supplementary Fig. 6b) Junction sequence (49 reads; Supplementary Fig. 6b)	
ASYG323 (mrc1 swr1)	Microhomology-containing translocation between <i>NAT</i> at $can1:P_{uuv}$ - <i>NAT</i> (nt 219) and chr XVI R (918,337 bp, inside <i>RPC82</i>); 19 bp of imperfect homology (17/19 microhomology)	Copy number (Supplementary Fig. 6b) Discordant read pairs (192 read pairs) Junction sequence (20 reads; Supplementary Fig. 6b)	
ASYG324 (mrc1 swr1)	Microhomology-containing translocation between chr V L (inside <i>SIT1</i> , 29,425 bp) and chr XVI R (inside <i>ATG13</i> , 908,824 bp) with 12 bp of microhomology	Copy number (Supplementary Fig. 6b) Discordant read pairs (617 read pairs) Junction sequence (109 reads; Supplementary Fig. 6b)	
ASYG325	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>CIN8</i> , 21-base loop)	Copy number (Supplementary Fig. 6c) Discordant read pairs (42 read pairs) Junction sequence (52 reads; Supplementary Fig. 12H)	
(mrc1 swr1)	Homology-mediated translocation between chr V L YELCdelta4 and chr XII R YLRWTy1-3 Homology-mediated translocation between chr XII R	Copy number (Supplementary Fig. 6c) Discordant read pairs (43 read pairs)	
	<i>YLRWTy1-2</i> and chr III L <i>YCLWTy2-1</i> Microhomology-containing translocation between chr V L	Copy number (Supplementary Fig. 6b)	
ASYG326 (mrc1 swr1)	(inside <i>CIN8</i> , 36,729 bp) and chr II L (inside <i>YEL1</i> , 108,035 bp) with 6 bp microhomology	Discordant read pairs (427 read pairs) Junction sequence (80 reads; Supplementary Fig. 6b)	
ASYG327 (mrc1 swr1)	Interstitial deletion inside URA3 and across CAN1 (in yel068c::CAN1-URA3 (116,693-25,841 bp) with 6 bp microhomology	Copy number (Supplementary Fig. 6a) Discordant read pairs (815 read pairs) Junction sequence (112 reads; Supplementary Fig. 6a)	
ASYG328	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NPR2</i> , 12-base loop)	Copy number (Supplementary Fig. 6c) Discordant read pairs (33 read pairs) Junction sequence ()	
(mrc1 swr1)	Homology-mediated translocation between chr V L YELWdelta1/2 and chr V R "YERWdelta27", an unannotated delta at chrV:449,322-449,631	Copy number (Supplementary Fig. 6c) Discordant read pairs (30 read pairs)	
ASYG329 (mrc1 swr1)	Microhomology-containing translocation between chr V L (37,543 bp, inside <i>CIN8</i>) and chr X L (27,189 bp, inside <i>HXT8</i>) with 10 bp microhomology	Copy number (Supplementary Fig. 6a) Discordant read pairs (604 read pairs) Junction sequence (117 reads;	

		Supplementary Fig. 6a)
ASYG330 (mrc1 swr1)	Interstitial deletion from 21,337 bp (inside <i>DSF1</i>) to 40,003 bp with 16 bp imperfect microhomology (15/16 bp)	Copy number (Supplementary Fig. 6a) Discordant read pairs (107 read pairs)
		Junction sequence (42 reads; Supplementary Fig. 6a)
	Microhomology-containing translocation between chr V L	Copy number (Supplementary Fig. 6b)
ASYG332	(38,625 bp, inside <i>CIN8</i>) and chr I L (85,486 bp, <i>GIP4</i>) with 7	Discordant read pairs (545 read pairs)
(mrc1 swr1)	bp microhomology	Junction sequence (103 reads;
	Interstitial deletion within <i>vel072w::CAN1-URA3</i> : 116.282 bp	Copy number (Supplementary Fig. 6a)
	to 32,720 bp; 14 bp microhomology	Discordant read pairs (798 read pairs)
ASYG333		Junction sequence (171 reads;
(mrc1 swr1)	Duplicated region within chrIV bounded by YDRWTv1-4 and	Supplementary Fig. 6a)
	<i>YDRWTy1-5</i> , not obviously related to the GCR	Copy number (Data not shown)
A SVC 547	Interstitial deletion from 25,408 bp to 33,484 bp inside	Copy number (Supplementary Fig. 6a)
(mrc1 swr1)	yel0/2w::CANI-URAS, deletes CANI promoter	Junction sequence (102 reads:
()		Supplementary Fig. 6a)
	Interstitial deletion from 25,412 bp to 29,418 bp (inside <i>SIT1</i>)	Copy number (Supplementary Fig. 6a)
ASYG548	across yel072w::CANT-URAS with 5 bp micronomology	Junction sequence (74 reads:
(mrc1 swr1)		Supplementary Fig. 6a)
	Disomy of chr I, also observed in parental strain ASY1204	Copy number histogram plot
	Interstitial deletion from 116,699 bp to 33,406 bp inside	Copy number (Supplementary Fig. 13)
	<i>yel068c::CAN1-URA3</i> with 4 bp microhomology	Discordant read pairs (439 read pairs)
ASYG549		Junction sequence (71 reads;
(mrc1 swr1)	Disomy of chr Lalso observed in parental strain ASY1204	Supplementary Fig. 6a)
	Disona of chi 1, also observed in parental strain 710 1 1204	(Supplementary Fig. 13)
	de novo telomere addition on chr V L at 34,405 bp	Copy number (Supplementary Fig. 6a)
		Supplementary Fig. 6a)
ASYG550	Disamy of the Lalso cheanyed in parantal strain ASV1204	Copy number histogram plot
(IIICI SWII)	Disonty of chi 1, also observed in parental strain AS 1 1204	(Supplementary Fig. 13)
	Disomy of chr III	(Supplementary Fig. 13)
	Microhomology-containing translocation between chr V L	Copy number (Supplementary Fig. 6b)
ASVG551	(37,903 bp, inside CIN8) and chr IV L $(27,031 bp, inside ADV3)$ with 4 bp microhomology	Discordant read pairs (510 read pairs)
(mrc1 swr1)	The 13) with 4 op inclononology	Supplementary Fig. 6b)
	Disomy of chr I, also observed in parental strain ASY1204	Copy number histogram plot
	Microhomology containing translocation between chr V I	(Supplementary Fig. 13)
ASYG554 (mrc1 swr1)	(32,138 bp, inside <i>CAN1</i> at <i>yel072w::CAN1-URA3</i>) and chr IX	Discordant read pairs (622 read pairs)
	L (54,571 bp, inside IMP2') with 14 bp imperfect	Junction sequence (177 reads;
	microhomology	Supplementary Fig. 6b)
	chr V L and chr XIV R using the <i>DSF1-HXT13</i> and <i>YNR073C</i> -	
	<i>HXT17</i> homology, with deletion of the telomeric fragment of chr XIV B	Copy number (Supplementary Fig. 66)
	Disomy of chr I, also observed in parental strain ASY1204	Copy number histogram plot
	Interneticial delation on alm VI from 22 160 hr to 41 400 1 7	(Supplementary Fig. 13)
	bp microhomology	Junction sequence (38 reads:
ASYG555 (mrc1 swr1)	-r	Supplementary Fig. 6a)
	Disomy of chr I, also observed in parental strain ASY1204	Copy number histogram plot
		(Supplementary Fig. 13)

Evidence supporting GCR-related junctions can be derived from whole genome sequencing data in several ways. Frequently, multiple lines of evidence support many junctions. Copy number changes, from normalized read depth plots of uniquely mapping regions of the genome, can suggest possible

rearrangements, particularly those involving HR between repetitive elements. Discordant read pairs are read pairs where two uniquely mapping reads map to regions consistent with the GCR, but not with reference chromosome; note that the number of discordant read pairs is influenced by whether the rearrangement is within or adjacent to non-uniquely mapping regions of the genome. Junction sequences can be determined in two ways, depending on the junction. For junctions that generate a novel sequence, such as a deletion or hairpin-mediated inversion, the sequence can be derived from read pairs adjacent to junction-defining discordant read pairs in which one read does not map to the reference and potentially sequences the novel junction. In these cases, the numbers of reads that align to define the novel junction sequence are reported. For junctions mediated by homologies, such as tRNA genes or Ty-related sequences, sequences can be determined by aligning reads that are linked to uniquely mapping regions adjacent to the homologies involved in the junction.

Supplementary Table 5. GCR structures for Can^{*} 5FOA^{*} isolates from the sGCR assay with sequenced genomes.

Sample (Relevant genotype)	GCR description	GCR Junction Evidence	
ASYG176 (swr1)	Hairpin-mediated inverted duplication on chr V L (hairpin between NAT at $can1::P_{uu}$ - NAT and $PRB1$ at 40,999 bp (7,437 base loop)	Copy number (Supplementary Fig. 7a) Discordant read pairs (14 read pairs) Junction sequence (4 reads; Supplementary Fig. 12B)	
	Homology-mediated translocation between chr V L YELCdelta4 and chr XII R YLRCTy2-2	Copy number (Supplementary Fig. 7a)	
ASYG178	Homology-mediated inverted duplication on chr V L between YCLWdelta5 at can1::Puw-NAT and YELWdelta1/2	Copy number (Supplementary Fig. 7a) Discordant read pairs (22 read pairs)	
(<i>swr1</i>)	<i>de novo</i> telomere addition on chr V L at 140,721 bp inside <i>YEL008W</i>	Copy number (Supplementary Fig. 7a) Junction sequence (2 reads; Supplementary Fig. 7a)	
ASYG179 (swr1)	<i>de novo</i> telomere addition on chr V L at 34,905 bp inside <i>NPR2</i>	Copy number (Supplementary Fig. 7a) Junction sequence (7 reads; Supplementary Fig. 7a)	
ASYG180 (swr1)	<i>de novo</i> telomere addition on chr V L at 38,542 bp inside <i>CIN8</i>	Copy number (Supplementary Fig. 7a) Junction sequence (3 reads; Supplementary Fig. 7a)	
ASYG261	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{ixe} -NAT and an unidentified Ty- containing target	Copy number (Supplementary Fig. 7b)	
(<i>swr1</i>)	Homology-mediated translocation between the unidentified Ty-containing target and chr VIII R <i>YHRCTy1-1</i>	Copy number (Supplementary Fig. 7b)	
ASYG262	Homology-mediated inverted duplication on chr V L between YCLWdelta5 at can1::P _{uw} -NAT and YELWdelta1/2	Copy number (Supplementary Fig. 7a) Discordant read pairs (27 read pairs)	
(swr1)	Homology-mediated translocation between chr V L YELCdelta4 and chr V R YERCTy1-1	Copy number (Supplementary Fig. 7a)	
ASYG271 (swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Pues-NAT and chr XII L YLLCdelta1	Copy number (Supplementary Fig. 7b) Discordant read pairs (12 read pairs)	
ASYG272 (swr1)	<i>de novo</i> telomere addition on chr V L at 34,842 bp inside <i>NPR2</i>	Copy number (Supplementary Fig. 7a) Junction sequence (6 reads; Supplementary Fig. 7a)	
ASYG273 (swr1)	Homology-mediated inverted duplication on chr V L between YCLWdelta5 at can1::P _{uw} -NAT and YELWdelta1/2	Copy number (Supplementary Fig. 7a) Discordant read pairs (10 read pairs)	
	Homology-mediated translocation between chr V L YELCdelta4 and chr V R YERCdelta16	Copy number (Supplementary Fig. 7a)	
ASYG274 (swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Pue-NAT and chr V R "YERWdelta27", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 7b) Discordant read pairs (17 read pairs)	
ASYG275 (swr1)	Homology-mediated inverted duplication on chr V L (mediated by pairing between YCLWdelta5 at can1::P _{uw} -NAT and YELWdelta1/2	Copy number (Supplementary Fig. 7a) Discordant read pairs (11 read pairs)	
	Homology-mediated translocation between chr V L PAU2 and another PAU gene, most likely chrII R PAU24	Copy number (Supplementary Fig. 7a) Discordant read pairs (2 read pairs)	
ASYG158 (mrc1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{INO} -NAT and chr V R "YERWdelta27", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 8a) Discordant read pairs (201 read pairs)	
ASYG159 (mrc1)	<i>de novo</i> telomere addition on chr V L (at 34,849 bp inside <i>NPR2</i>)	Copy number (Supplementary Fig. 8b) Junction sequence (25 reads;	

		Supplementary Fig. 8h)	
		Supplementary Fig. 00)	
	Disomy of chr II and chr IX	Copy number histogram plot	
ASYG160 (mrc1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{LWC} -NAT and chr X R YJRWdelta17	Copy number (Supplementary Fig. 8a) Discordant read pairs (94 read pairs)	
ASYG161 (mrc1)	Homology-mediated translocation between chrV L <i>YCLWdelta5</i> at <i>can1::Puw-NAT</i> and chrV R <i>"YERWdelta27"</i> , an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 8a) Discordant read pairs (167 read pairs)	
	Homology-mediated translocation between chr V R "YERWdelta27" and chrIV R YDRWTy2-3	Copy number (Supplementary Fig. 8a)	
	Non-integral aneuploidy of chr II and chr IX	Copy number histogram plot	
ASYG162	Homology-mediated translocation between chr V L YCLWdelta5 at can1::PLAUZ-NAT and chr IV R YDRWTy2-2	Copy number (Supplementary Fig. 8a) Discordant read pairs (103 read pairs)	
(mrc1)	Non-integral aneuploidy of chr IX	Copy number histogram plot	
ASYG163 (mrc1)	Homology-mediated translocation between chrV L YCLWdelta5 at can1::P_uw-NAT and chrV R "YERWdelta27", an unannotated delta at chrV:449,322- 449,631	Copy number (Fig. 8a) Discordant read pairs (143 read pairs)	
	Homology-mediated translocation between chr V R "YERWdelta27" and an unidentified Ty-containing target	-	
	Homology-mediated translocation between an unidentified Ty-containing target and chrV R YERCTy1-2	Copy number (Fig. 8a)	
	Non-integral aneuploidy of chr IX	Copy number histogram plot	
ASYG164 (mrc1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{LWD} -NAT and chr V R "YERWdelta27", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 8a) Discordant read pairs (194 read pairs)	
ASYG266 (mrc1)	Homology-mediated translocation between chr V L <i>YCLWdelta5</i> at <i>can1::P</i> _{LW2} - <i>NAT</i> and chr III R <i>YCRWdelta13</i>	Copy number (Supplementary Fig. 8a) Discordant read pairs (172 read pairs)	
	Disomy of chr IX disomy	Copy number histogram plot	
ASYG267 (mrc1)	<i>de novo</i> telomere addition on chr V L (at 30,823 bp inside <i>AVT2</i>)	Copy number (Supplementary Fig. 8b) Junction sequence (22 reads; Supplementary Fig. 8b)	
ASYG268 (mrc1)	Interstitial deletion on chr V L from 12,564 bp to 31,929 bp (inside <i>CAN1</i> at <i>yel068c::CAN1-URA3</i>) with 7-bp microhomology	Copy number (Supplementary Fig. 8b) Discordant read pairs (256 read pairs) Junction sequence (53 reads; Supplementary Fig. 8b)	
ASYG269 (mrc1)	Homology-mediated translocation between chr V L <i>YCLWdelta5</i> at <i>can1::P</i> _{LW2} - <i>NAT</i> and chr V R " <i>YERWdelta27</i> ", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 8a) Discordant read pairs (128 read pairs)	
ASYG187 (<i>mrc1-1-</i> <i>843</i>)	Homology-mediated translocation between chr V L <i>YCLWdelta5</i> at <i>can1::P</i> _{LW2} - <i>NAT</i> and chr V R " <i>YERWdelta27</i> ", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 9a) Discordant read pairs (203 read pairs)	
ASYG188 (<i>mrc1-1-</i> <i>843</i>)	<i>de novo</i> telomere addition on chr V L (at 34,841 bp inside <i>NPR2</i>)	Copy number (Supplementary Fig. 9b) Junction sequence (29 reads; Supplementary Fig. 9b)	

A (1)/(2100	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puzz-NAT and chr VII R YGRWdelta28 in YGRCTy2-2	Copy number (Supplementary Fig. 9a) Discordant read pairs (60 read pairs)	
ASYG189 (<i>mrc1-1-</i> <i>843</i>)	Homology-mediated translocation between chr VII R YGRWTy2-2 and chrXII R YLRCdelta21	Copy number (Supplementary Fig. 9a)	
,	Homology-mediated translocation between chr XII R YLRCTy2-2 and chr V R YERCdelta20	Copy number (Supplementary Fig. 9a)	
ASYG190 (<i>mrc1-1-</i> <i>843</i>)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{LRC} -NAT and chr XII R YGRWTy2-2	Copy number (Supplementary Fig. 9a)	
ASYG191 (<i>mrc1-1-</i> <i>843</i>)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puus-NAT and chr IV R YDRWTy2-3	Copy number (Supplementary Fig. 9a) Discordant read pairs (58 read pairs)	
ASYG263 (<i>mrc1-1-</i> <i>843</i>)	Homology-mediated translocation between chr V L SUP53 at can1::Preso-NAT and chr XIII R tL(CAA)M	Copy number (Supplementary Fig. 9a) Discordant read pairs (78 read pairs)	
ASYG264 (<i>mrc1-1-</i> 843)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puttor-NAT and chr IV R YDRWTy2-3	Copy number (Supplementary Fig. 9a) Discordant read pairs (38 read pairs)	
ASYG276 (mrc1-1- 843)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puez-NAT and chr X R YJRWdelta17	Copy number (Supplementary Fig. 9a) Discordant read pairs (134 read pairs)	
ASYG277 (<i>mrc1-1-</i> 843)	<i>de novo</i> telomere addition on chr V L (at 36,339 bp)	Copy number (Supplementary Fig. 9b) Junction sequence (37 reads; Supplementary Fig. 9b)	
ASYG278 (<i>mrc1-1-</i> 843)	Microhomology-containing translocation between chr V L (36,841 bp, inside <i>CIN8</i>) and chr II R (557,876 bp, inside <i>AMN1</i>) with 12 bp microhomology	Copy number (Supplementary Fig. 9b) Discordant read pairs (166 read pairs) Junction sequence (21 reads; Supplementary Fig. 9b)	
ASYG279 (mrc1-1- 843)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{uw} -NAT and chr X R YJRWdelta17)	Copy number (Supplementary Fig. 9a) Discordant read pairs (90 read pairs)	
ASYG230 (mrc1 swr1)	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>SIT1</i> , 5-base loop, duplication until <i>YELWdelta1/2</i>)	Copy number (Supplementary Fig. 10a) Discordant read pairs (54 read pairs) Junction sequence (42 reads; Supplementary Fig. 12D)	
	Homology-mediated translocation between chr V L YERWdelta1/2 and chr III R YCRWdelta11	Copy number (Supplementary Fig. 10a)	
ASYG231 (mrc1 swr1)	Interstitial deletion on chr V L from 18,986 bp to 31,330 bp downstream of <i>CAN1</i> at <i>yel068c::CAN1-URA3</i> with 8 bp microhomology	Copy number (Supplementary Fig. 10b) Discordant read pairs (71 read pairs) Junction sequence (10 reads; Supplementary Fig. 10b)	
ASYG232 (mrc1 swr1)	<i>de novo</i> telomere addition on chr V L at 31,669 bp at <i>yel068c::CAN1-URA3</i>	Copy number (Supplementary Fig. 10b) Junction sequence (10 reads; Supplementary Fig. 10b)	
ASYG233 (mrc1 swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puw-NAT and chr V R "YERWdelta27", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 10a) Discordant read pairs (101 read pairs)	
ASYG234 (mrc1 swr1)	Interstitial deletion on chr V L from 25,751 bp (inside <i>YEL068C</i>) to 32,347 bp (inside <i>CAN1</i> at <i>yelo068c::CAN1-URA3</i>) with 20 bp imperfect microhomology (17/20 bp identity)	Copy number (Supplementary Fig. 10b) Discordant read pairs (415 read pairs) Junction sequence (93 reads; Supplementary Fig. 10b)	
ASYG235	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{uw} -NAT and chr IV R YDRWTy2-2	Copy number (Supplementary Fig. 10a) Discordant read pairs (216 read pairs)	
(mrc1 swr1)	Homology-mediated translocation between chrIV R YDRCTy1-2 and chrVIII R YHRCTy1-1	Copy number (Supplementary Fig. 10a)	
ASYG236 (mrc1 swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P ₁₀₀₀ -NAT and chr X L YJLCdelta4/5	Copy number (Supplementary Fig. 10a) Discordant read pairs (127 read pairs)	

	<i>de novo</i> telomere addition on chr V L at 28,339 bp (inside <i>SIT1</i>)	Copy number (Supplementary Fig. 10b) Junction sequence (34 reads; Supplementary Fig. 10b)	
ASYG237 (mrc1 swr1)	Chromosome end-fusion between chr V L <i>de novo</i> telomere and chr VI R	Copy number (Supplementary Fig. 10b) Discordant read pairs (109 read pairs)	
	Homology-mediated inverted duplication between chr VI R SUP11 and chr VI R SUP6	Copy number (Supplementary Fig. 10b) Discordant read pairs (344 read pairs)	
ASYG238 (mrc1 swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{uu2} -NAT and chr IV R YDRWTy2-3	Copy number (Supplementary Fig. 10a) Discordant read pairs (99 read pairs)	
ASYG239 (mrc1 swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puw-NAT and chr V R "YERWdelta27", an unannotated delta at chrV:449,322- 449,631	Copy number (Supplementary Fig. 10a) Discordant read pairs (181 read pairs)	
ASYG200 (mrc1-1-843	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NAT</i> at <i>can1::P</i> _{iser} - <i>NAT</i> , 243-base loop)	Copy number (Supplementary Fig. 11a) Discordant read pairs (89 read pairs) Junction sequence (26 reads; Supplementary Fig. 12B)	
swr1)	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-3	Copy number (Supplementary Fig. 11a)	
ASYG201 (mrc1-1-843	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NAT</i> at <i>can1::P</i> _{iser} - <i>NAT</i> , 157-base loop)	Copy number (Supplementary Fig. 11a) Discordant read pairs (11 read pairs) Junction sequence (23 reads; Supplementary Fig. 12B)	
swr1)	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-3	Copy number (Supplementary Fig. 11a)	
ASYG202 (<i>mrc1-1-843</i> <i>swr1</i>)	Interstitial deletion on chr V L from 19,129 bp to 27,085 bp (inside <i>HPA3</i>) with 8 bp microhomology	Copy number (Supplementary Fig. 11b) Discordant read pairs (561 read pairs) Junction sequence (95 reads; Supplementary Fig. 11b)	
ASYG203 (mrc1-1-843	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>NPR2</i>)	Copy number (Supplementary Fig. 11a) Discordant read pairs (104 read pairs) Junction sequence (72 reads; Supplementary Fig. 12A)	
Swr1) ASYG204 (mrc1-1-843 swr1)	Homology-mediated translocation between chr V L YELCdelta4 and chr I R YARCTy1-1	Copy number (Supplementary Fig. 11a) Discordant read pairs (33 read pairs)	
	Note: Isolate has 2n genomic copy with two chrV- derived GCRs; duplications on chr V L, chr IV R, and chr VII R are all 1.5x higher than the median 2n copy number.	_	
	First GCR: Hairpin-mediated inverted duplication on chr V L (hairpin inside NAT)	Copy number (Supplementary Fig. 11a) Junction sequence (52 reads; Supplementary Fig. 12C)	
	First GCR: Homology-mediated translocation between <i>YELCdelta4</i> and chr IV R <i>YDRWTy2-3/YDRWTy1-3</i> or chrVII <i>YGRWTy2-2/YGRCTy1-3</i>	Copy number (Supplementary Fig. 11a)	
	Second GCR: Homology-mediated translocation between chr V L YCLWdelta5 at can1::P _{1wa} -NAT and chr IV R YDRWTy2-3/YDRWTy1-3 or chrVII YGRWTy2-2/YGRCTy1-3	Copy number (Supplementary Fig. 11a)	
ASYG205 (<i>mrc1-1-843</i> <i>swr1</i>)	Interstitial deletion on chr V L from 116,363 bp (inside URA3 at yel068c::CAN1-URA3) to 30,475 bp (inside AVT2) with 14 bp microhomology	Copy number (Supplementary Fig. 11b) Discordant read pairs (626 read pairs) Junction sequence (68 reads; Supplementary Fig. 11b)	
ASYG206 (mrc1-1-843 swr1)	Homology-mediated translocation between chr V L SUP53 at can1:: P_{uuc} -NAT and chr XIII R $tL(CAA)M$	Copy number (Supplementary Fig. 11b) Discordant read pairs (171 read pairs)	
ASYG208 (mrc1-1-843 swr1)	Homology-mediated translocation between chr V L YCLWdelta5 at can1::Puur-NAT and chr IV R YDRWTy2-3	Copy number (Supplementary Fig. 11b) Discordant read pairs (71 read pairs)	

	Homology-mediated translocation between chr IV R YDRWTy2-3 and chr XV R YORWTy2-2	Copy number (Supplementary Fig. 11b)
ASYG209 (mrc1-1-843 swr1)	Note: Isolate has 4 copies of the sequence between hairpin-mediated inverted duplication and <i>YELCdelta4</i> , 2 copies of the sequence between <i>YELCdelta4</i> and <i>YELWdelta6</i> , and two copies of the sequence telomeric to <i>YERCTy1-1</i> .	-
	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>SIT1</i> , 45-base loop)	Copy number (Supplementary Fig. 11a) Discordant read pairs (238 read pairs) Junction sequence (165 reads; Supplementary Fig. 12C)
	Homology-mediated inverted duplication on chr V L (mediated by pairing between YELWdelta6 and YELCdelta4)	Copy number (Supplementary Fig. 11a) Discordant read pairs (19 read pairs)
	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>SIT1</i> , 45-base loop)	Copy number (Supplementary Fig. 11a) Discordant read pairs (238 read pairs) Junction sequence (165 reads; Supplementary Fig. 12C)
	Homology-mediated translocation between chr V L YELCdelta4 and chr V R YERCTy1-1	Copy number (Supplementary Fig. 11a)
ASYG210 (mrc1-1-843 swr1)	Hairpin-mediated inverted duplication on chr V L (hairpin inside <i>PRB1</i> , 7-base loop)	Copy number (Supplementary Fig. 11a) Discordant read pairs (73 read pairs) Junction sequence (85 reads; Supplementary Fig. 12D)
	Homology-mediated translocation between chr V L YELCdelta4 and chr IV R YDRCTy1-3	Copy number (Supplementary Fig. 11a)

Evidence supporting GCR-related junctions can be derived from whole genome sequencing data in several ways. Frequently, multiple lines of evidence support many junctions. Copy number changes, from normalized read depth plots of uniquely mapping regions of the genome, can suggest possible rearrangements, particularly those involving HR between repetitive elements. Discordant read pairs are read pairs where two uniquely mapping reads map to regions consistent with the GCR, but not with reference chromosome; note that the number of discordant read pairs is influenced by whether the rearrangement is within or adjacent to non-uniquely mapping regions of the genome. Junction sequences can be determined in two ways, depending on the junction. For junctions that generate a novel sequence, such as a deletion or hairpin-mediated inversion, the sequence can be derived from read pairs adjacent to junction. In these cases, the numbers of reads that align to define the novel junction sequences are reported. For junctions mediated by homologies, such as tRNA genes or Ty-related sequences, sequences can be determined by aligning reads that are linked to uniquely mapping regions adjacent to the homologies involved in the junction.

²Translocation observed by junction-defining read pairs for the translocation target with both ChrV L (adjacent to P_{uur} -YCLWdelta5 fragment, listed first) and ChrIII L (within the P_{uur} -YCLWdelta5 fragment, listed second).

Strain	Genotype*	Reference
RDKY7629	$MATalpha hom 3-10 ura 3-\Delta 0 leu 2-\Delta 0 trp 1-\Delta 63 his 3-\Delta 200 lyp 1 \Delta :: TRP 1 cyh 2-Q38K iYFR016c:: P_{MFA1}-LEU2 can 1 \Delta :: P_{LEU2(SUP53,YCLWdelta5)}-nat NT2$	Ref. 2
RDKY8624	MAT alpha hom3-10 ura3- $\Delta 0$ leu2- $\Delta 0$ trp1- $\Delta 63$ his3- $\Delta 200$ lyp1 Δ ::TRP1 cyh2-Q38K iYFR016c::P _{MFA1} -LEU2 can1 Δ ::P _{LEU2} -natNT2	Ref. 2
RDKY7635	$ \begin{array}{l} MATalpha \ hom 3-10 \ ura 3-\Delta 0 \ leu 2-\Delta 0 \ trp 1-\Delta 63 \ his 3-\Delta 200 \ lyp 1 \varDelta :: TRP 1 \\ cyh 2-Q38K \ iYFR016c:: P_{MFA1}-LEU2 \ can 1 \varDelta :: P_{LEU2(SUP53,YCLWdelta5)}-natNT2 \\ yel 072w:: CAN1-URA3 \end{array} $	Ref. 2
RDKY7964	$ \begin{array}{l} MATalpha \ hom 3-10 \ ura 3-\Delta 0 \ leu 2-\Delta 0 \ trp 1-\Delta 63 \ his 3-\Delta 200 \ lyp 1 \varDelta :: TRP 1 \\ cyh 2-Q38K \ iYFR016c:: P_{MFA1}-LEU2 \ can 1 \varDelta :: P_{LEU2(SUP53,YCLWdelta5)}-natNT2 \\ yel068c:: CAN1-URA3 \end{array} $	Ref. 2
RDKY8625	$ \begin{array}{l} MATalpha \ hom 3-10 \ ura 3-\Delta 0 \ leu 2-\Delta 0 \ trp 1-\Delta 63 \ his 3-\Delta 200 \ lyp 1 \varDelta :: TRP 1 \\ cyh 2-Q 38K \ iYFR 016c:: P_{MFA1}-LEU2 \ can 1 \varDelta :: P_{LEU2}-natNT2 \\ yel 068c:: CAN 1-URA 3 \end{array} $	Ref. 2
RDKY7785	RDKY7635 <i>swr1A</i> :: <i>HIS3</i>	Ref. 2
RDKY9077	RDKY7964 swr14::HIS3	this study
RDKY8808	RDKY8625 <i>swr1A</i> :: <i>HIS3</i>	this study
RDKY8969	RDKY7635 <i>htz1∆::HIS3</i>	this study
RDKY9079	RDKY7964 htz14::HIS3	this study
RDKY8810	RDKY8625 <i>htz1∆::HIS3</i>	this study
RDKY8301	RDKY7635 mrc1 <i>1</i> ::kanMX4	this study
RDKY9081	RDKY7964 mrc1/2::kanMX4	this study
RDKY8804	RDKY8625 mrc14::kanMX4	this study
RDKY8302	RDKY7635 mrc14::kanMX4 swr14::HIS3	this study
RDKY9083	RDKY7964 mrc14::kanMX4 swr14::HIS3	this study
RDKY9085	RDKY8625 mrc14::kanMX4 swr14::HIS3	this study
RDKY8975	RDKY7635 mrc1 <i>\Delta::kanMX4 htz1\Delta::HIS3</i>	this study
RDKY9087	RDKY8625 mrc1 <i>\Delta::kanMX4 htz1\Delta::HIS3</i>	this study
RDKY9291	RDKY7635 vps71A::HIS3	this study
RDKY9293	RDKY7635 vps724::HIS3	this study
RDKY9295	RDKY7635 <i>swc3∆::HIS3</i>	this study
RDKY9297	RDKY7635 <i>swc5∆::HIS3</i>	this study
RDKY9299	RDKY7635 arp64::HIS3	this study
RDKY9301	RDKY7635 yaf94::HIS3	this study
RDKY9303	RDKY7635 mrc14::kanMX4 vps714::HIS3	this study
RDKY9305	RDKY7635 mrc14::kanMX4 vps724::HIS3	this study
RDKY9307	RDKY7635 mrc1∆::kanMX4 swc3∆::HIS3	this study
RDKY9309	RDKY7635 mrc1 <i>\Delta</i> ::kanMX4 swc5 <i>\Delta</i> ::HIS3	this study
RDKY9311	RDKY7635 mrc1 <i>\Delta::kanMX4 arp6\Delta::HIS3</i>	this study
RDKY9313	RDKY7635 mrc14::kanMX4 yaf94::HIS3	this study
RDKY8304	RDKY7629 mrc1-aq.kanMX4	this study
RDKY8305	RDKY7635 mrc1-aq.kanMX4	this study

Supplementary Table 6. S. cerevisiae strains used in this study
RDKY9089	RDKY7964 mrc1-aq.kanMX4	this study
RDKY8818	RDKY8624 mrc1-aq.kanMX4	this study
RDKY9091	RDKY8625 mrc1-aq.kanMX4	this study
RDKY8306	RDKY7635 mrc1-aq.kanMX4 swr14::HIS3	this study
RDKY9093	RDKY7964 mrc1-aq.kanMX4 swr14::HIS3	this study
RDKY9095	RDKY8625 mrc1-aq.kanMX4 swr14::HIS3	this study
RDKY9097	RDKY7635 mrc1-aq.kanMX4 htz14::HIS3	this study
RDKY9099	RDKY7964 mrc1-aq.kanMX4 htz14::HIS3	this study
RDKY9101	RDKY8625 mrc1-aq.kanMX4 htz14::HIS3	this study
RDKY9315	RDKY7635 mrc1-aq.kanMX4 vps714::HIS3	this study
RDKY9317	RDKY7635 mrc1-aq.kanMX4 vps724::HIS3	this study
RDKY9319	RDKY7635 mrc1-aq.kanMX4 swc34::HIS3	this study
RDKY9321	RDKY7635 mrc1-aq.kanMX4 swc54::HIS3	this study
RDKY9323	RDKY7635 mrc1-aq.kanMX4 arp6∆::HIS3	this study
RDKY9325	RDKY7635 mrc1-aq.kanMX4 yaf9∆::HIS3	this study
RDKY8967	RDKY7635 mrc1-1-843.kanMX4	this study
RDKY9102	RDKY7964 mrc1-1-843.kanMX4	this study
RDKY8814	RDKY8625 mrc1-1-843.kanMX4	this study
RDKY8973	RDKY7635 mrc1-1-843.kanMX4 swr1∆::HIS3	this study
RDKY9104	RDKY7964 mrc1-1-843.kanMX4 swr14::HIS3	this study
RDKY9106	RDKY8625 mrc1-1-843.kanMX4 swr1∆::HIS3	this study
RDKY9108	RDKY7635 mrc1-1-843.kanMX4 htz14::HIS3	this study
RDKY9110	RDKY7964 mrc1-1-843.kanMX4 htz14::HIS3	this study
RDKY9112	RDKY8625 mrc1-1-843.kanMX4 htz14::HIS3	this study
RDKY8963	RDKY7635 tof1 <i>\Delta::kanMX4</i>	this study
RDKY9114	RDKY7964 tof1 <i>1</i> ::kanMX4	this study
RDKY8816	RDKY8625 tof1 <i>\Delta::kanMX4</i>	this study
RDKY8971	RDKY7635 tof1 <i>\Delta::kanMX4 swr1\Delta::HIS3</i>	this study
RDKY9115	RDKY7964 tof1 <i>\Delta::kanMX4 swr1\Delta::HIS3</i>	this study
RDKY9117	RDKY8625 tof1 <i>\Delta::kanMX4 swr1\Delta::HIS3</i>	this study
RDKY9119	RDKY7635 tof1 <i>\Delta::kanMX4 htz1\Delta::HIS3</i>	this study
RDKY9121	RDKY8625 tof1 <i>A</i> ::kanMX4 htz1 <i>A</i> ::HIS3	this study
RDKY8965	RDKY7635 csm3∆::kanMX4	this study
RDKY9128	RDKY7964 csm3∆::kanMX4	this study
RDKY8806	RDKY8625 csm3∆::kanMX4	this study
RDKY8972	RDKY7635 csm3 <i>A</i> ::kanMX4 swr1 <i>A</i> ::HIS3	this study
RDKY9165	RDKY7635 csm3A::hphNT1 swr1A::HIS3	this study
RDKY9130	RDKY7964 csm3 <i>A</i> ::kanMX4 swr1 <i>A</i> ::HIS3	this study
RDKY9132	RDKY8625 csm3 <i>A</i> ::kanMX4 swr1 <i>A</i> ::HIS3	this study
RDKY9134	RDKY7635 csm3 <i>A</i> ::kanMX4 htz1 <i>A</i> ::HIS3	this study
RDKY9136	RDKY8625 csm3 <i>A</i> ::kanMX4 htz1 <i>A</i> ::HIS3	this study

RDKY9138	RDKY7635 swr1 <i>A</i> ::HIS3 htz1 <i>A</i> ::hphNT1	this study
RDKY9140	RDKY7635 mrc14::kanMX4 swr14::HIS3 htz14::hphNT1	this study
RDKY9141	RDKY7635 mrc14::kanMX4 tof14::hphNT1	this study
RDKY9143	RDKY7635 mrc14::kanMX4 swr14::HIS3 tof14::hphNT1	this study
RDKY9145	RDKY7635 mrc1-aq.kanMX4 tof1∆::hphNT1	this study
RDKY9147	RDKY7635 mrc1-aq.kanMX4 swr14::HIS3 tof14::hphNT1	this study
RDKY9150	RDKY7635 mrc1-1-843.kanMX4 tof14::hphNT1	this study
RDKY9152	RDKY7635 mrc1-1-843.kanMX4 swr14::HIS3 tof14::hphNT1	this study
RDKY9154	RDKY7635 mrc1::kanMX4 csm34::hphNT1	this study
RDKY9156	RDKY7635 mrc1 <i>\DistanMX4 swr1\DistantsCam3\D</i>	this study
RDKY9158	RDKY7635 mrc1-aq.kanMX4 csm34::hphNT1	this study
RDKY9160	RDKY7635 mrc1-aq.kanMX4 swr14::HIS3 csm34::hphNT1	this study
RDKY9163	RDKY7635 mrc1-1-843.kanMX4 csm34::hphNT1	this study
RDKY9166	RDKY7635 mrc1-1-843.kanMX4 swr1∆::HIS3 csm3∆::hphNT1	this study
RDKY9167	RDKY7635 HTZ1.HIS3	this study
RDKY9169	RDKY7635 htz1-K126R,K133R.HIS3	this study
RDKY9171	RDKY7635 mrc1 <i>\Delta::kanMX4 htz1-K126R,K133R.HIS3</i>	this study
RDKY9173	RDKY7635 tof12::kanMX4 htz1-K126R,K133R.HIS3	this study
RDKY9174	RDKY7635 csm3∆::kanMX4 htz1-K126R,K133R.HIS3	this study
RDKY9248	RDKY7635 htz1-K(4,9,11,15)R.HIS3	this study
RDKY9256	RDKY7635 mrc1 <i>\Delta</i> ::kanMX4 htz1-K(4,9,11,15)R.HIS3	this study
RDKY9251	RDKY7635 htz1-K(4,9,11,15)Q.HIS3	this study
RDKY9258	RDKY7635 mrc1 <i>\Delta::kanMX4 htz1-K(4,9,11,15)Q.HIS3</i>	this study
RDKY9260	RDKY7635 htz1-K(4,9,11,15,126,133)R.HIS3	this study
RDKY9263	RDKY7635 mrc1 <i>A</i> ::kanMX4 htz1-K(4,9,11,15,126,133)R.HIS3	this study
RDKY9265	RDKY7635 htz1-1-114.HIS3	this study
RDKY9269	RDKY7635 mrc1∆::kanMX4 htz1—1-114.HIS3	this study
RDKY9267	RDKY7635 htz1-1-120.HIS3	this study
RDKY9271	RDKY7635 mrc1∆::kanMX4 htz1—1-120.HIS3	this study
RDKY9176	RDKY8625 rad52A::hphNT1	this study
RDKY9178	RDKY8625 mrc1 <i>A</i> ::kanMX4 rad52 <i>A</i> ::hphNT1	this study
RDKY9180	RDKY8625 swr14::HIS3 rad524::hphNT1	this study
RDKY9182	RDKY8625 mrc1 <i>\DistanMX4 swr1\Distantsianted in the swr1\Distantsianted and the swr1\Distantsianted and the swr1\Distance and the sw</i>	this study
RDKY9184	RDKY8625 ino804::hphNT1	this study
RDKY9186	RDKY8625 mrc1 <i>A</i> ::kanMX4 ino80 <i>A</i> ::hphNT1	this study
RDKY9188	RDKY8625 swr14::HIS3 ino804::hphNT1	this study
RDKY9190	RDKY8625 mrc1 <i>\Delta::kanMX4 swr1\Delta::HIS3 ino80\Delta::hphNT1</i>	this study
RDKY9273	RDKY8625 htz1A::HIS3 ino80A::hphNT1	this study
RDKY9275	RDKY8625 mrc14::kanMX4 htz14::HIS3 ino804::hphNT1	this study
RDKY8977	RDKY7635 DDC2-EGFP.hphNT1	this study
RDKY8978	RDKY7635 mrc14::kanMX4 DDC2-EGFP.hphNT1	this study

RDKY8979	RDKY7635 swr14::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8980	RDKY7635 mrc14::kanMX4 swr14::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8983	RDKY7635 mrc1-1-843.kanMX4 DDC2-EGFP.hphNT1	this study
RDKY8987	RDKY7635 mrc1-1-843.kanMX4 swr14::HIS3 DDC2-EGFP.hphNT1	this study
RDKY9277	RDKY7635 mrc1-aq.kanMX4 DDC2-EGFP.hphNT1	this study
RDKY9279	RDKY7635 mrc1-aq.kanMX4 swr14::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8981	RDKY7635 tof14::kanMX4 DDC2-EGFP.hphNT1	this study
RDKY8985	RDKY7635 tof14::kanMX4 swr14::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8982	RDKY7635 csm34::kanMX4 DDC2-EGFP.hphNT1	this study
RDKY8986	RDKY7635 csm3A::kanMX4 swr1A::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8984	RDKY7635 htz1/2::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8988	RDKY7635 mrc1 <i>A</i> ::kanMX4 htz1 <i>A</i> ::HIS3 DDC2-EGFP.hphNT1	this study
RDKY8989	RDKY7635 HUG1-EGFP.hphNT1	this study
RDKY8991	RDKY7635 mrc1 <i>A</i> ::kanMX4 HUG1-EGFP.hphNT1	this study
RDKY8993	RDKY7635 swr14::HIS3 HUG1-EGFP.hphNT1	this study
RDKY8995	RDKY7635 mrc1 <i>A</i> ::kanMX4 swr1 <i>A</i> ::HIS3 HUG1-EGFP.hphNT1	this study
RDKY8997	RDKY7635 tof14::kanMX4 HUG1-EGFP.hphNT1	this study
RDKY8999	RDKY7635 csm3A::kanMX4 HUG1-EGFP.hphNT1	this study
RDKY9394	RDKY7635 mrc1-1-843.kanMX4 HUG1-EGFP.hphNT1	this study
RDKY9003	RDKY7635 htz12::HIS3 HUG1-EGFP.hphNT1	this study
RDKY9005	RDKY7635 tof1 <i>A</i> ::kanMX4 swr1 <i>A</i> ::HIS3 HUG1-EGFP.hphNT1	this study
RDKY9007	RDKY7635 csm3A::kanMX4 swr1A::HIS3 HUG1-EGFP.hphNT1	this study
RDKY9009	RDKY7635 mrc1-1-843.kanMX4 swr14::HIS3 HUG1-EGFP.hphNT1	this study
RDKY9011	RDKY7635 mrc1 <i>A</i> ::kanMX4 htz1 <i>A</i> ::HIS3 HUG1-EGFP.hphNT1	this study
RDKY9281	RDKY7635 mrc1-aq.kanMX4 HUG1-EGFP.hphNT1	this study
RDKY9283	RDKY7635 mrc1-aq.kanMX4 swr14::HIS3 HUG1-EGFP.hphNT1	this study
BY4741	MAT a his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0	Ref. 3
RDKY9285	BY4741 mrc1-1-843.kanMX4	this study
RDKY9286, RDKY9287	RDKY7635 mrc1-1-843.kanMX4 rad9 <i>1</i> ::HIS3	this study
RDKY9288, RDKY9289, RDKY9290	RDKY7964 mrc1-1-843.kanMX4 rad94::HIS3	this study
FY1296	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺	Ref. 4
HY3777	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ mrc1∆::HIS5	this study
RDKY8798	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ swr1Δ::kanMX4	this study
RDKY8800	W303 MAT a ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ htz1∆::kanMX4	this study
RDKY8801	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ mrc1∆::HIS5 swr1∆::kanMX4	this study
RDKY8802	W303 <i>MAT</i> a ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ tof1∆::HIS5	this study

RDKY8820	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ mrc1 <i>\Delta</i> ::HIS5 htz1 <i>\Delta</i> ::kanMX4	this study
RDKY8822	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ tof1∆::HIS5 swr1∆::kanMX4	this study
RDKY8824	W303 MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100 RAD5 ⁺ tof1 <i>\D</i> ::HIS5 htz1 <i>\D</i> ::kanMX4	this study

* Strains are isogenic to S288c unless otherwise indicated

Supplementary Table 7. Primers used in this study

Name	Sequence (5'-3')	Purpose
oAS145	TTCTAACTGCTCTTTGCATTTTCCAAGTTATTGCATTACA	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>SWR1</i>
	AGAATATATGgagcagattgtactgagagtgcacc	
oAS146	TCCGATTTGGACAACTAAGGCAGCGGTGAAGAGTAGAA	
- 18650		A multiple to a MVA from a FA (or to a MVA to
0A3639	AGAATATGCathcagetacaggtcgac	Amplify KanMX4 from pFA6a-KanMX4 to
oA\$660	TCCGATTTGGACAACTAAGGCAGCGGTGAAGAGTAGAA	
01150000	CCTGGTCCTTCAatcgatgaattcgagctcgt	
oAS147	CCAAAGCATTCGATTACTGC	Verify $swr1\Delta$
oAS148	GGCGATAGTGTTGTCGGAAA	
oA\$323	AGGAAGTTCGTTATTCGCTTTTGAACTTATCACCAAATA	Amplify <i>kanMX4</i> from <i>pFA6a-kanMX4</i> to
0110020	TTTTAGTGATGcgtacgctgcaggtcgac	delete MRC1
oAS324	ACAGCTTCTGGAGTTCAATCAACTTCTTCGGAAAAGAT	
	AAAAAACCACTAatcgatgaattcgagctcgt	
oAS325	GCTCCGGAAGAAGAAGCA	Verify $mrc1\Delta$
oAS326	GGGGAGAAAGAATAAGGGCA	
oAS329	CTAGCTTGTGGGGTTTAGTGTATCTTTAATATAGGAGGG	Amplify kanMX4 from pFA6a-kanMX4 to
	CGCACACTATGcgtacgctgcaggtcgac	delete TOF1
oA\$330	TTCTAAAATTACACGTATTAAAGGGATTAATTACTACAT	
10500	ATTCATTCTCAatcgatgaattcgagctcgt	
oAS500	CTAGCITGTGGGGTTTAGTGTATCTTTAATATAGGAGGG	Amplify <i>hphNT1</i> from <i>pFA6a-hphNT1</i> to
048501	TTCTA A A ATTACACGTATTA A AGGGATTA ATTACTACAT	delete TOFT
0A3501	ATTCATTCTCAatcgatgaattcgagetcg	
oAS331	GAATTGCTTCCCTGTGGAAA	Verify $tof1\Delta$
oAS332	TGATAAAGAATGAATCGCATGT	
oAS356	TGGATTAAAATGCCATGAAAACGTGAACAGAAACTTTT	Amplify <i>kanMX4</i> from <i>pFA6a-kanMX4</i> to
	ATTGAGGTCATGcgtacgctgcaggtcgac	delete CSM3
oAS357	TATAGATGCCCACACGCACGTTTGGATTATTACCTTCAA	
	TGACATTGCTAatcgatgaattcgagctcgt	
oAS502	TGGATTAAAATGCCATGAAAACGTGAACAGAAACTTTT	Amplify <i>hphNT1</i> from <i>pFA6a-hphNT1</i> to
048503	TATAGATGCCCACACGCACGTTTCGATTATTACCTTCAA	delete CSM5
0A3505	TGACATTGCTAatcgatgaattcgagctcg	
oAS358	AAGGAAAAATGCCGGGTAAT	Verify $csm3\Delta$
oAS359	TCGAACCAGGCTCTTTCTACA	
oAS362	TTGATAGATCGAAGAAAAAGAACGGATCGCTTACTCAT	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>VPS71</i>
	AACAGCGAAATGgagcagattgtactgagagtgcacc	
oAS363	TATAAATAGGGGAGAAAAAAGGGCTTACGAATACATAC	
	TGATCATTACTActccttacgcatctgtgcggtatttc	
oAS364	TGAACATGATGATCTTTGTGAGT	Verify $vps71\Delta$
oAS365	CCTTGGAAAATGAGAATAAACGA	
oAS366	TAATGAATACAAATAGAAGTGAAACCGAAGCAAATTCA	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>VPS72</i>
- 18267	CAGIGCACGATGgagcagattgtactgagagtgcacc	4
0A530/	AAIAIAUUAAAIUIIIAAUUAUUIAUUAIIAIAIAGU TGTCTCAATTActeettacgeatetatgeggtattte	
	10101010111110000tacgeatergigeggtattie	

oAS368	CAGTAAGCAGAAAGCACCATGT	Verify $vps72\Delta$
oAS369	CCAGAAATTGATGAATGTAACGA	
oAS370	GCATATGCATGCGATTTGGAAGTAACGCTCGCCGTAGA CAAGTAAGAATGgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>SWC3</i>
oAS371	GTGTATAATCATAATGGCGTTAAAGCAGAATAAAGTAA CCGAACACCTTActccttacgcatctgtgcggtatttc	
oAS372	CTGTGCTCAATCAATCGTGTT	Verify <i>swc3</i> ∆
oAS373	CGGCAAAGTTTGGCATACA	
oAS374	AAACTGGAATAATATTGTTTCAAGAAAGAAAACCCACT AGCCTATAAATGgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>SWC5</i>
oAS375	AAAAATTTGAGCAGAAAAAGCATGTTATTTAATACATGT AATATTTGTCTActccttacgcatctgtgcggtatttc	
oAS376	CCATATCGGGGAAAGACAAA	Verify swc5∆
oAS377	CACACCCATACACCCCATTA	
oAS378	GACCAAAGGAGAAGAAGCGCAGAATCGTGGACAAGAT AATTTAAACTATGgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>ARP6</i>
oAS379	TCTCGACTTTTCGGATTTTCATTGTTGCTATGTAAATCTA TAGTTAATTActccttacgcatctgtgcggtatttc	
oAS380	CTTTCCGTCCATAATTACAAATG	Verify <i>arp6</i> ∆
oAS381	TTTGGGAATTTGTCAATAAAAATGT	
oAS382	ATACATTACTTGTGACCACCTATTTACGGCATCACAAAG AAAGCGAGATGgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>YAF9</i>
oAS383	ATTACTATGGCTGTTATGAAAATACCGTTGTTCCGGGTG CAGTGATCCTActccttacgcatctgtgcggtatttc	
oAS384	ATGACGTGATGACGCTTCG	Verify <i>yaf9</i> ∆
oAS385	TATGACTCTGCACACATTTCG	
oAS386	TAAATTCAATTTCGCACTATAGCCGCACGTAAAAATAA	Amplify <i>HIS3</i> from <i>pRS303</i> to delete <i>HTZ1</i>
4.6207	CTTAACATAATGgagcagattgtactgagagtgcacc	
0AS38/		
oAS807	TAAATTCAATTTCGCACTATAGCCGCACGTAAAAATAA	Amplify <i>hphNT1</i> from <i>pFA6a-hphNT1</i> to
	CTTAACATAATGcgtacgctgcaggtcgac	delete HTZ1
oAS808	CAGGAGCAGGGAGAATTACGGGAAATGGGAAAGAAAA ACTATTCTTCTTAatcgatgaattcgagctcg	
oAS661	TAAATTCAATTTCGCACTATAGCCGCACGTAAAAATAA	Amplify kanMX4 from pFA6a-kanMX4 to
- 15662		delete H1Z1
0A3002	ACTATTCTTCTTAatcgatgaattcgagctcgt	
oAS388	AACAGCTGAACTATTATCCAGTGTAA	Verify $htz1\Delta$
oAS389	CTCGGGTACGGAGAGACAAA	
oAS498	GAAAAAGGAGATTAGAAATTGGCGATGATGCAAAGCTT GTTAAAAACCCAcotacoctocagotcgac	Amplify <i>kanMX4</i> from <i>pFA6a-kanMX4</i> to generate <i>mrc1-1-843 kanMX4</i>
oAS516	ACAGCTTCTGGAGTTCAATCAACTTCTTCGGAAAAGAT AAAAAACCACTAatcgatgaattcgagctcg	
oAS347	AAAATGGAGGATTTCGTA	Verify mrc1-1-843.kanMX4
oAS517	TCTTCTTTTGCTCCAAATGTTTA	1
oAS283	tgcgcaactgttgggaag	Amplify mrc1-aq.kanMX4 from pRDK1779

oAS412	GGCTCCTAGTCGTAATGGTCCTCGTATTTCAAGTTCTAA GGCGTTGTTATttatgcttccggctcctatg	
oAS415	CTCAATGCAGGGACGAAAAACAG	Amplify CAN1-URA3 from pRDK1378 to
oAS416	GCGCTCTCCAAACTAAGGGGGGTTG	insert at YEL072W
oAS455	TGAATGTCGGGATAATTTGC	Amplify CAN1-URA3 from pRDK1379 to
oAS456	GCAGCGAGCCTTAGTTCATC	insert at YEL068C
oAS970	GATCAGGGCTACAATTGCTTCAGGTGGTGTTTTGCCTCA TATAAATAAAGCATTATTATTGAGAGTGGAAAAAAAGG GAAGTAGGAAATAAgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to introduce <i>HIS3</i> downstream of <i>HTZ1</i> and introduce K126R and K133R
oAS972	ATACAGGAGCAGGGAGAATTACGGGAAATGGGAAAGA AAAACTATTCTTCctccttacgcatctgtgcggtatttc	
oAS971	GATCAGGGCTACAATTGCTTCAGGTGGTGTTTTGCCTCA TATAAATAAAGCATTATTATTGAAAGTGGAAAAAAAGG GAAGTAAGAAATAAgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to introduce <i>HIS3</i> downstream of <i>HTZ1</i> ; use with oAS972
oAS1374	TTAGAGGTGACGATGAGTTAGATTCTTTGATCAGGGCT ACAATTGCTTCAGGTGGTTAAgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to introduce <i>HIS3</i> downstream of <i>HTZ1</i> and generate <i>htz1-1-114.HIS3</i> ; use with oAS972
oAS1375	TAGATTCTTTGATCAGGGCTACAATTGCTTCAGGTGGTG TTTTGCCTCATATAAATTAAgagcagattgtactgagagtgcacc	Amplify <i>HIS3</i> from <i>pRS303</i> to introduce <i>HIS3</i> downstream of <i>HTZ1</i> and generate <i>htz1-1-120.HIS3</i> ; use with oAS972
oAS1352	gtggaagcttATGTCAGGAAAAGCTCATGG	Amplify <i>HTZ1</i> to clone into <i>pFA6a-hphNT1</i>
oAS1353	gtgggtcgacTTATTTCTTACTTCCCTTTTTTTTCCAC	
oAS1354	gcggccgccagctgaagcttATGTCAGGAAGAGCTCATGGAGGTA GAGGTAGATCCGGCGCTAGAGACAGTGGTTCATTGAGA TC	Site-directed mutagenesis to generate <i>htz1-K4,9,11,15R</i>
oAS1355	GATCTCAATGAACCACTGTCTCTAGCGCCGGATCTACCT CTACCTCCATGAGCTCTTCCTGACATaagcttcagctggcggccgc	
oA\$1356	gcggccgccagctgaagcttATGTCAGGACAAGCTCATGGAGGTC AAGGTCAATCCGGCGCTCAAGACAGTGGTTCATTGAGA TC	Site-directed mutagenesis to generate <i>htz1-K4,9,11,15Q</i>
oAS1357	GATCTCAATGAACCACTGTCTTGAGCGCCGGATTGACCT TGACCTCCATGAGCTTGTCCTGACATaagcttcagctggcggccgc	
oAS1359	TAAATTCAATTTCGCACTATAGCCGCACGTAAAAATAA CTTAACATAATGTCAGGAAGAGCTCATGGAGGTAGAG	Amplify <i>htz1-K4,9,11,15R.HPH</i> from <i>pRDK1835</i> for genomic insertion
oAS1360	TAAATTCAATTTCGCACTATAGCCGCACGTAAAAATAA CTTAACATAATGTCAGGACAAGCTCATGGAGGTCAAG	Amplify <i>htz1-K4,9,11,15Q.HPH</i> from <i>pRDK1836</i> for genomic insertion
oAS1361	CAGGAGCAGGGAGAATTACGGGAAATGGGAAAGAAAA ACTATTCTTCTTAatcgatgaattcgagctcg	Reverse primer for oAS1359 and oAS1360
oAS518	GGTTGCCAAGAACTGCTGAAGGTTCTGGTGGCTTTGGT GTGTTGTTGATGcgtacgctgcaggtcgac	Amplify <i>hphNT1</i> from <i>pFA6a-hphNT1</i> to delete <i>RAD52</i>
oAS519	AATAAATAATGATGCAAATTTTTTATTTGTTTCGGCCAG GAAGCGTTTCAatcgatgaattcgagctcg	
oAS33	ATCGAATGGCGTTTTTAAGC	Verify $rad52\Delta$
oAS34	CGACACATGGAGGAAAGAAAA	
BZP458	ATCTAACCACACTAGAGGAGGCCGATTCATTATATATCT CAATGGGACTGcgtacgctgcaggtcgac	Amplify <i>EGFP.hphNT1</i> from <i>pYM25</i> to tag DDC2
BZP459	ACAAGGTTTCTATAAAGCGTTGACATTTTCCCCTTTTGA TTGTTGCCTTAtcgatgaattcgagctcg	
BZP475	GAACGGGGAGAATAATGCAA	Verify DDC2-EGFP.hph tag

BZP476	TTGCATTATTCTCCCCGTTC	
BZP14	CCGTCGAACGTCGCGGCGGTCTTTCTGACATTGGTAAG	Amplify EGFP.hphNT1 from pYM25 to tag
	AATACTTCCAACcgtacgctgcaggtcgac	HUG1
BZP15	TTGTTCTTTCCTATCATTGGCCTACAAAAAAAAAAAGAGAAA	
	GCATGCTCTTAatcgatgaattcgagctcg	
BZP18	AGCAATTCTTCCTTGACGATGT	Verify HUG1-EGFP.hph tag
BZP19	CGATGTTCCAAAACAGTAACGA	
oAS31	AACGCCATAGAAAAGAGCATAGTGAGAAAAATCTTCAAC	Amplify HIS3 from pRS303 to delete RAD9
	ATCAGGGCTATGgagcagattgtactgagagtgcacc	
oAS32	TTAATCGTCCCTTTCTATCAATTATGAGTTTATATATTTT	
	TATAATTTCActccttacgcatctgtgcggtatttc	
oAS49	ACACGCGAGGATTTTTGTTC	Verify <i>rad9</i> ∆
oAS50	CGTGTGGGAGGATGTTCTTAG	

Supplementary References

- 1. Naylor ML, Li JM, Osborn AJ, Elledge SJ. Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. *Proc Natl Acad Sci U S A* **106**, 12765-12770 (2009).
- 2. Putnam CD, *et al.* A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers. *Nat Commun* **7**, 11256 (2016).
- 3. Brachmann CB, *et al.* Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* **14**, 115-132 (1998).
- 4. Gonzalez-Huici V, *et al.* DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. *EMBO J* **33**, 327-340 (2014).