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I Description of Stokes polarimetry
Stokes polarimetry is a technique that can be used to completely characterize the polarization state of light,
which includes partially polarized light, by using four measurable quantities called Stokes parameters [1].
Experimentally these quantities can be retrieved through six intensity measurements, each projected in the
appropriate polarization channel. The necessary settings for the quarter-wave plate and linear polarizer in
the polarimeter are described in the methods part of the paper. An example set of such intensity measure-
ments with six different outgoing beam polarizations (horizontal, vertical, diagonal, anti-diagonal, LHC
and RHC) for the m = −5 spiral and RHC polarized input is shown in Fig. S 1 a). Simulation results
for corresponding intensity profiles are shown Fig. S 1 b). In addition to intensities, we recorded interfer-
ence patterns in each of the six different polarization channels and retrieved phase profiles using off-axis
holography, which are presented in Fig. S 1 c). For comparison, simulated phase profiles in corresponding
polarization channels are shown in Fig. S 1 d).
Using the set of intensity measurements in Fig. S 1 a) the Stokes parameters shown in Fig. S 2 were
calculated. Here the Stokes parameters Si, i = 1, 2, 3 are normalized by S0 and therefore range from −1
to +1. The physical connotation of the Stokes parameters can be described as follows:

• S0 is equivalent to the total field intensity.

• S1/S0 quantifies whether the light is preferentially linearly polarized in the horizontal/vertical basis
(positive, resp. negative values).

• S2/S0 quantifies whether the light is preferentially linearly polarized in the diagonal/antidiagonal
basis (positive, resp. negative values).

• S3/S0 describes the degree of circular polarization (sign encoding for helicity).

• Additionally,
√

S2
1 + S2

2 + S2
3/S0 describes the degree of polarization.

Please note that while the field intensity |S(kx, ky)|2 shown in Fig. 3 a) is the same physical quantity as
the Stokes parameter S0 shown in Fig. S 2, operationally S0 was determined by summing polarization
channels, averaging over three measurement basis choices, i.e. S0 = (IH + IV + ID + IA + IRHC +
ILHC)/3. The minor differences between the two plots are explained by a higher signal to noise ratio of
the latter approach.
Fig. 3 a) shows a sketch of the polarization ellipse, which was used in the main text to illustrate typical
polarimetry measurement results. The relationship between the polarization ellipse parameters and the
Stokes parameters is given in the methods part of the paper. From Fig. 3 a) it becomes clear that the
polarization becomes circular in case of ε = ±π/4 and linear for ε = 0.
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Figure 1. Example set for intensity and phase profiles. (a-b) Measured and simulated intensity profiles in
units of CCD counts and normalized units respectively, for a m = −5 spiral for 6 different outgoing
polarizations and RHC polarized input. (c-d) Phase profiles from holography measurements and from
simulations for the same structure and polarization channels. The green and red arrows indicate the input
and output polarizations, respectively.
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Figure 2. Example set of Stokes parameters. Stokes parameter results for a m = −5 spiral with RHC
polarized input.

II OAM decomposition procedure
In the following, we describe the implementation of the OAM decomposition method. As mentioned in
the main text, we make use of the measured complex field profile by computationally decomposing the
field into the fundamental helical modes exp(ilφ). Since we are using a CCD camera, the measured field
Eobs(x, y) is discretized and given in Cartesian coordinates. To take this into account, Eqs. 4 and 5 in the
main article need to be transformed into Cartesian coordinates. This can be achieved by substituting the
coordinates and including the appropriate Jacobian. The Jacobian for the spherical to Cartesian coordinates
transformation can be calculated using the inverse of the two Jacobian determinants given in Table S 1 and
is given by:
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Figure 3. Polarization ellipse, apodization and circular color map. (a) Polarization ellipse representation
of an elliptically polarized wave showing the parameters α and ε. (b) Illustration of the apodization effect
occurring in high NA objectives. A point source radiates an isotropic, spheric wave, which is turned into a
collimated beam with a non-uniform intensity distribution in the back-focal plane of the objective. The
increased ray density at higher ρ indicates the higher intensities. (c) A circular representation of the color
map used to jointly represent amplitude and phase in Fig. 4 and Fig. S 4.

J =
1

f cos θ
· 1

ρ
, (1)

where f is the objective focal length, cos(θ) =
√

1− ρ2/f2 and ρ =
√
x2 + y2. By using this Jacobi

determinant, substituting spherical coordinates and restricting the integration region to ρ = f sin(θ), the
integral in Eq. 4 from the main text can be written as:

Cl(θ) =
1

2π

∫∫
ρ=f sin(θ)

E(x, y) · exp (−ilφ) · 1

f cos(θ)ρ
dxdy, (2)

where φ = arctan (y/x). In practice the integral in Eq. 2 is replaced by a discretized sum over x and y
coordinates, while a ring-shaped, binary mask

Rθ(x, y) =

1 for θ −∆θ/2 < arcsin

(√
x2+y2

f

)
< θ + ∆θ/2

0 else.
(3)

is introduced as a factor in the integrand to confine the integral to a narrow, annular region, whereby the
angle θ is varying in a range of θ = 0 and θ = arcsin(NA). For infinitesimally small ∆θ this procedure
becomes equivalent to the integration over φ described in Eq. 4 in the main text. In this work, we split the
θ range in 100 parts to get accurately resolved Cl(θ) overlap integrals.
Furthermore, when using the Fourier imaging technique for quantitative purposes, a general property of
high NA objectives called apodization needs to be considered. This purely geometric effect causes isotropic
spherical waves to be transformed into collimated beams with non-uniform intensity profiles, since the
objective lens transformation causes increasing ray densities at increasing polar angles θ, as shown in Fig.
S 3 b) [2, 3]. Given that our objective satisfies Abbe’s sine condition, this effect leads to the following
relation between the electric field E and the observed electric field Eobs: E = Eobs ·

√
cos(θ). This results

Cylindrical to spherical Cartesian to cylindrical

det
{
∂(ρ,φ)
∂(θ,φ)

}
= det

f cos(θ) 0

0 1

 = f cos(θ) det
{
∂(x,y)
∂(ρ,φ)

}
= det

cos(φ) −ρ sin(φ)

sin(φ) ρ cos(φ)

 = ρ

Table S 1. Jacobian determinants for cylindrical to spherical and Cartesian to cylindrical transformations.
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in the following modification of Eq. 2:

Cl(θ) =
1

2π

∫∫
ρ=f sin(θ)

E(x, y)√
cos(θ)︸ ︷︷ ︸
Eobs

· exp (−ilφ) · 1

f
√

cos(θ)ρ
dxdy. (4)

The OAM mode decomposition is performed for a finite range of OAM indices l = −20...20, whereby
in the OAM power spectrum plots the index range was reduced to l = −15, ..., 15, where most of the
signal is situated. Note that the apodization factor is included in all OAM power spectra, while in all
the amplitude and intensity plots we present the actually measured amplitude Eobs without inserting the
apodization factor.
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Figure 4. Measured (a and c) and simulated (b and d) combined amplitude and phase profiles for m > 0
spirals. Field profiles in the Fourier plane of spirals with m = 1, 3, 6, 9. The transmitted polarization
channels are co- (b - c) and cross-polarized (c - d), with RHC polarized input. The plots show a combined
representation of phase as hue and field amplitude as brightness (logarithmic scale). Each amplitude
profile is normalized by its maximum. The green and red arrows indicate the input and output
polarizations, respectively.
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III Additional OAM decomposition results
With the full k-resolved field at hand, one can computationally determine the θ-resolved OAM density or
in fact project the field on any desired basis function set. This is a large advantage over other reported
measurement schemes to determine OAM in paraxial beams, which rely on sequential measurements of
integrated transmission through a combined set of spatial filters (to select θ) and (digital) holograms (to
select a target eilϕ) [4, 5]. We report such results by plotting the polar-angle-resolved integrand of Eq. 5
in the main text, namely (Cl(θ))

2 · sin(θ) normalized by
∑∞
l=−∞ pl in Fig. S 5 a) and b) for a m = −5

spiral measured in co- and cross-polarization. We find that the main contribution to the OAM density at
around θ = 0◦ is the OAM mode l = 0, which is partially suppressed in cross-polarization in favor of
l = +2. The high directionality of these two OAM modes can be explained by transmission of the weakly
focused excitation light through the gold film. The presence of the OAM mode l = 0 in cross-polarization
is likely due to the non-perfect extinction ratio of the polarizers. As the aperture itself is sub-wavelength
it does radiate at off-center angles giving rise to contributions at l = 0 in the co-polarized and l = +2 in
the cross-polarized channel. For co-polarized scattering, shown in Fig. S 5 a), the maximal OAM density
at l = −5 is at around θ = 18.9◦. For the cross-polarized case shown in Fig. S 5 b) the maximal OAM
density l = −3 is scattered at an angle θ = 16.4◦ and the maximal OAM density value of the parasitic
OAM mode l = 2 at θ = 4.8◦. In general, for the spiral nanostructures studied here, we find that the
leakage channels with l = 0 and l = ±2 appear at lower angles than the desired, groove-number (m)
dependent OAM modes.
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Figure 5. θ-resolved OAM density spectra for a spiral with m = −5 in co- (a) and cross-polarization (b)
with RHC polarized input. (c) OAM power spectra as a function of m in co-polarization with LHC
polarized input. The dashed line indicates l = m. The green and red arrows indicate the input and output
polarizations, respectively.

IV Description of validation and redundancy removal approaches
Using the well-established polarimetry technique provides us access to wavevector-resolved phase differ-
ences between orthogonally polarized fields, as described in the main text. In Eq. 6 in the main text three
different combinations of S1, S2 and S3 are shown and expressed in terms of phase differences between
vertical and horizontal, anti-diagonal and diagonal and LHC and RHC polarizations. As an example, the
main part of the paper examines Eq. 6 a) using polarimetrically and holographically determined phase
differences between the vertical and horizontal polarizations for a m = −5 spiral, see Fig. 6 a). Here, the
two remaining consistency checks are shown in accordance to the Eqs. 6 b) and c), which again show a
good visual match, see Fig. S 6. As mentioned in the main text, off-axis holography contains an arbitrary
phase offset. Here, in order to make the two plots easily comparable, the phase offset is set automatically
by minimizing the integrated difference between the phase difference profiles retrieved from holography
and polarimetry [6].
Furthermore, the main text discusses the possibility of utilizing the information redundancy present in
combined polarimetric and holographic approaches to reconstruct phase profiles in polarization channels,
in which holographic measurements have not been performed. This becomes evident when taking a look
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Figure 6. Validation of holography using polarimetric phase difference maps. Difference between phase
maps with LHC and RHC (a) and anti-diagonal and diagonal (b) outgoing polarizations respectively
retrieved using polarimetry and holography for RHC polarized input light and a m = −5 spiral. The
green arrows indicate the input polarization.
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Figure 7. Phase profiles from minimally redundant, combined holography and polarimetry approach.
Phase profiles in four polarization channels retrieved using a combination of polarimetry and holography
(a) with correspondent purely holographic phase profiles for comparison (b). The input polarization is
RHC and a m = −5 spiral is used. The green and red arrows indicate the input and output polarizations,
respectively.

at the electric field amplitudes in the horizontal and vertical polarization basis:

EH = Ex exp (iϕH)

ED =
1√
2

[Ex exp (iϕH) + Ey exp (iϕV )]

ERHC =
1√
2

[Ex exp (iϕH)− iEy exp (iϕV )]

EV = Ey exp (iϕV )

EA =
1√
2

[Ex exp (iϕH)− Ey exp (iϕV )]

ELHC =
1√
2

[Ex exp (iϕH) + iEyx exp (iϕV )] ,

(5)

where ϕH and ϕV are the phase profiles in the x-direction and y-direction, respectively. Note, that since
the integration time of the detector is much slower than the electric field oscillation time, the measured
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intensities are averaged, scalar quantities I =
〈
|E|2

〉
. As evident from Eq. 5, only four quantities (Ex,

Ey , ϕH and ϕV ) need to be known to reconstruct all other polarization channels. This fact is utilized
in our reconstruction procedure described below. First, we use arg(S2 + iS3) in combination with the
holographically determined phase profile ϕV to reconstruct ϕH , see Eq. 6 a) in the main article. Then,
using these two phase profiles and Ex and Ey , which are also known from polarimetry measurements
(
√
I(0◦, 0◦) and

√
I(90◦, 90◦)), we determined the remaining complex electric fields EH ,ED,EA,ERHC

and ELHC as specified in Eq. 5. From these complex fields we determine the respective phase profiles
and compare them to the purely holographic phase profiles, as shown in Fig. 6 b) and Fig. S 7. The input
polarization is RHC and a m = −5 spiral is used. The phase offset for the combined phase reconstructions
is set such that the integrated phase difference between the phase profiles under comparison is minimized.
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