TABLE S1 Str	rains and plasmic	is used in this study.
--------------	-------------------	------------------------

Strains/plasmids	Number	Used in figures	Characteristics	Source or reference
Pseudomonas aeruginosa	-	-	-	-
PA14		3, 4, 5, 6, S3, S4, S5	Clinical isolate UCBPP-PA14	(1)
PA14 ∆ <i>ldhA</i>	LD2729	3, 5, 83	PA14 with a deletion <i>ldhA</i>	This study
PA14 ∆ <i>lldDE</i>	LD2735	3, 4, 5, S3, S4, S5	PA14 with a deletion <i>lldD-E</i>	This study
PA14 ∆ <i>lldA</i>	LD2844	3, 4, 5, S3, S5	PA14 with a deletion <i>lldA</i>	This study
PA14 $\Delta lldDE \Delta lldA$	LD2759	3, 4, 85	PA14 with deletions of <i>lldD-E</i> and <i>lldA</i>	This study
PA14 $\Delta lldDE \Delta lldA$:: $lldDE$	LD2904	3	PA14 $\Delta lldDE \Delta lldA$ with complementation of $lldD-E$	This study
PA14 attB::MCS-gfp	LD2820	2, 7, 82, 84	PA14 with MCS- <i>gfp</i> inserted at the <i>attB</i> site using pLD2722 (pSEK103)	This study
PA14 attB::ldhAp-gfp	LD3095	82	PA14 with <i>ldhAp-gfp</i> inserted at the <i>attB</i> site using pLD2814 (pSEK103-gacSp)	This study
PA14 attB::gacSp-gfp	LD2815	5, 7, 82	PA14 with <i>gacSp-gfp</i> inserted at the <i>attB</i> site using pLD2814 (pSEK103- <i>gacSp</i>)	This study
PA14 attB::lldPp-gfp	LD2798	2, 4, 5, 6, 7, S4	PA14 with <i>lldPp-gfp</i> inserted at the <i>attB</i> site using pLD2797 (pSEK103- <i>lldPp</i>)	This study
PA14 attB::lldAp-gfp	LD2868	2, 4, 5, 6	PA14 with <i>lldAp-gfp</i> inserted at the <i>attB</i> site using pLD2867 (pSEK103- <i>lldAp</i>)	This study
Escherichia coli				
UQ950	LD44		<i>E. coli</i> DH5 α λ (<i>pir</i>) strain for cloning; F ⁻ Δ (<i>argF-lac</i>) 169 φ 80d <i>lacZ58</i> (Δ M15) <i>glnV44</i> (AS) <i>rfbD1 gyrA96</i> (NaI ^R) <i>recA1 endA1 spoT thi-1 hsdR17 deoR</i> λ pir ⁺	D. Lies
BW29427	LD661		Donor strain for biparental conjugation; thrB1004 pro thi rpsL hsdS lacZ Δ M15RP4–1360 Δ (araBAD)567 Δ dapA1341::[erm pir(wt)]	B. Wanner
S17-1	LD2901		Str ^R , Tp ^R , F ⁻ RP4-2-Tc::Mu <i>aphA</i> ::Tn7 <i>recA</i> λpir lysogen	(2)
Saccharomyces cerevisiae				
InvSc1	LD622		MATa/MATa leu2/leu2 trp1-289/trp1-289 ura3- 52/ura3-52 his3-∆1/his3-∆1	Invitrogen
Plasmids	-	-	-	-
pMQ30	LD621		Yeast-based allelic-exchange vector; <i>sacB</i> ⁺ , CEN/ARSH, URA3 ⁺ , Gm ^R	(3)
pLD2728 (pMQ30-Δ <i>ldhA</i>)	LD2728		$\Delta ldhA$ flanking fragments introduced into pMQ30 by gap repair cloning in yeast strain InvSc1	This study
pLD2734 (pMQ30-Δ <i>lldDE</i>)	LD2734		$\Delta lldDE$ flanking fragments introduced into pMQ30 by gap repair cloning in yeast strain InvSc1	This study
pLD2758 (pMQ30-Δ <i>lldA</i>)	LD2758		$\Delta lldA$ flanking fragments introduced into pMQ30 by gap repair cloning in yeast strain InvSc1	This study
pLD2903 (pMQ30- <i>lldDE</i> - comp)	LD2903		<i>lldDE</i> complementation flanking fragments intro- duced into pMQ30 by gap repair cloning in yeast strain InvSc1	This study

pYL122	LD742	Amp ^R <i>rhlA-gfp</i> transcription fusion in mini-CTX- <i>lacZ</i>	(4)
pUC18-mini-Tn7		Amp ^R ColE1 replicon mini-Tn7 base vector	(5)
pLD844 (pSEK101)	LD844	<i>rhlA</i> promoter of pYL122 was removed (XhoI and EcoRI) and replaced with a multiple cloning site (MCS) from pUC18-mini-Tn7	(6)
pLD2722 (pSEK103)	LD2722	<i>aacC1</i> (gentamicin resistance cassette) from pMQ30 was inserted at the BspDI site of pLD844	(6)
pLD3094 (pSEK103- <i>ldhAp</i>)	LD3094	494 bp of <i>ldhA</i> promoter sequence inserted at the MCS (SpeI and EcoRI) of pLD2722	This study
pLD2814 (pSEK103-gacSp)	LD2814	297 bp of <i>gacS</i> promoter sequence inserted at the MCS (Spel and XhoI) of pLD2722	This study
pLD2797 (pSEK103- <i>lldPp</i>)	LD2797	324 bp of <i>lldP</i> promoter sequence inserted at the MCS (SpeI and XhoI) of pLD2722	This study
pLD2867 (pSEK103- <i>lldAp</i>)	LD2867	356 bp of <i>lldA</i> promoter sequence inserted at the MCS (SpeI and XhoI) of pLD2722	This study
pFLP2	LD743	Site-specific excision vector with cI857-controlled FLP recombinase; <i>sacB</i> ⁺ , Amp ^R	(7)

- 1. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902.
- 2. Teng F, Murray BE, Weinstock GM. 1998. Conjugal transfer of plasmid DNA from *Escherichia coli* to enterococci: A method to make insertion mutations. Plasmid 39:182–186.
- 3. Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. 2006. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027–5036.
- 4. Lequette Y, Greenberg EP. 2005. Timing and localization of rhamnolipid synthesis gene expression in *Pseudomonas aeruginosa* biofilms. J Bacteriol 187:37–44.
- 5. Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP. 2005. A Tn7based broad-range bacterial cloning and expression system. Nat Methods 2:443–448.
- Lin Y-C, Sekedat MD, Cornell WC, Silva GM, Okegbe C, Price-Whelan A, Vogel C, Dietrich LEP. 2018. Phenazines regulate Nap-dependent denitrification in *Pseudomonas aeruginosa* biofilms. J Bacteriol JB.00031-18.
- Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. Gene 212:77–86.