

Figure S1, related to Figure 1. β 1S and β 2 do not robustly positively regulate *TERT* in *TERT* promoter mutant cancer with intact β 1L. (A) TERT expression following siRNA-mediated knockdown of β2 (siGABPB2) in *TERT* promoter mutant (left) or wild-type (right) cell lines and primary cultures. *p value<0.05, two-sided Student's t-test compared to a non-targeting siRNA (siCTRL) in each respective line. (B,C) Correlation of GABPB1L, GABPB1S, or GABPB2 mRNA expression (log₂[RSEM normalized counts]) versus TERT mRNA expression (log₂[RSEM normalized counts]) from 109 TERT-expressing GBMs and 49 TERT promotermutant oligodendrogliomas (B) and 262 TERT-expressing colorectal cancers (C). Red line indicates trend line. Spearman's Rank-Order Correlation was used to generate Spearman's rho and p values for each monotonic correlation. (D) GABPB1L and GABPB1S expression following LNA-ASO knockdown of β 1L (LNA-GABPB1L) in *TERT* promoter mutant (left) or wild-type (right) cell lines and primary cultures compared to an LNA-ASO control (LNA-CTRL). *p value<0.05, **p value<0.01, two-sided Student's t-test compared to LNA-CTRL in each respective line. All values are mean \pm S.D. of at least three independent experiments (two independent experiments for SF10417 line).

Α

В

	sgRNA B1L-1	sgRNA B1L-2		
GABPB1L wt:	GACAGCAGCTCCTAAAGAAAGAACAGG	AAGCAGAGGCCTACAGACAGAAG	TGGAAGCTATGA	
GBM1 C1:	GACAGCAGCTCCTAAAGAAACAGG/	AAGCAGAGGCCTACAGACAGAAG	TTGGAAGCTATGA	(DEL1)
GBM1 C2:	GACAGCAGCTCCTAAAGAAAGAACAGGA	AGCAGAGGCCTACAGACAGAAG	TTGGAAGCTATGA	
HCT116 C1:	GACAGCAGCTCCTAAAGAAAGAACAGG		TTGGAAGCTATGA	
HCT116 C2:	GACAGCAGCTCCTAAAGAAAGAACAGGA	AAGCAGAGGCCTACAGACAGAAG	TTGGAAGCTATGA	
T98G C1:	GACAGCAGCTCCTAAAGAAAGAACAGG GACAGCAGCTCCTAAAGAAAGAACAGG GACAGCAGCTCCTAAAGAAAGAACAGG GACAGCAGCTCCTAAAGAAAGAACAGG	AAGCAGAGGCCTACAGACAG AAGCAGTGGCCTACAG AAGCAGAGGGCCTACAGACAG GAGCAGAGGGCCTACAG	TTGGGGGGCTATGA ITGGAAGCTATGA ITGGAAGCTATGA ITGGAAGCTATGA	(DEL2) (DEL3)
T98G C2:	GACAGCAGCTCCTAAAGAAAGAACAGG GACAGCAGCTCCTAAAGAAAGAACAGG GACAGCAGCTCCTAAAGAAAGAACAGG GACAGCAGCTCCTAAAGAAAGAACAGG	AAGCAGAGGCCTACAGACAG AAGCAAAGGCCTACAGACAGA AAGCAGAGGCCTACAGACAG AAGCAGAGGGCAG	TTGGAAGCTATGG GA TTGGAAGCTATGA TTGGAAGCTATGA	
HEK293T C1:	GACAGCAGCTCCTAAAGAAAGAACAGG	AAGCAGAGGCCTACAGACAGAAG	TTGGAAGCTATGA	
HEK293T C2:	GACAGCAGCTCCTAAAGAAAGAACAGGA GACAGCAGCTCCTAAAGAAAGAACAGGA	AAGCAGAGGCCTACAG AAGCAGAGGCCTACAGACAG	TTGGAAGCTATGA TTGGAAGCTATGA	
LN229 C1:	GACAGCAGCTCCTAAAGAAAGAACAGG	AAGCAGAGGCCTACAGACAGAAG	TTGGAAGCTATGA	
LN229 C2:	GACAGCAGCTCCTAAAGAAAGAACAGGA GACAGCAGCTCCTAAAGAAAGAACAGGA	AAGCAGAGGCCTACAGACAGA-G AAGCAGAGGCCTACAGAG	TTGGAAGCTATGA TTGGAAGCTATGA	
NHAPC5 C1:	GACAGCAGCTCCTAAAGAAAGAACAGGA GACAGCAGCTCCTAAAGAAAGAACAGGA	AAGCAGAGGT AAGCAGAGGCCTACAGAC	TTGGAAGCTATGA	
NHAPC5 C2:	GACAGCAGCTCCTAAAGAAAGAACAGG	AAGCAGAGGCCTACAGAAG	TTGGAAGCTATGA	

Figure S2, related to Figure 2. Validation of CRISPR-Cas9 editing. (A) UV images of successful integration of the targeting vector (~1.1kb for forward integration, ~1.3kb for reverse integration) into exon 9 of *GABPB1* for the lines used in this study. (B) Sanger sequencing of *GABPB1* exon 9 showing indels in alleles without targeting vector integration for each β 1L-reduced clone. DEL1, DEL2, and DEL3 denote deletions induced in Figure 2B.

Figure S3, related to Figure 2. Validation of β 1L protein reduction and analysis of potential off-target mutations introduced by CRISPR-Cas9 editing. (A) PCR analysis for potential non-specific integration of the targeting vector at off-target coding regions for the universal sgRNA. (B) On-target integration of the targeting vector at the negative control locus. (C) Surveyor analysis to detect potential mutations introduced by CRISPR-Cas9 at coding sequences for all sgRNAs. Arrows indicate expected size of fragments from Surveyor assay if mutations are present. (D-F) PCR analysis for potential non-specific integration of the targeting vector at off-target coding regions for *GABPB1L* sgRNA-2 (D), *GABPB1L* sgRNA-1 (E) and control sgRNA (F). (G) Immunoblotting for β 1 with β 1L isoform (top, upper marked band) and β 1S isoforms (top, lower marked bands) compared to a Cyclophilin B loading control (bottom) in all CRISPR-Cas9-edited cell lines. Asterisk (*) designates non-specific bands. (H) *GABPB1L* expression in β 1L-reduced clones relative to CTRL 48 hr following transfection with empty vector (VECTOR) or β 1L expression vector. **p value<0.01, two-sided Student's t-test compared to respective VECTOR control. Values are mean \pm S.D. of three independent experiments.

Parental	sgRNA	GABPB1L copy number	Clone #	GABPB1L allele 1	GABPB1L allele 2	GABPB1L allele 3	GABPB1L allele 4	GABPB1L allele 5
GBM1	CTRL							
GBM1	GABPB1L-1	2	1	Puro cassette insertion	3bp in-frame deletion			
GBM1	GABPB1L-2	2	2	Puro cassette insertion	A frameshift insertion			
T98G	CTRL							
T98G	GABPB1L-2	5	1	Puro cassette insertion	3bp in-frame deletion + AA>GG dinucleotide sub	7bp frameshift deletion + A>T sub	3bp in-frame deletion	7bp frameshift deletion + A>G sub
T98G	GABPB1L-2	5	2	Puro cassette insertion	3bp in-frame deletion + A>G sub	13bp frameshift deletion + G>A sub	3bp in-frame deletion	13bp frameshift deletion
LN229	CTRL							
LN229	GABPB1L-2	3	1	Puro cassette insertion	Puro cassette insertion	Widl-type		
LN229	GABPB1L-2	3	2	Puro cassette insertion	1bp frameshift deletion	5bp frameshift deletion		
HCT116	CTRL							
HCT116	GABPB1L-2	2	1	Puro cassette insertion	A frameshift insertion			
HCT116	GABPB1L-2	2	2	Puro cassette insertion	A frameshift insertion			

Table S2, related to Figure 2. Summary of clones generated by CRISPR-Cas9 editing.

HEK293T	CTRL						
HEK293T	GABPB1L-2	3	1	Puro cassette insertion	Puro cassette insertion	Wild-type	
HEK293T NHAPC5	GABPB1L-2 CTRL	4	2	Puro cassette insertion	Puro cassette insertion	7bp frameshift deletion	3 bp-inframe deletion
	UIKL				13hn	14hn frameshift	
NHAPC5	GABPB1L-2	3	1	Puro cassette insertion	frameshift deletion + G>T sub	deletion + TGA>GTT trinucleotide sub	
NHAPC5	GABPB1L-2	2	2	Puro cassette insertion	4bp frameshift deletion		
				insertion	deletion		

Table S3, related to Figure 2. Deletions induced by site-directed mutagenesis for the NanoBiT Protein-Protein Interaction assay.

Deletion	Deletion	Forward Primer	Reverse Primer
Reference	CAGCTCCTAAAGAAAGAACAGGAAGC	N/A	N/A
Reference	AGAGGCCTACAGACAGAAGT		
DEL 1	CAGCTCCTAAAGAAACAGGAAGCA	GCCTCTGCTTCCTGTTTCTTTAGGAGC	ACAGCAGCTCCTAAAGAAACAGGAAG
DELI	GAGGCCTACAGACAGAAG	TGCTGT	CAGAGGC
DEL 2	CAGCTCCTAAAGAAAGAACAGGAAGC	GCAGAGGCCTACAGACAGTTGGAAGC	GTCATAGCTTCCAACTGTCTGTAGGCC
DEL2	AGAGGCCTACAGACAG	TATGAC	TCTGC
DEL 2	CAGCTCCTAAAGAAAGAACAGGAAGC	GTCATAGCTTCCAACTGTAGGCCTCTG	GGAAGCAGAGGCCTACAGTTGGAAGC
DELS	AGTGGCCTACAG	CTTCC	TATGAC

Figure S4, related to Figure 3. Expression of exogenous β 1L or TERT is sufficient to rescue telomere dysfunction in β 1L-reduced LN229 lines. (A) Representative DAPI images (left images) and quantification (right graphs) of chromatin bridges in CTRL or β 1L-reduced clones derived from HCT116 or HEK293T *TERT* promoter wild-type lines. Scale bar = 20 µm. N.D. = Not detected. Quantification values are weighted mean ± S.D. of at least ten independent fields of view. (B) Representative DAPI images (left images) and quantification (right graphs) of chromatin bridges in β 1L-reduced LN229 clones transfected with a CONTROL, β 1L, or TERT expression vector. Scale bar = 20 µm. *p value<0.05, **p value<0.01, two-sided Student's t-test relative to CONTROL. Quantification values are weighted mean ± S.D. of at least ten independent fields of view. (C) *TERT* expression measured by RT-qPCR 7 days post-transfection of β 1L-reduced LN229 clones (58 days post-editing) with either a CONTROL or TERT expression vector. **p value<0.01, two-sided Student's t-test relative to CONTROL. Note: **p value<0.01, two-sided Student's t-test relative to CONTROL is the state of t

Figure S5, related to Figure 4. β 1L reduction induces growth defects in *TERT* promoter mutant lines. **(A)** Percent growth of *TERT* promoter mutant (top graphs) and wild-type (bottom graphs)

CRISPR control (CTRL) or β 1L-reduced clones (C1 and C2) relative to the initial time point. *p value<0.05, **p value<0.01, two-sided Student's t-test compared to CTRL (final time point). (**B**) Percent growth of *TERT* promoter mutant (top graphs) and wild-type (bottom graphs) CRISPR control (CTRL) or β 1L-reduced clones (C1 and C2) relative to the initial time point following transfection with a scrambled control (LNA-CTRL) or *GABPB1L*-targeting (LNA-GABPB1L) LNA-ASO. Growth was measured 0, 48, and 96 hr post-transfection. *p value<0.05, **p value<0.01, two-sided Student's t-test compared to a control LNA-ASO (LNA-CTRL) at the final time point for each clone (CTRL or β 1L-reduced). (**C**) Relative *TERT* expression of β 1L-reduced clones following transfection with a scrambled control (LNA-ASO. All values are mean ± S.D. of three independent experiments.

Table S5, related to Figure 5. GO-enrichment for genes differentially expressed between control and β1L-reduced *TERT* promoter mutant lines.

Process	GOTerm Accession	Gene Determinants	FDR
	0052697		
	1904223		
	1904224		
	2001030		
Glucuronidation	2001029	UGT1A10, UGT1A8, UGT1A1, UGT1A4, UGT1A5, UGT1A3, UGT1A9	1.44E-11
	0052696		
	0052695		
	0006063		
	0019585		
	0044707		
	0044767	HONOIA DHOU FOT COLANI THENISCO CHANKI HOTIAL LODS FOU A	
	0032502	HOXC12, RHOU, FS1, COL9A1, IMEM1/6B, SHANK1, UG11A1, LRP5, EDIL3,	
Cellular development	0044763	CXCR4, NTF3, NPY, OGN, DKK1, GPR183, ZDHHC15, LG14, RPS6KA6, ICK, FRK,	3.0903E-08
	0048856	MGP, LPAR3, ADAM1S2, KCNJ10, FERM13, SP/, TER1, S100A9, VNN1, NTRK2,	
	0048869	GABRA4, STC1, S100A8, PCOLCE, CD1D, PTGS2, KCNA1, ANKRD1, HGF	
	007275		
	0007267	CTV11 DVV1 LDLDA THONI WONTA VONTA NEDWEL CULLUM TERT CLAADA	
Cell-to-cell signaling	0099536	S1X11, DKK1, LPAR3, TACR1, HCN4, KCNJ10, NPBWR1, SHANK1, TERT, S100A9,	8.26038E-08
0 0	0099537	NTRK2, CXCL5, GABRA4, LRP5, CCL8, PIGS2, KCNA1, NTF3, NPY, HGF	
	0045922		
Fatty acid metabolism	0019217	UGT1A10, UGT1A8, UGT1A1, UGT1A4, UGT1A3, UGT1A9	8.31764E-07
2	0045833		

	DKK1, FST, GPR183, LGI4, FRK, MGP, COL9A1, LPAR3, TMEM176B, KCNJ10,	
0030154	FERMT3, SP7, SHANK1, VNN1, S100A9, NTRK2, STC1, LRP5, CXCR4, S100A8,	2.58226E-07
	CD1D, PTGS2, KCNA1, NTF3, NPY, OGN, HGF, ANKRD1	
0008283	GPR183, LGI4, FRK, TACR1, ABCB1, ZP4, TERT, NTRK2, CXCL5, STC1, LRP5,	8 20851E 06
0008285	CCL8, CD1D, PTGS2, KCNA1, NPY, NTF3, HGF, OGN	0.29031E-00
	0030154 0008283	DKK1, FST, GPR183, LGI4, FRK, MGP, COL9A1, LPAR3, TMEM176B, KCNJ10,0030154FERMT3, SP7, SHANK1, VNN1, S100A9, NTRK2, STC1, LRP5, CXCR4, S100A8, CD1D, PTGS2, KCNA1, NTF3, NPY, OGN, HGF, ANKRD10008283GPR183, LGI4, FRK, TACR1, ABCB1, ZP4, TERT, NTRK2, CXCL5, STC1, LRP5, CCL8, CD1D, PTGS2, KCNA1, NPY, NTF3, HGF, OGN

Figure S6, related to Figure 6. β 1L reduction does not induce DNA damage and mitotic cell death in *TERT* promoter wild-type cell lines. (A) Correlation of relative telomere length and cellular viability across β 1L-reduced clones from all *TERT* promoter-mutant cell lines (GBM1, T98G, and LN229). Spearman rho=-0.90, p value<0.001. (B) Representative images (left

images) and quantification (right graphs) of γ -H2AX staining in CTRL or β 1L-reduced HCT116 and HEK293T clones. Scale bar = 20 μ m. n.s. = not significant, two-sided Student's t-test compared to CTRL. Quantification values are sums of at least ten independent fields of view. (C) Representative DAPI images (left images) and quantification (right graphs) of giant cell micronucleation (GCM) in CTRL or β 1L-reduced HCT116 and HEK293T clones. Scale bar = 20 μ m. N.D = Not detected. Quantification values are weighted mean \pm S.D. of at least ten independent fields of view.

Figure S7, related to Figure 6. Expression of exogenous β 1L or TERT is sufficient to rescue DNA damage and mitotic cell death in β 1L-reduced LN229 clones. (A) Representative images

(left images) and quantification (right graphs) of γ-H2AX staining in β1L-reduced LN229 clones transfected with a CONTROL, β1L, or TERT expression vector at 73 days post-editing. Scale bar = 20 µm. *p value<0.05, **p value<0.01, Student's t-test relative to CONTROL. Quantification values are sums of at least ten independent fields of view. **(B)** Representative DAPI images (left images) and quantification (right graphs) of giant cell micronucleation (GCM) in β1L-reduced LN229 clones transfected with a CONTROL, β1L, or TERT expression vector at 73 days post-editing. Scale bar = 20 µm. *p value<0.05, Student's t-test relative to CONTROL. Quantification values are weighted mean ± S.D. of at least ten independent fields of view. **(C)** Quantification of chromatin bridge formation, γ-H2AX staining (% positive cells), and giant cell micronucleation (GCM) in LN229 CTRL and β1L-reduced lines at days 45, 61, and 73 postediting. Values are mean of at least five independent fields of view. **(D)** Dot plots quantifying expression of the apoptosis/necrosis marker annexin-V (PE; x-axis) and the senescence marker SA-β-Gal (C-12FDG [FITC]; y-axis) as determined by flow cytometry at day 75 post-editing.