S2 Appendix. CTTI pregnancy testing model description.
Estimating Outcomes of Different Pregnancy Testing Protocols in Clinical Trials:

Model Description

I. Purpose of the Model

Simulation models are often useful for comparing the estimated probability of relevant outcomes under
different options, particularly when direct evidence is not available and where there are trade-offs (in
terms of harms vs. benefits, costs, etc.) involved with the available options. Models can clarify the
relative importance of uncertainty about specific components of the decision, as well as the importance
of explicit or implicit assumptions made prior to making a decision.

The purpose of this model is to estimate the probability of relevant outcomes (false negative pregnancy
tests, false positive pregnancy tests, and detected pregnancies) of different pregnancy testing protocols
for either preventing exposure of an embryo/fetus to a study intervention (by identifying a previously
unknown pregnancy) or minimizing the duration of exposure (by detecting a pregnancy as soon as
possible so that study interventions can be stopped).

In the context of this expert meeting, the primary goal of the written and oral presentation of the model
and results is to facilitate discussion of general principles to consider in making recommendations for
pregnancy testing protocols. Secondary goals include:

¢ Obtaining feedback on the model inputs and structure; we discuss the rationale for the current
version, but welcome specific suggestions on revisions or additional sources for data on relevant
parameters

¢ Obtaining feedback on how a model-based analytic tool could be most useful for those designing
and evaluating pregnancy testing protocols for clinical research (for example, an online resource
which presented estimates of likely outcomes based on a range of preselected values for relevant
variables such as subject age, contraceptive methods, and teratogenic risk, vs. an online resource
which allowed a user to input specific values and obtain estimates, analogous to an online loan
repayment calculator).

This document describes the data sources, assumptions, and derivations of the major inputs for the
model. Results will be presented and discussed at the meeting.



Il. Structure of the Model

We constructed a Markov model to simulate pregnancy testing of women of reproductive potential
enrolled in a clinical trial excluding pregnant women (note that the model could also be applied to the
evaluation of postmarketing pregnancy testing protocols) (Figure 1).

Figure 1: Schematic diagram of model. See text for description.
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The model consists of 3 mutually exclusive states: Not Pregnant, Undetected Pregnancy, and Detected
Pregnancy. In a Markov model, “subjects” can transition between states during a “cycle” or “stage.” In
this model, the length of one Markov cycle is 1 day. Each day, women in the Not Pregnant state can
transition to the Undetected Pregnancy state, with a probability dependent on age, contraceptive
method, and time in the menstrual cycle, or remain Not Pregnant. Women with an Undetected
Pregnancy will ultimately have their pregnancy detected either through testing done for the clinical trial,
or based on signs and symptoms of pregnancy.

Pregnancy testing is performed at the start of the simulation, with the probability of true negative, false
negative, true positive, and false positive results dependent on the prior probability of pregnancy, the
level of hCG in each state (a function of both subject age and the developmental stage of pregnancy),
the assay sensitivity for detection of hCG, and the threshold used to define a “positive” test. Based on
the duration of the “trial”, follow-up testing can be performed at any interval.

The model is run as a stochastic microsimulation—multiple iterations of the model are run, with each
iteration representing the experience of an “individual subject.” Results from each “subject” are then
summed and averaged across all iterations (typically, between 10,000 and 1,000,000). At the start of
each iteration, a “subject’s” age is drawn from one of the distributions described below. The value for
age is then used to draw from distributions for age-specific prevalence of menopause and
hysterectomy; “subjects” between the ages of 15 and 55 who are not post-hysterectomy or menopausal
are then “assigned” a contraceptive method based on an age-specific distribution. In the base case
analysis, we assume that the initial screen is performed independently of the menstrual cycle day; the

potential impact of testing timed to the menstrual cycle is examined in subsequent analyses. After the



initial screen, the model is run for a minimum of 30 days and up to 365 days, with different screening
intervals.

Specific types of statistical distributions were chosen based on the type of data and their fit to the
reported data. Distributions included:

o Normal: the classic bell curve; mean and median values are equivalent. The potential range of a
normal distribution is - to <.

e Gamma: gamma distributions are frequently used as an alternative to the normal distribution when
values below 0 are not possible.

o Lognormal: the natural logarithm of the values are normally distributed. Like gamma distributions,
lognormal distributions have a minimum value of 0, and often used to describe values that have a
particularly wide range (such as hCG levels). Lognormal distributions are also used with ratios,
such as relative risks, odds ratios, and hazard ratios.

e Beta: beta distributions have a minimum value of 0 and a maximum of 1.0, and are used for values
that are constrained by these limits (such as probabilities when there are only two possible
outcomes, such as hysterectomy or no hysterectomy).

o Dirichlet: a Dirichlet distribution is a special form of the beta distribution used when there are more
than two possible outcomes or states (such as contraceptive method).

o  Weibull: Weibull distributions are survival functions which allow variation in the hazard function (i.e.,
the risk of an event can change with time, rather than remain constant).

e Uniform: The probability of any outcome or value is equal (for example, menstrual cycle day if
testing is not timed relative to menses or other marker).

The model was built and all analyses performed in TreeAge Pro 2013 (TreeAge, Inc., Williamstown,
MA). When necessary, conversion of published data to formats usable by the model was done in either
Microsoft Excel (Redmond, WA: Microsoft Corp) or Parameter Solver v. 2.3 (Department of Biostatistics
and Applied Mathematics, MD Anderson Cancer Center).

Ill. Model Parameters

All models require certain simplifying assumptions and decisions about which data sources to use to
generate estimates for the model parameters. As much as possible, we erred on the side of
overestimating pregnancy risk.

A. Subject Age

Table 1: Example conditions and age distribution

CONDITION EXPOSURE MEAN AGE (SD) REFERENCE
Cystic acne Isotretinoin 22.2 (8.2) !
Epilepsy Anti-epileptic drugs 36.7 (11.6) 2
Depression SSRIs 44.0 (16.0) 3
Rheumatoid arthritis Methotrexate 52.0 (13.1) 4

Age is the single most important determinant of pregnancy risk, and therefore the expected age
distribution among trial subjects is the single most important predictor of the likelihood of pregnancy at
the time of enroliment or during the trial.

Reported means and standard deviations for age were taken from 4 published trials of conditions that
are relatively common in reproductive age women and frequently treated with drugs with known risks to



the fetus from exposure during pregnancy (Table 1), although not every study involved exposure to a
potentially teratogenic agent. The studies were identified through a PubMed search using the terms
“randomized trial” and the specific condition, and were chosen to provide examples of “typical” age
ranges for trials in reproductive age women.

Because normal distributions with these values for mean and standard deviations often resulted in
values outside of a plausible range (or the reported range of the study), we characterized the age of
each subject population with lognormal distributions, which were a better fit than the alternative gamma
distributions.

Although age is the most important determinant of risk of pregnancy among women of reproductive
potential, the probability of NOT being at risk of pregnancy is also dependent on age, since both
prevalence of hysterectomy and menopause vary with age. Thus, the age distribution in a given clinical
research study will affect not only the probability of pregnancy among women who are physiologically
able to become pregnant, but also the overall probability of pregnancy in the study.

B. Hysterectomy Status

Age-specific hysterectomy prevalence was estimated directly from the 2010 Behavioral Risk Factor
Surveillance System (BRFSS), a population-based survey.’® We used total population estimates.
Because hysterectomy rates vary dramatically among racial/ethnic groups (in particular, African-
American women are more likely to undergo hysterectomy at younger ages than other groups), race-
specific estimates might be important for specific conditions where prevalence or incidence varies by
race/ethnicity.

Table 2: Age-specific Hysterectomy Prevalence

Age
18-24 25-29 30-34 35-39 40-44 45-49 50-54
Prevalence 0.4% 1.8% 4.0% 7.1% 12.6% 19.4% 27.9%
(95% ClI) (0.2-0.7) | (1.3-2.3) (34-46) | (6.4-7.8) | (11.8-13.4) | (18.6-20.3) | (27.0-28.8)

C. Menopausal Status

_Figure 2: Estimated age-specific prevalence of menopause
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entire population (51.4 years) and the estimated cumulative probability of menopause at age 52 based
on the published K-M curve (52 years). We assumed that all women would be functionally menopausal
at age 55, which was consistent with the estimated cumulative probability based on the Weibull
distribution (99.2%). The published data from SWAN does not provide sufficient information to estimate
confidence intervals around the age-specific prevalence. We also did not incorporate variation in age at
menopause based on race/ethnicity, smoking history, or other factors, although, again, these could be
readily incorporated if appropriate for a particular scenario.

D. Menstrual Cycle Characteristics

We used recent estimates of the duration and variability of the menstrual cycle among healthy
premenopausal women’(Table 3):

Table 3: Menstrual cycle characteristics

Parameter Mean (95% CI) Distribution

Cycle length (days) 27.7 (23-32) Normal
Within-individual cycle-to-cycle variation (days) 2.8 (0.8-6.2) Gamma

Length of luteal phase (days from serum LH peak)* 14.2 (10-18) Normal
Within-individual cycle-to-cycle variation (days) 2.6 (0.3-9) Lognormal

*Study reported time relative to urinary LH peak; we assume serum peak is one day earlier

At the start of each “individual” simulation, a cycle length is drawn from the cycle length distribution, and
a value for cycle variability is also drawn. For simulations that last longer than one menstrual cycle,
days are added or subtracted to the cycle length based on the variation (i.e., if the variability value is 2,
the range of possible values is the initial cycle length value % (2/0.5) days. Similar calculations are done
for luteal phase length and variability. Within each cycle, the day of the serum LH surge was calculated
as the cycle length minus the luteal phase length. This method allows for both between and within-
individual variation in menstrual cycle length, while allowing appropriate modeling of day-specific hCG
levels in the event of pregnancy.

Hormonal contraceptives affect both the probability of ovulation and menstrual patterns. For oral
contraceptives, rings, and patches, we assigned a fixed cycle length of 28 days, and a fixed luteal
phase length of 14 days. For simplicity, we did not attempt to model the effects of long-acting hormonal
contraceptives on bleeding patterns; we did assume that protocols for continued testing in women using
these methods would occur at fixed intervals in all cases, rather than being timed to menses.

We did not attempt to model age-specific variability in menstrual cycle length, although this is
potentially an important consideration in women as they approach menopause.

E. Age-specific Conception Probability

Estimates of the cycle-specific probability of a detected pregnancy in couples not using contraception
are available from a variety of sources, and include couples using natural family planning methods,® °
couples actively trying to conceive,'®'? and couples undergoing artificial insemination where the female
partner has normal reproductive function.''* Differences between populations, including prior fertility
history, age distribution, coital frequency, intent to conceive, and timing and method of conception
confirmation contribute to variation in the estimates. All of these populations are likely to have higher
fecundability then many potential clinical trial subjects with acute or chronic illness.



These estimates range from approximately 20% per cycle in nulliparous women under 30 undergoing
donor insemination when only clinical pregnancies were the primary outcome’® to 40% per cycle in
Chinese textile workers aged 20-34 who were actively trying to conceive when daily urines were tested
with a highly sensitive hCG assay.'? For the purposes of this analysis, we used an estimate of 30% per
cycle for women 30 and younger, which is consistent with the observed rate in early cycles in a US
population-based study, ' and with a European study of couples using natural family planning methods
who had a coital frequency of twice a week.? Although all prospective studies show a decline in cycle-
specific probability as the number of cycles increases beyond 2 or 3 (representing heterogeneity in
underlying fertility), we conservatively assumed that the cycle-specific probability remained constant
over the duration of the simulation (which leads to an overestimation of cumulative pregnancy
probability).

_Figure 3: Cycle-specific Conception Probability by Age We modeled the effect of age using
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F. Pregnancy Outcome Probabilities

Pregnancy loss after conception is common, with a substantial proportion occurring after implantation
but before pregnancy is suspected clinically.’'>'%1> Studies using extremely sensitive assays report
early pregnancy loss rates (prior to the onset of the next menses) of 22-23%,'>"* while rates in two
studies using less sensitive assays were 13%.""'* Confidence intervals for the 3 US-based studies
overlapped; while the Chinese study '* was large and population-based, the population was somewhat
different in terms of potential exposures that might affect pregnancy loss (for example, prevalence of
exposure to second-hand tobacco use in the home was 65%). There were also differences in the
definition of “early pregnancy loss” between studies, ranging from detectable hCG with no delay in
menses'' or “clinical detection”*'° to losses prior to 23 days after the serum LH surge (9 days after the
expected onset of menses).™

Because the sensitivity of the assay used in the Wilcox study was higher than those in the Lohstroh and
Zinaman papers, and higher than current commercially available kits, and because 21% of the subjects
with “non-clinical” pregnancy losses in the Wilcox study actually had pregnancy symptoms,'” which
lowers the proportion of truly non-clinical losses to 18%, we elected to use the lower estimates form
Lohstroh and Zinaman. Because the proportions were so similar, we pooled the total pregnancies by



category for the two studies, and generated a Dirichlet distribution for the conditional probability of each
pregnancy outcome, given conception (Table 4).

Table 4: Distribution of pregnancy outcomes, given  Although clinical, and probably occult,

conception pregnancy loss rates clearly increase with age,®
Outcome N P(’;’g;"’gt;" we did not attempt to model the relative

0 g e .
[ive birth 14 13.4% (9.3-19.6%) conditional prob_ablllty_of pregnancy_ loss with
Clinical loss 35 | 20.2% (14.4-26.2%) | age. We also did not include ectopic pregnancy,

“Nonclinical” pregnancy 24 | 66.0% (58.0-72.9%) gestational trophoblastic neoplasia, or other

uncommon outcomes.
G. Contraceptive Method

For the initial analysis, we assumed that women would continue to use their current method of
contraception. Although this is appropriate for estimating the prior probability of pregnancy at the time
of the initial screen, protocols may specify methods that may be used during the protocol—the model
can be readily adjusted to accommodate protocol-specific methods. We also assume that the
population-based estimates of method choice would be similar to those in a patient population. While
this may be true for some conditions, certain methods may be more or less prevalent in other
conditions. For example, patients with acne may be more likely to be using oral contraceptives, given
their effectiveness in reducing circulating androgen levels, while patients on some anti-epilepsy drugs
might be less likely to be on oral contraceptives, given the potential for mutual effects on drug
metabolism.

Estimates for the age-specific distribution of specific methods among women using contraception were
derived from the 2006 National Survey of Family Growth (NSFG) (Table 5)."® To minimize the number
of categories for modeling,

Table 5: Age-specific distribution of contraceptive methods we combined methods with
Method Age (years) similar effectiveness where
3 ARSI AR AR YR AR S R

Vasectomy 00% | 08% | 36%|  Bo%| 176%| 205y | contraceptives, contraceptive
OCP 60.7% | 57.3% | 41.6% | 291% | 21.4% | 11.9% | |ngsandpatchesasone
LARC 56% | 7.7%| 90%| 85%| 67%| 43%| category,|UDsandhormonal
DMPA 9.7% | 54% | 56%| 24%| 1.0%| 1.2% | mplants—long-acting

Barrier 24.0% 26.3% 24.0% 19.6% 13.2% 9.8% | reversible contraceptives, or

LARC—as another). We
assumed that women using periodic abstinence as their primary method would be instructed to use
barrier methods for the duration of the trial.

Because the NSFG data is based on a weighted survey sample design, and published age-specific
proportions and standard errors are based on all women, including women who do not use
contraception, we could not directly estimate confidence intervals around the distribution of methods
within age groups. To indirectly account for the uncertainty in these estimates, we estimated the
number of actual subjects in each age category by fitting a beta distribution to the reported proportion
and standard error of women using contraception in each age group, then estimating the number of



women using each method based on the reported overall proportion. These numbers were then used to
generate a Dirichlet distribution.

H. Contraceptive Effectiveness

We used the most recent published estimates of first-year, typical use 12 month method-specific failure
rates?® to generate estimates of effectiveness for each method. We made several simplifying
assumptions, all of which result in higher estimates of the probability of pregnancy:

o We used “typical-use” rather than “perfect use” estimates.

o We used first-year estimates; typically, failure rates are highest in the first year of use for any
method, due to both “selection” (couples with higher baseline fertility are more likely to get pregnant
early), variability in user adherence in user-dependent methods such as oral contraception or
barrier methods, and, for women in their 30s and 40s, age-dependent declines in fertility.

¢ We assumed a constant risk across all 12 months; again, failure rates are highest in the first few
months after beginning use.

o We assumed that the reported relative reduction in pregnancy risk associated with each method
was solely due to method effectiveness, rather than differences in the age distribution or intensity of
desire to avoid pregnancy among users.

To generate estimates of the cycle specific relative reduction in pregnancy probability associated with

specific methods:

o We assumed that, during the 12 months used to estimate failure rates, there were 13 menstrual
cycles with a mean duration of 28 days.

¢ Assuming a constant risk of pregnancy and constant cycle-specific effectiveness, we generated
estimates of the cycle-specific hazard of pregnancy with each method that was consistent with the
reported 12 month failure rate.

e Using the estimated cycle-specific probability for non-contraceptive users as the reference, we then
estimated hazard ratios for each method (because of the way the data are reported, we could not
generate confidence intervals around these estimates) (Table 6).

Table 6: Contraceptive effectiveness

Method 12 Month Failure Rate Per Cycle Hazard Hazard Ratio

None 85.00% 13.50% 1.0000
Oral contraceptives 9.00% 0.70% 0.0519
Injectables 6.00% 0.45% 0.0333
Barrier methods 18.00% 1.40% 0.1037
CuT IUD 0.80% 0.07% 0.0048
Progestin IUD 0.20% 0.02% 0.0011
Female sterilization 0.55% 0.05% 0.0033
Male sterilization 0.01% 0.01% 0.0008
Hormonal Implant 0.05% 0.00% 0.0003
Hormonal ring/patch 9.00% 0.70% 0.0519

We then applied these hazard ratios to the age-specific pregnancy probability described in Section II.E,
assuming no differential effect of contraceptive methods on detectable early pregnancy loss.



I. hCG levels in non-pregnant women

We estimated lognormal distributions for

Table 7: hCG (IU/L) levels in non-pregnancy cycles

values of hCG in IU/L in serum and

urine in non-pregnant women, stratified

by age, from the reported quartiles in
the papers by Cole and Ladner®" and

Snyder et al % (Table 7).

J. hCG levels in pregnancy

We assumed that the first day that hCG

Source Mean (95% CI) Maximum Reference
< 40 years old

Urine

LH surge + 3 | 0.32 (0.05,1.6) 9.3 2
days

Other days | 0.34 (0.11,0.81) 4.0 21

Serum 1.67 (1.06,2.5) 4.6 2
41-55 years old

Urine 0.44 (0.02,2.4) 3.6* 21

Serum 3.6 (2.6,4.8) 7.7 2

would be detectable in serum or urine

*99t percentile; reported maximum in paper < reported 99" percentile

would be 9 days after the serum LH peak (8 days after the urine peak), which is consistent across all
studies which used LH as the marker for ovulation.”'*?*2* We generated Dirichlet distributions for the
day of first hCG detection for live birth, clinical loss, and nonclinical losses using the values reported in
Lohstroh et al*: because the number of events is small, the confidence intervals are quite wide.

We assumed that hCG would not be detectable in urine prior to serum; we again used the data
published by Lohstroh et al to generate a Dirichlet distribution for the probability of different lag times

between appearance in serum and in urine.

_Figure 4: Mean log hCG (IU/L) after detection
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The rise in mean hCG after first day of
detection is remarkably similar across
studies (the values for Nepomnaschy et
al® are converted to IU/L from ng/mL
using the reported conversion factor), with
values in urine”?*? being
indistinguishable from those in serum?*
(Figure 4). Because of the similarity
across studies, we used the values
(expressed as lognormal distributions)
from Johnson et al,?® which reflect
currently available assays. We assumed
that the pattern of increase would be

similar in serum and urine; in the event of a delay between the first detectable serum value and first
urine value, we assumed the curves would be similar, but would start from the same level (i.e., the
curves would be in parallel, with a difference of 1-3 days.

We assumed that patterns of hCG increase in ongoing pregnancies, and falls in losses, would follow

reported regression equations.?®?’
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K. Sensitivity of hCG assays

We did not attempt to quantify the analytic sensitivity of specific assays, or to quantify the impact of
differential sensitivity for specific isoforms of hCG. For the purposes of comparing the probability of
specific test outcomes (true and false negatives, true and false positives), we used the following values
for analytic sensitivity:

e Serum hCG: 5 IU/L; because many labs report values between 5-14 or 5-24 as “indeterminate,”
we used an alternative values of 15 and 25.
e Urine hCG: 20 IU/L, 25 IU/L, 50 IU/L.

L. Probability of pregnancy detection in the absence of testing

We used reported cumulative probability of reporting symptoms of pregnancy from a prospective study
of couples attempting to conceive'’ to estimate the daily probability of a clinically detected pregnancy in
the absence of testing. Based on the reported median and interquartile ranges using the timing of the
LH surge as the reference, we first estimated the cumulative probability for women with live births using
a Weibull function, and then calculated the day-to-day conditional probability from this curve. Estimates
for women with clinical and the 21% of women with “non-clinical” losses with symptoms were generated
using the reported day-to-day relative risks applied to the cumulative probabilities, then calculating day-
specific conditional probabilities. Figure 5 depicts the derived cumulative probabilities for each group.

Figure 5: Estimated cumulative probability of pregnancy symptoms
relative to urinary LH peak
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