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S2 Appendix. CTTI pregnancy testing model description. 

Estimating Outcomes of Different Pregnancy Testing Protocols in Clinical Trials: 

Model Description 

 

I.  Purpose of the Model 

Simulation models are often useful for comparing the estimated probability of relevant outcomes under 
different options, particularly when direct evidence is not available and where there are trade-offs (in 
terms of harms vs. benefits, costs, etc.) involved with the available options. Models can clarify the 
relative importance of uncertainty about specific components of the decision, as well as the importance 
of explicit or implicit assumptions made prior to making a decision.    

The purpose of this model is to estimate the probability of relevant outcomes (false negative pregnancy 
tests, false positive pregnancy tests, and detected pregnancies) of different pregnancy testing protocols 
for either preventing exposure of an embryo/fetus to a study intervention (by identifying a previously 
unknown pregnancy) or minimizing the duration of exposure (by detecting a pregnancy as soon as 
possible so that study interventions can be stopped).    

In the context of this expert meeting, the primary goal of the written and oral presentation of the model 
and results is to facilitate discussion of general principles to consider in making recommendations for 
pregnancy testing protocols. Secondary goals include: 

• Obtaining feedback on the model inputs and structure; we discuss the rationale for the current 
version, but welcome specific suggestions on revisions or additional sources for data on relevant 
parameters 

• Obtaining feedback on how a model-based analytic tool could be most useful for those designing 
and evaluating pregnancy testing protocols for clinical research (for example, an online resource 
which presented estimates of likely outcomes based on a range of preselected values for relevant 
variables such as subject age, contraceptive methods, and teratogenic risk, vs. an online resource 
which allowed a user to input specific values and obtain estimates, analogous to an online loan 
repayment calculator).     

This document describes the data sources, assumptions, and derivations of the major inputs for the 
model. Results will be presented and discussed at the meeting.  
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II. Structure of the Model 

We constructed a Markov model to simulate pregnancy testing of women of reproductive potential 
enrolled in a clinical trial excluding pregnant women (note that the model could also be applied to the 
evaluation of postmarketing pregnancy testing protocols) (Figure 1).    

Figure 1: Schematic diagram of model.  See text for description.  

 
 

The model consists of 3 mutually exclusive states: Not Pregnant, Undetected Pregnancy, and Detected 
Pregnancy. In a Markov model, “subjects” can transition between states during a “cycle” or “stage.”  In 
this model, the length of one Markov cycle is 1 day.  Each day, women in the Not Pregnant state can 
transition to the Undetected Pregnancy state, with a probability dependent on age, contraceptive 
method, and time in the menstrual cycle, or remain Not Pregnant. Women with an Undetected 
Pregnancy will ultimately have their pregnancy detected either through testing done for the clinical trial, 
or based on signs and symptoms of pregnancy.     

Pregnancy testing is performed at the start of the simulation, with the probability of true negative, false 
negative, true positive, and false positive results dependent on the prior probability of pregnancy, the 
level of hCG in each state (a function of both subject age and the developmental stage of pregnancy), 
the assay sensitivity for detection of hCG, and the threshold used to define a “positive” test. Based on 
the duration of the “trial”, follow-up testing can be performed at any interval.    

The model is run as a stochastic microsimulation—multiple iterations of the model are run, with each 
iteration representing the experience of an “individual subject.” Results from each “subject” are then 
summed and averaged across all iterations (typically, between 10,000 and 1,000,000). At the start of 
each iteration, a “subject’s” age is drawn from one of the distributions described below. The value for 
age is then used to draw from distributions for age-specific prevalence of menopause and 
hysterectomy; “subjects” between the ages of 15 and 55 who are not post-hysterectomy or menopausal 
are then “assigned” a contraceptive method based on an age-specific distribution. In the base case 
analysis, we assume that the initial screen is performed independently of the menstrual cycle day; the 
potential impact of testing timed to the menstrual cycle is examined in subsequent analyses. After the 
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initial screen, the model is run for a minimum of 30 days and up to 365 days, with different screening 
intervals.    

Specific types of statistical distributions were chosen based on the type of data and their fit to the 
reported data. Distributions included: 

• Normal: the classic bell curve; mean and median values are equivalent. The potential range of a 
normal distribution is -∞ to ∞.     

• Gamma: gamma distributions are frequently used as an alternative to the normal distribution when 
values below 0 are not possible.    

• Lognormal: the natural logarithm of the values are normally distributed. Like gamma distributions, 
lognormal distributions have a minimum value of 0, and often used to describe values that have a 
particularly wide range (such as hCG levels). Lognormal distributions are also used with ratios, 
such as relative risks, odds ratios, and hazard ratios. 

• Beta: beta distributions have a minimum value of 0 and a maximum of 1.0, and are used for values 
that are constrained by these limits (such as probabilities when there are only two possible 
outcomes, such as hysterectomy or no hysterectomy). 

• Dirichlet: a Dirichlet distribution is a special form of the beta distribution used when there are more 
than two possible outcomes or states (such as contraceptive method). 

• Weibull: Weibull distributions are survival functions which allow variation in the hazard function (i.e., 
the risk of an event can change with time, rather than remain constant). 

• Uniform: The probability of any outcome or value is equal (for example, menstrual cycle day if 
testing is not timed relative to menses or other marker). 

 
The model was built and all analyses performed in TreeAge Pro 2013 (TreeAge, Inc., Williamstown, 
MA). When necessary, conversion of published data to formats usable by the model was done in either 
Microsoft Excel (Redmond, WA: Microsoft Corp) or Parameter Solver v. 2.3 (Department of Biostatistics 
and Applied Mathematics, MD Anderson Cancer Center).   

III. Model Parameters 

All models require certain simplifying assumptions and decisions about which data sources to use to 
generate estimates for the model parameters. As much as possible, we erred on the side of 
overestimating pregnancy risk.     

A.  Subject Age 

Table 1: Example conditions and age distribution  
CONDITION EXPOSURE MEAN AGE (SD) REFERENCE 
Cystic acne Isotretinoin 22.2 (8.2) 1 
Epilepsy Anti-epileptic drugs 36.7 (11.6) 2 
Depression SSRIs 44.0 (16.0) 3 
Rheumatoid arthritis Methotrexate 52.0 (13.1) 4 
Age is the single most important determinant of pregnancy risk, and therefore the expected age 
distribution among trial subjects is the single most important predictor of the likelihood of pregnancy at 
the time of enrollment or during the trial.   

Reported means and standard deviations for age were taken from 4 published trials of conditions that 
are relatively common in reproductive age women and frequently treated with drugs with known risks to 
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the fetus from exposure during pregnancy (Table 1), although not every study involved exposure to a 
potentially teratogenic agent. The studies were identified through a PubMed search using the terms 
“randomized trial” and the specific condition, and were chosen to provide examples of “typical” age 
ranges for trials in reproductive age women.   

Because normal distributions with these values for mean and standard deviations often resulted in 
values outside of a plausible range (or the reported range of the study), we characterized the age of 
each subject population with lognormal distributions, which were a better fit than the alternative gamma 
distributions.      

Although age is the most important determinant of risk of pregnancy among women of reproductive 
potential, the probability of NOT being at risk of pregnancy is also dependent on age, since both 
prevalence of hysterectomy and menopause vary with age.  Thus, the age distribution in a given clinical 
research study will affect not only the probability of pregnancy among women who are physiologically 
able to become pregnant, but also the overall probability of pregnancy in the study.    

B.  Hysterectomy Status 

Age-specific hysterectomy prevalence was estimated directly from the 2010 Behavioral Risk Factor 
Surveillance System (BRFSS), a population-based survey.5 We used total population estimates.  
Because hysterectomy rates vary dramatically among racial/ethnic groups (in particular, African-
American women are more likely to undergo hysterectomy at younger ages than other groups), race-
specific estimates might be important for specific conditions where prevalence or incidence varies by 
race/ethnicity.   

Table 2: Age-specific Hysterectomy Prevalence 
 Age 

18-24 25-29 30-34 35-39 40-44 45-49 50-54 
Prevalence 
(95% CI) 

0.4%  
(0.2-0.7) 

1.8% 
(1.3-2.3) 

4.0% 
(3.4-4.6) 

7.1% 
(6.4-7.8) 

12.6% 
(11.8-13.4) 

19.4% 
(18.6-20.3) 

27.9% 
(27.0-28.8) 

 

C.  Menopausal Status 

Figure 2 depicts the estimated age-
specific prevalence of menopause 
in women with an intact uterus, 
derived from published data from 
the Study of Women’s Health 
across the Nation (SWAN).6  
Estimates for ages 41-52 are based 
on the published Kaplan-Meier 
curve in Gold et al,6 while estimates 
for ages 53-55 are based on fitting 
a Weibull distribution to the survival 
function based on the reported 
median age at menopause for the 

Figure 2: Estimated age-specific prevalence of menopause 
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entire population (51.4 years) and the estimated cumulative probability of menopause at age 52 based 
on the published K-M curve (52 years). We assumed that all women would be functionally menopausal 
at age 55, which was consistent with the estimated cumulative probability based on the Weibull 
distribution (99.2%). The published data from SWAN does not provide sufficient information to estimate 
confidence intervals around the age-specific prevalence. We also did not incorporate variation in age at 
menopause based on race/ethnicity, smoking history, or other factors, although, again, these could be 
readily incorporated if appropriate for a particular scenario.    

D.  Menstrual Cycle Characteristics 

We used recent estimates of the duration and variability of the menstrual cycle among healthy 
premenopausal women7(Table 3):  

Table 3: Menstrual cycle characteristics 
Parameter Mean (95% CI) Distribution 
Cycle length (days) 27.7 (23-32) Normal 

Within-individual cycle-to-cycle variation (days) 2.8 (0.8-6.2) Gamma 
Length of luteal phase (days from serum LH peak)* 14.2 (10-18) Normal 

Within-individual cycle-to-cycle variation (days) 2.6 (0.3-9) Lognormal 
*Study reported time relative to urinary LH peak; we assume serum peak is one day earlier 

At the start of each “individual” simulation, a cycle length is drawn from the cycle length distribution, and 
a value for cycle variability is also drawn. For simulations that last longer than one menstrual cycle, 
days are added or subtracted to the cycle length based on the variation (i.e., if the variability value is 2, 
the range of possible values is the initial cycle length value ± (2/0.5) days. Similar calculations are done 
for luteal phase length and variability.  Within each cycle, the day of the serum LH surge was calculated 
as the cycle length minus the luteal phase length. This method allows for both between and within-
individual variation in menstrual cycle length, while allowing appropriate modeling of day-specific hCG 
levels in the event of pregnancy.   

Hormonal contraceptives affect both the probability of ovulation and menstrual patterns. For oral 
contraceptives, rings, and patches, we assigned a fixed cycle length of 28 days, and a fixed luteal 
phase length of 14 days. For simplicity, we did not attempt to model the effects of long-acting hormonal 
contraceptives on bleeding patterns; we did assume that protocols for continued testing in women using 
these methods would occur at fixed intervals in all cases, rather than being timed to menses.   

We did not attempt to model age-specific variability in menstrual cycle length, although this is 
potentially an important consideration in women as they approach menopause.  

E.  Age-specific Conception Probability 

Estimates of the cycle-specific probability of a detected pregnancy in couples not using contraception 
are available from a variety of sources, and include couples using natural family planning methods,8, 9 
couples actively trying to conceive,10-12 and couples undergoing artificial insemination where the female 
partner has normal reproductive function.13,14 Differences between populations, including prior fertility 
history, age distribution, coital frequency, intent to conceive, and timing and method of conception 
confirmation contribute to variation in the estimates. All of these populations are likely to have higher 
fecundability then many potential clinical trial subjects with acute or chronic illness.   
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These estimates range from approximately 20% per cycle in nulliparous women under 30 undergoing 
donor insemination when only clinical pregnancies were the primary outcome13 to 40% per cycle in 
Chinese textile workers aged 20-34 who were actively trying to conceive when daily urines were tested 
with a highly sensitive hCG assay.12 For the purposes of this analysis, we used an estimate of 30% per 
cycle for women 30 and younger, which is consistent with the observed rate in early cycles in a US 
population-based study,15 and with a European study of couples using natural family planning methods 
who had a coital frequency of twice a week.9 Although all prospective studies show a decline in cycle-
specific probability as the number of cycles increases beyond 2 or 3 (representing heterogeneity in 
underlying fertility), we conservatively assumed that the cycle-specific probability remained constant 
over the duration of the simulation (which leads to an overestimation of cumulative pregnancy 
probability). 

We modeled the effect of age using 
published regression equations based 
on a Dutch study of donor 
insemination13; in this study, a “critical 
age” (31 years) was identified after 
which there was a statistically significant 
progressive decline in fecundability.   
Although there is evidence that cycle 
fecundity begins to decrease prior to 
age 30,9,16 we again elected to be 
conservative and assumed no decline in 
fecundity until age 32, when the hazard 
ratio derived from the van Noord-
Zaadsra paper was applied (Figure 3).    

F.  Pregnancy Outcome Probabilities 

Pregnancy loss after conception is common, with a substantial proportion occurring after implantation 
but before pregnancy is suspected clinically.11,12,14,15 Studies using extremely sensitive assays report 
early pregnancy loss rates (prior to the onset of the next menses) of 22-23%,12,15 while rates in two 
studies using less sensitive assays were 13%.11,14 Confidence intervals for the 3 US-based studies 
overlapped; while the Chinese study 12 was large and population-based, the population was somewhat 
different in terms of potential exposures that might affect pregnancy loss (for example, prevalence of 
exposure to second-hand tobacco use in the home was 65%). There were also differences in the 
definition of “early pregnancy loss” between studies, ranging from detectable hCG with no delay in 
menses11 or “clinical detection”12,15 to losses prior to 23 days after the serum LH surge (9 days after the 
expected onset of menses).14 

Because the sensitivity of the assay used in the Wilcox study was higher than those in the Lohstroh and 
Zinaman papers, and higher than current commercially available kits, and because 21% of the subjects 
with “non-clinical” pregnancy losses in the Wilcox study actually had pregnancy symptoms,17 which 
lowers the proportion of truly non-clinical losses to 18%, we elected to use the lower estimates form 
Lohstroh and Zinaman. Because the proportions were so similar, we pooled the total pregnancies by 

Figure 3: Cycle-specific Conception Probability by Age 
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category for the two studies, and generated a Dirichlet distribution for the conditional probability of each 
pregnancy outcome, given conception (Table 4).    

Although clinical, and probably occult, 
pregnancy loss rates clearly increase with age,18 
we did not attempt to model the relative 
conditional probability of pregnancy loss with 
age.  We also did not include ectopic pregnancy, 
gestational trophoblastic neoplasia, or other 

uncommon outcomes.    

G.  Contraceptive Method 

For the initial analysis, we assumed that women would continue to use their current method of 
contraception. Although this is appropriate for estimating the prior probability of pregnancy at the time 
of the initial screen, protocols may specify methods that may be used during the protocol—the model 
can be readily adjusted to accommodate protocol-specific methods. We also assume that the 
population-based estimates of method choice would be similar to those in a patient population. While 
this may be true for some conditions, certain methods may be more or less prevalent in other 
conditions. For example, patients with acne may be more likely to be using oral contraceptives, given 
their effectiveness in reducing circulating androgen levels, while patients on some anti-epilepsy drugs 
might be less likely to be on oral contraceptives, given the potential for mutual effects on drug 
metabolism.   

Estimates for the age-specific distribution of specific methods among women using contraception were 
derived from the 2006 National Survey of Family Growth (NSFG) (Table 5).19 To minimize the number 

of categories for modeling, 
we combined methods with 
similar effectiveness where 
appropriate (oral 
contraceptives, contraceptive 
rings and patches as one 
category, IUDs and hormonal 
implants—long-acting 
reversible contraceptives, or 
LARC—as another).  We 

assumed that women using periodic abstinence as their primary method would be instructed to use 
barrier methods for the duration of the trial.  

Because the NSFG data is based on a weighted survey sample design, and published age-specific 
proportions and standard errors are based on all women, including women who do not use 
contraception, we could not directly estimate confidence intervals around the distribution of methods 
within age groups. To indirectly account for the uncertainty in these estimates, we estimated the 
number of actual subjects in each age category by fitting a beta distribution to the reported proportion 
and standard error of women using contraception in each age group, then estimating the number of 

Table 4: Distribution of pregnancy outcomes, given 
conception 
Outcome N Proportion  

(95% CI) 
Live birth 114 13.4% (9.3-19.6%) 
Clinical loss 35 20.2% (14.4-26.2%) 
“Nonclinical” pregnancy 24 66.0% (58.0-72.9%) 

Table 5: Age-specific distribution of contraceptive methods 
Method Age (years) 

15-19 20-24 25-29 30-34 35-39 40-44 
BTL 0.0% 2.5% 16.2% 31.4% 40.1% 52.3% 
Vasectomy 0.0% 0.8% 3.6% 8.9% 17.6% 20.5% 
OCP 60.7% 57.3% 41.6% 29.1% 21.4% 11.9% 
LARC 5.6% 7.7% 9.0% 8.5% 6.7% 4.3% 
DMPA 9.7% 5.4% 5.6% 2.4% 1.0% 1.2% 
Barrier 24.0% 26.3% 24.0% 19.6% 13.2% 9.8% 
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women using each method based on the reported overall proportion. These numbers were then used to 
generate a Dirichlet distribution.   

H.  Contraceptive Effectiveness 

We used the most recent published estimates of first-year, typical use 12 month method-specific failure 
rates20 to generate estimates of effectiveness for each method. We made several simplifying 
assumptions, all of which result in higher estimates of the probability of pregnancy: 

• We used “typical-use” rather than “perfect use” estimates. 
• We used first-year estimates; typically, failure rates are highest in the first year of use for any 

method, due to both “selection” (couples with higher baseline fertility are more likely to get pregnant 
early), variability in user adherence in user-dependent methods such as oral contraception or 
barrier methods, and, for women in their 30s and 40s, age-dependent declines in fertility. 

• We assumed a constant risk across all 12 months; again, failure rates are highest in the first few 
months after beginning use.   

• We assumed that the reported relative reduction in pregnancy risk associated with each method 
was solely due to method effectiveness, rather than differences in the age distribution or intensity of 
desire to avoid pregnancy among users.   
 

To generate estimates of the cycle specific relative reduction in pregnancy probability associated with 
specific methods:  
• We assumed that, during the 12 months used to estimate failure rates, there were 13 menstrual 

cycles with a mean duration of 28 days. 
• Assuming a constant risk of pregnancy and constant cycle-specific effectiveness, we generated 

estimates of the cycle-specific hazard of pregnancy with each method that was consistent with the 
reported 12 month failure rate. 

• Using the estimated cycle-specific probability for non-contraceptive users as the reference, we then 
estimated hazard ratios for each method (because of the way the data are reported, we could not 
generate confidence intervals around these estimates) (Table 6). 

 
Table 6: Contraceptive effectiveness 
Method 12 Month Failure Rate Per Cycle Hazard Hazard Ratio 
None 85.00% 13.50% 1.0000 
Oral contraceptives 9.00% 0.70% 0.0519 
Injectables 6.00% 0.45% 0.0333 
Barrier methods 18.00% 1.40% 0.1037 
CuT IUD 0.80% 0.07% 0.0048 
Progestin IUD 0.20% 0.02% 0.0011 
Female sterilization 0.55% 0.05% 0.0033 
Male sterilization 0.01% 0.01% 0.0008 
Hormonal Implant 0.05% 0.00% 0.0003 
Hormonal ring/patch 9.00% 0.70% 0.0519 
 
We then applied these hazard ratios to the age-specific pregnancy probability described in Section II.E, 
assuming no differential effect of contraceptive methods on detectable early pregnancy loss.  
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I.  hCG levels in non-pregnant women 

We estimated lognormal distributions for 
values of hCG in IU/L in serum and 
urine in non-pregnant women, stratified 
by age, from the reported quartiles in 
the papers by Cole and Ladner21 and 
Snyder et al 22 (Table 7).  

J.   hCG levels in pregnancy 

We assumed that the first day that hCG 
would be detectable in serum or urine 
would be 9 days after the serum LH peak (8 days after the urine peak), which is consistent across all 
studies which used LH as the marker for ovulation.7,14,23,24 We generated Dirichlet distributions for the 
day of first hCG detection for live birth, clinical loss, and nonclinical losses using the values reported in 
Lohstroh et al14; because the number of events is small, the confidence intervals are quite wide.    

We assumed that hCG would not be detectable in urine prior to serum; we again used the data 
published by Lohstroh et al to generate a Dirichlet distribution for the probability of different lag times 
between appearance in serum and in urine.14 

The rise in mean hCG after first day of 
detection is remarkably similar across 
studies (the values for Nepomnaschy et 
al25 are converted to IU/L from ng/mL 
using the reported conversion factor), with 
values in urine7,23,25 being 
indistinguishable from those in serum24 
(Figure 4). Because of the similarity 
across studies, we used the values 
(expressed as lognormal distributions) 
from Johnson et al,23 which reflect 
currently available assays. We assumed 
that the pattern of increase would be 

similar in serum and urine; in the event of a delay between the first detectable serum value and first 
urine value, we assumed the curves would be similar, but would start from the same level (i.e., the 
curves would be in parallel, with a difference of 1-3 days.      

We assumed that patterns of hCG increase in ongoing pregnancies, and falls in losses, would follow 
reported regression equations.26,27  

 

Table 7: hCG (IU/L) levels in non-pregnancy cycles 
Source Mean (95% CI) Maximum Reference 
≤ 40 years old    

Urine    
LH surge ± 3 

days 
0.32 (0.05,1.6) 9.3 21 

Other days 0.34 (0.11,0.81) 4.0 21 
Serum 1.67 (1.06,2.5) 4.6 22 

41-55 years old    
Urine 0.44 (0.02,2.4) 3.6* 21 
Serum 3.6 (2.6,4.8) 7.7 22 

*99th percentile; reported maximum in paper < reported 99th percentile 

Figure 4: Mean log hCG (IU/L) after detection 
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K.  Sensitivity of hCG assays 

We did not attempt to quantify the analytic sensitivity of specific assays, or to quantify the impact of 
differential sensitivity for specific isoforms of hCG. For the purposes of comparing the probability of 
specific test outcomes (true and false negatives, true and false positives), we used the following values 
for analytic sensitivity: 

• Serum hCG: 5 IU/L; because many labs report values between 5-14 or 5-24 as “indeterminate,” 
we used an alternative values of 15 and 25. 

• Urine hCG: 20 IU/L, 25 IU/L, 50 IU/L. 

L.  Probability of pregnancy detection in the absence of testing 

We used reported cumulative probability of reporting symptoms of pregnancy from a prospective study 
of couples attempting to conceive17 to estimate the daily probability of a clinically detected pregnancy in 
the absence of testing. Based on the reported median and interquartile ranges using the timing of the 
LH surge as the reference, we first estimated the cumulative probability for women with live births using 
a Weibull function, and then calculated the day-to-day conditional probability from this curve. Estimates 
for women with clinical and the 21% of women with “non-clinical” losses with symptoms were generated 
using the reported day-to-day relative risks applied to the cumulative probabilities, then calculating day-
specific conditional probabilities. Figure 5 depicts the derived cumulative probabilities for each group. 

 

 

 

 

 

  

Figure 5: Estimated cumulative probability of pregnancy symptoms 
relative to urinary LH peak 
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