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In this supplement, we first show the relationship between pharmacodynamic

equations of anesthetics and the coupled oscillator models. We then show how

the Stuart-Landau model can be reduced to the Kuramoto model as well as the

mathematical analysis for the hysteresis in the phase transition of the Kuramoto

model. Finally, we show the selection range of threshold to construct binary net-

works of functional connectivity and significance levels of trajectory areas among

frequency bands in the empirical analysis.

1 Relationship between anesthetic pharmacodynam-

ics and the oscillator models

In this section, we describe the relationship between pharmacodynamic equations

for anesthetic effect and oscillator models. In the literature, anesthetic effects are

usually described by the following Hill-type equations [1, 2]:

Ea ∼
Ceγ

Ceγ50 + Ceγ
. (S1)

Here, Ea denotes the effect of the given anesthetic, Ce is the concentration of the
drug, and γ is a parameter determining the steepness of Ea, with respect to the

changes of Ce. If a certain anesthetic drug has relatively higher γ compared to

other drugs, that drug will have a steeper increasing function for Ea with respect

to the increase of Ce.
In order to link Eq. (S1) with oscillator models, we make two independent

assumptions. First, we assume that global connection strength between different

areas of the brain is impeded by anesthetics in the following form:

Seff = S(1− Ea), (S2)

where Seff is the effective coupling strength, S is the baseline coupling strength

without the anesthetics, and Ea is the effect of the given anesthetic defined as

Eq. (S1). With this assumption, we proceed with the following:
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Seff =S(1− Ea)

=S

[
1− const.Ceγ

Ceγ50 + Ceγ

]
= S

[
Ceγ50 + (1− const.)Ceγ

Ceγ50 + Ceγ

]
=S

(
Ce50
Ce

)γ
1 + (1− const.)(Ce50)

γ

1 + (Ce50/Ce)γ
∼
(

S

Ceγ

)
1

1 + (1/Ce)γ
∼ S

Ceγ

(S3)

At this stage, we apply our second assumption, namely, that the effect of the drug

concentration on the connection between different areas of the brain may be rep-

resented as the decrease of the synchronization between areas. The second as-

sumption is derived from the synchronization changes during state transitions of

empirical analysis in the alpha band of ketamine and sevoflurane experiments.

Therefore, we assume that degree of the synchrony in the brain is inversely pro-

portional to the drug concentration: the higher the concentration is, the lower the

synchrony will be:

Ce ∼ 1

R̃
. (S4)

Here, R̃ represents an arbitrary measure of the synchrony. We will discuss the

detailed form of the synchrony R̃ in the following section. We finally arrive at the

following result:

Seff ∼ S

Ceγ
∼ SR̃z, (S5)

where z ∼ γ.

2 Reducing the Stuart-Landaumodel to aKuramoto

model

In this section we describe the Stuart-Landau model implemented in complex net-

works and reduce the model to the Kuramoto model.

Stuart-Landau model is a canonical oscillator model for a large class of oscil-

lators, i.e., the ones that exhibit Hopf bifurcation [3]. It is written as:
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żj = {λj + iωj − (σj + iγj)|zj|2}zj + S

N∑
k=1

Ajkzk, k = 1, 2, ..., N, (S6)

where complex variable żj(t) describes the state of jth oscillator.
In our analysis, we assume that λ, ω, σ, and γ are all nonnegative. Then the

equation yields stable limit cycle from the supercritical Hopf bifurcation [4, 5]. A

stable limit cycle appears via superciritical Hopf bifurcation when λj > 0. Dy-
namics of the equations for γ = 0 and γ 6= 0 are topologically equivalent, so

the value of γ is often irrelevant. For ease of analysis, we set γ = 0 and σ = 1.
Also, we add time-delay τjk between nodes j and k, which plays a crucial role in
a network of neural mass. For each node j, the dynamics will be:

żj(t) = {λj + iωj − |zj(t)|2}z(t) + S
N∑
k=1

Ajkzk(t− τjk), (S7)

at time t. Eq. (S7) can be separated into two variables:

ṙj = {λj − |zj|2}rj + S
N∑
k=1

Ajkrk cos(θk(t− τjk)− θj(t)), (S8)

θ̇j = ωj + S
N∑
k=1

Ajk
rk
rj

sin(θk(t− τjk)− θj(t)). (S9)

rj(t) is the amplitude of node j, and θj(t) is the phase of node j at time t. As
discussed in themain paper, we add a so-called feedback term to the Eq. (S9) [6], to

simulate the effect of anesthetics perturbing the connection between neural masses:

ṙj = {λj − |zj|2}rj + S
N∑
k=1

Ajkrk cos(θk(t− τjk)− θj(t)), (S10)

θ̇j = ωj +Rz
jS

N∑
k=1

Ajk
rk
rj

sin(θk(t− τjk)− θj(t)). (S11)

Here, Rz
j is the feedback term, defined as:
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Rz
j =

∣∣∣Rje
iΘ̃j

∣∣∣z ≡ ∣∣∣∣∣12
(
eiθj +

1

N

N∑
k=1

eiθk

)∣∣∣∣∣
z

. (S12)

Here, z will be a positive number. We call Rj a node synchrony of j. The node
synchrony will measure how much the phase of node j is synchronized with other
nodes, yielding a value of 1 if the node j is in total synchrony with other nodes

(i.e., having a same value of phase), and approaching 0 when the distribution of

its phase and other nodes’ phases are close to random.

By adding the node synchrony Rz
j as the feedback term, we are assuming that

the R̃ from Eq. (S5) can be well represented by such a term. We choose node

synchrony Rz
j as the representative for R̃ based on the similarity of the model

simulation results compared with the experimental analysis as shown in the main

manuscript. It is possible that other feedback terms may also resemble similarity

with the experimental analysis.

Whenwe assumeweak coupling in the vicinity of critical coupling strength [3],

the amplitude of the oscillators become similar to each other. Taking the assump-

tion that rj(t) = rk(t) for k = 1, 2, ..., N , Eq. (S10) and Eq. (S11) are reduced

to:

θ̇j = ωj +Rz
jS

N∑
k=1

Ajk sin(θk(t− τ)− θj(t)), j = 1, 2, ..., N, (S13)

which is the Kuramoto model with the feedback term. We make a further approx-

imation of this equation: if the time delays between the oscillators τjk are similar

or smaller in their order of magnitude compared to their oscillatory period, the

effect of the delay can be represented by a phase delay term rather than explicit

time delay term [7]. Assuming that the phase delay between oscillators are of same

magnitude β, we arrrive at the following equation:

θ̇j = ωj +Rz
jS

N∑
k=1

Ajk sin(θk − θj − β), j = 1, 2, ..., N. (S14)
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3 Hysteresis from the Kuramoto model in complex

networks

The Kuramoto model is the canonical model for all oscillators and widely used in

the literature as an approximation for more complex and realistic systems [8, 9].

We first introduce local order parameter ri:

rje
iΘj =

1

kj

N∑
k=1

Ajke
iθk , (S15)

and also global order parameter R:

ReiΨ =
1

N

N∑
j=1

eiθj , (S16)

where ki is the sum of coupling to the oscillator j defined as ki =
∑N

j=1Aij .

Global order parameterR is a measure of synchrony for the entire system and will

yield values 1 in the case of perfect synchrony among the nodes’ phases, and 0

in case of a complete asynchrony. Local order parameter ri of the oscillator i is
a measure of synchrony among the oscillators connected to the oscillator i. The
value will be 1 if they are in perfect synchrony and 0 if they are incoherent.

Using the local order parameter ri, we can rewrite Eq. (S14) to the following
form:

θ̇j = ωj +Rz
jSkjrj sin(Θj − θj − β), j = 1, 2, ..., N. (S17)

In the analysis of the Eq. (S17), we follow mean-field approximation methods

used in such references as [10, 11, 12]. Similar analysis was done for the Kuramoto

model with the feedback terms in references [6] and [13]. Substituting Ψ from

Eq. (S16) into Eq. (S17), yields

θ̇j = ωj +Rz
jSkjrj sin(Ψ− θj − β), (S18)

Let Ω denote the frequency of the population oscillation of Eq. (S18) after the

system approaches a stationary state and let φj = θj − Ωt represent the phase of
oscillator j relative to the average oscillation. The Eq. (S18) can then be rewritten
using the order parameter defined in Eq. (S16) as follows:

φ̇j = ωj − Ω +Rz
jSkjrj sin(Φ− φj − β), j = 1, 2, ..., N, (S19)
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where Φ = Ψ− Ωt. The mean-field method approximates rj with R:

φ̇j = ∆j +Rz
jSkjR sin(Φ− φj − β), (S20)

where ∆j = ωj − Ω.
The system exhibits a partially locked state. As studied in previous works

[10, 11], for a non-zero coupling strength S there exist two groups of oscillators

with different behaviors. Oscillators in the phase-locked group have the same fre-

quency and thus their phase differences remain constant at each time point. Oscil-

lators in drifting group cannot have same frequencies with the first group and thus

do not phase-lock. They drift with different phase differences from one time point

to another. The oscillators that can satisfy φ̇j = 0 will be phase-locked: i.e., the

amplitude of the coupling terms must be equal or larger than that of the inherent

terms:

Rz
jSkjR ≥ |∆j|. (S21)

The oscillators satisfying this condition will asymptotically approach a stable

solution obtained from the following equation:

ωj − Ω = Rz
jSkjR sin(φj − Φ + β). (S22)

We can rearrange this equation to the following form:

φj = sin−1

(
∆j

Rz
jSkjR

)
+ Φ− β, (S23)

where∆j = ωj−Ω. Oscillators withRz
jSkjR < |∆j| cannot satisfy the condition

φ̇j = 0. They are the oscillators in the drifting group.
We will assume a symmetric probability distribution for the inherent frequen-

cies of the oscillators ωj . Also assuming that the drifting oscillators do not con-

tribute to the order parameterR (an assumption based on previous studies [6, 13]),

we can calculate the order parameter R from Eq. (S23). First, from Eq. (S16), we

note the following:

ReiΦeiβ =
1

N〈k〉

N∑
j=1

kje
iφjeiβ, (S24)

where 〈k〉 denotes the average degree of the oscillators. Taking the real component

of Eq. (S24) and contributions from the phase-locked population only, we arrive:
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R cos(β) =
1

N〈k〉
∑

|∆j |≤Rz
jSkjR

kj cos(φj − Φ + β). (S25)

Substituting Eq. ((S24)) into Eq. ((S25)), we arrive at the following:

R =
1

N〈k〉 cos β
∑

|∆j |≤Rz
jSkjR

kj

√
1−

(
∆j

Rz
jSkjR

)2

. (S26)

In the thermodynamic limit (N → ∞), we replace the summation by the integra-

tion:

R =
1

〈k〉 cos β

∫
|∆|≤Rz

jSkR

g(k)h(∆)k

√
1−

(
∆

Rz
jSkR

)2

d∆dk, (S27)

where g(k) is the probability distribution of the degree of the nodes and h(∆) the
probability distribution of initial frequencies (minus Ω).

We take one final step in our analysis. Inspecting the definition ofRz
j Eq. (S12),

we can rewrite as the following:

Rz
j =

∣∣∣∣12 (eiθj +ReiΨ
)∣∣∣∣z . (S28)

For oscillators locked near the phaseΨ (such as the phase-locked group oscillators

with sufficiently strong coupling strength S), Rz
j can be better approximated by R

compared to rj . Therefore, the range of the integral in Eq. (S28) can be written as
the following in good approximation:

|∆| ≤ SkRz+1. (S29)

This integral range may be a good approximation for a range of feedback terms if

the terms can be well approximated by the mean-field method.

Our model of coupled oscillators with a feedback term exhibits a hysteresis in

the value of R when we control S: there exists path dependency and therefore the
curves are disparate when S is increased and decreased. With Eq. (S27), we can

explain such hysteresis in comparison to a model with no feedback term.

We follow the argument reported in Ref. [13] in comparing the above model

and regular Kuramoto model without the feedback term:
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θ̇j = ωj + S

N∑
k=1

Ajk sin(θk − θj − β) j = 1, 2, ..., N. (S30)

With mean-field approach, we obtain:

R =
1

〈k〉 cos β

∫
|∆|≤SkR

g(k)h(∆)k

√
1−

(
∆

SkR

)2

d∆dk. (S31)

We note that in the case of regular Kuramoto models, we do not observe hysteresis

in the transition ofR as we increase/decrease k: the value ofR is uniquely defined

against a value of k.
Comparing this result with the one having a feedback term Eq. (S27), we

note that the main difference lies in the range of integral: |∆| ≤ SkRz+1 vs.

|∆| ≤ SkR. When we decrease S from a sufficiently large value, the system are

already in a highly synchronous state, regardless of the existence of the feedback

term: Rz ≈ R ≈ 1. However, when we increase S from an incoherent state

(R ' 0), the difference between Rz and R is magnified for Rz is significantly

smaller than R. Therefore, the integral range in two systems ( Eq. (S27)) and

Eq. (S31)) will significantly differ, meaning that the number of the oscillators of

the system belonging to the phase-locked group will differ too: in the feedback

system Eq. (S27), the formation of larger synchronized clusters are delayed until

we increase coupling strength S to a higher value. The synchronized cluster will

be formed abruptly until it is unavoidable. Such asymmetry of the integral range

compared to the regular Kuramoto model predicts path-dependency/hysteresis as

confirmed by our simulations.

4 Selection of threshold in the construction of the

connectivity network

To remove spurious connections derived from EEG analysis, we subtract the me-

dian connectivity of 20 surrogate data sets from original connectivity and apply

the threshold 0.1 to construct a binary network. We choose the threshold value as

0.1 to avoid isolated nodes in the EEG network in the baseline states. S1 Fig shows

the increase of isolated nodes with increased values of threshold in the resting state

of the ketamine experiment.
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5 Significance levels of trajectory areas among fre-

quency bands

The significance levels of trajectory areas among frequency bands were calculated

with a one-way ANOVA and Tukey-Kramer correction for multiple comparisons,

and are shown respectively for ketamine and sevoflurane data in S1 Table and

S2 Table. The numbers in the table represent the median frequency of each fre-

quency band, and the width of each frequency band is 2 Hz. The results show that

the trajectory areas are significantly larger in the range of alpha band than other

frequency bands.
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