

advances.sciencemag.org/cgi/content/full/4/9/eaau4640/DC1

Supplementary Materials for

A comprehensive portrait of the venom of the giant red bull ant, *Myrmecia gulosa*, reveals a hyperdiverse hymenopteran toxin gene family

Samuel D. Robinson*, Alexander Mueller, Daniel Clayton, Hana Starobova, Brett R. Hamilton, Richard J. Payne, Irina Vetter, Glenn F. King, Eivind A. B. Undheim*

*Corresponding author. Email: sam.robinson@uq.edu.au (S.D.R.); e.undheim@uq.edu.au (E.A.B.U.)

Published 12 September 2018, *Sci. Adv.* **4**, eaau4640 (2018) DOI: 10.1126/sciadv.aau4640

The PDF file includes:

Supplementary Materials and Methods
Results
Fig. S1. MALDI-MS analysis of *M. gulosa* venom apparatus.
Fig. S2. Coelution of native (purified from venom) and synthetic MIITX₁-Mg1a.
Fig. S3. MIITX₁-Mg1a–induced changes in paw withdrawal.
Table S1. Venom- or toxin-associated annotation of nonvenom component transcripts.
Table S2. Assessment of antimicrobial, cytotoxic and hemolytic activity of MIITX₁-Mg1a.

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/4/9/eaau4640/DC1)

Movie S1 (.mov format). Collection of venom from *M. gulosa*.

Supplementary Materials and Methods Antimicrobial and cytotoxicity assays

Antimicrobial and cytotoxicity assays were performed by CO-ADD (The Community for Antimicrobial Drug Discovery). Briefly, growth inhibition of all bacterial strains was determined by measuring absorbance at 600 nm, growth inhibition of C. albicans was determined by measuring absorbance at 530 nm, and growth inhibition of C. neoformans was determined by measuring the difference in absorbance between 600 and 570 nm, after the addition of resazurin (0.001% final concentration) and incubation at 35°C for an additional 2 h. Growth inhibition of HEK293 cells was determined by measuring fluorescence (excitation 530/10 nm, emission 590/10 nm) after the addition of resazurin (25 µg/mL final concentration) and incubation at 37°C and 5% CO₂, for an additional 3 h. Percentage growth inhibition was calculated using negative controls (media only) and positive controls (no peptide). For the haemolytic activity assay, human whole blood was washed three times with 3 volumes of 0.9% NaCl and then resuspended in 0.9% NaCl to a concentration of 0.5×10^8 cells/mL. Cells were incubated for 1 h at 37°C with or without the peptide. After incubation, plates were centrifuged at 1000 g for 10 min to pellet cells and debris and haemolysis determined by measuring the supernatant absorbance at 405 nm. Minimum inhibitory concentration (MIC), CC_{50} (concentration at 50% cytotoxicity) and HC_{50} (concentration at 50% haemolytic activity) values were calculated by curve fitting the inhibition values versus log(concentration) using a sigmoidal dose-response function (variable slope), in Pipeline Pilot's dose-response component.

Results

Antimicrobial activity of MIITX₁-Mg1a

Several previously described ant venom peptides have been shown to have antimicrobial activity (20), and therefore we examined the potential utility of MIITX₁-Mg1a as an antimicrobial. MIITX₁-Mg1a was tested on a range of available microbial strains (**Table S2**). The peptide caused complete growth inhibition of the fungus *Cryptococcus neoformans var. grubii*, with an MIC of 2.5 μ M. At the highest concentration tested (10.2 μ M), it also partially inhibited growth of the bacteria *Staphylococcus aureus* and *Acinetobacter baumannii*, with 84 and 32% inhibition, respectively, but had no effect on the bacteria *Escherichia coli, Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, or the fungus *Candida albicans*. At the highest concentration tested (10.2 μ M), MIITX₁-Mg1a was not haemolytic (to human red blood cells), but it did display partial toxicity (49.1% growth inhibition) of HEK293 cells.

Fig. S1. MALDI-MS analysis of *M. gulosa* **venom apparatus.** (A) MALDI spectrum, generated in linear positive mode, of *M. gulosa* venom. Peaks corresponding to peptides identified as venom components by combined ESI-MS/transcriptomics are labelled. Theoretical MH_{av}^{+1} for each peptide are as follows: MIITX₁-Mg6a, 1511.9; MIITX₁-Mg5a\DeltaK, 2390.9; MIITX₁-Mg5a, 2519.1; MIITX₁-Mg1a, 3147.8; MIITX₁-Mg3a, 4329.0; MIITX₁-Mg7b, 5600.4; MIITX₁-Mg7c, 5740.6; MIITX₂-Mg1a, 5792.3; MIITX₁-Mg7a, 7116.3; MIITX₁-Mg2a, 8489.4; MIITX₁-Mg4a\DeltaS, 9054.1. Gel view (prepared in ClinProTools) illustrates variation across 10 individual shots of samples prepared from venom (V), venom duct (VD), venom reservoir (VR), Dufour's gland (DG) and 4 sections of the venom glands: proximal (VG*P*), proximal central (VG*PC*), distal central (VG*DC*) and distal (VG*D*). (**B**) Venom diagram illustrating overlap in peptides identified using different MS techniques. (**C**) Venom apparatus of *M. gulosa*, labelled as above.

Fig. S2. Coelution of native (purified from venom) and synthetic MIITX₁-Mg1a. RP-HPLC was performed using a Phenomenex Gemini NX-C₁₈ column (250 x 4.6 mm, 3 μ m particle size, 110 Å pore size) with a gradient of 15–45% solvent B (90% ACN, 0.05% TFA) over 30 min.

Fig. S3. MIITX₁-Mg1a–induced changes in paw withdrawal. (A) At a concentration of 100 μ M, MIITX₁-Mg1a had caused mechanical sensitivity (at 20 min post-injection), n = 3-9 per group. (B) MIITX₁-Mg1a (100 μ M) caused heat sensitivity (at 25 min post-injection). n = 6-7 per group. Data are expressed as mean ± SEM. Statistical significance compared to vehicle controls was determined using one-way ANOVA with Dunnett's multiple comparison test. ** p < 0.01, **** p < 0.0001.

UniProt	Protein name	Organism	TPM
Entry			
A7X3V4	Kunitz-type serine protease inhibitor	Telescopus dhara	269.55
	kunitoxin-Tel1		
B2D0J5	Venom carboxylesterase-6	Apis mellifera	203.1
C9WMM5	Venom serine carboxypeptidase	Apis mellifera	152.1
Q58L94	Venom prothrombin activator notecarin-D2	Notechis scutatus	85.64
0591.04	Vanam prothromhin activator notacorin D2	Neterlin restatur	70.75
Q56L94	venom prounomoni activator notecarm-D2	Notecnis scutatus	10.15
P2D015	Vanom carboxylastarasa 6	A pig malliforg	54 22
B2D0J3 B5U2W0	Venom serine protesse Bi V	Rombus ignitus	35.14
	DIMUN Custoine rich vonom protein 1	Domous ignitus	20.70
Q010W5	Phyle i Cystelle-fich veholn protein i	r impiù hypochon dri gog	29.19
D25770	Vanam allangan 2	Solononaria mohtomi	27.25
P 35/79	Venom anergen 5	Tologoomug dhang	27.55
A/A3V4	kunitoxin-Tel1	Telescopus anara	19.98
Q8MQS8	Venom serine protease 34	Apis mellifera	19.82
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	18.3
C9WMM5	Venom serine carboxypeptidase	Apis mellifera	15.79
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	13.95
Q8MQS8	Venom serine protease 34	Apis mellifera	13.06
Q8JI39	Cysteine-rich venom protein triflin	Protobothrops	10.95
		flavoviridis	
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	6.8
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	6.71
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	6.63
P0DM55	Venom peptide SjAPI	Scorpiops jendeki	5.64
Q8MQS8	Venom serine protease 34	Apis mellifera	5.05
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	4.94
P505486	Conopressin	Conus geographus	3.95
B5AJT4	Venom metalloproteinase 3	Eulophus pennicornis	3.35
P35775	Venom allergen 2	Solenopsis invicta	1.61

Table S1. Venom- or toxin-associated annotation of nonvenom component transcripts.

Table 52. Assessment of antimicrobial, cytotoxic and hemolytic activity of will 1 April 13							
Bacterium	Strain	Organism	Max response ± SEM	MIC (µM)			
Staphylococcus aureus	ATCC 43300	Bacterium	84 ± 0	10.2			
Escherichia coli	ATCC 25922	Bacterium	-1 ± 2	>10.2			
Klebsiella pneumoniae	ATCC 700603	Bacterium	16 ± 1	>10.2			
Acinetobacter baumannii	ATCC 19606	Bacterium	32 ± 3	>10.2			
Pseudomonas aeruginosa	ATCC 27853	Bacterium	4 ± 4	>10.2			
Candida albicans	ATCC 90028	Fungus	8 ± 4	>10.2			
Cryptococcus neoformans var. grubii	H99; ATCC 208821	Fungus	108 ± 6	2.5			
Human embryonic kidney cells	ATCC CRL-1573	Human	49 ± 7	8.8 (CC ₅₀)			
Human red blood cells		Human	10 ± 1	>10.2 (HC ₅₀)			

Table S2. Assessment of antimicrobial, cytotoxic and hemolytic activity of MIITX₁-Mg1a.

MIC, minimum inhibitory concentration; CC_{50} , concentration at 50% cytotoxic activity; HC_{50} , concentration at 50% haemolytic activity.