1

Constitutive vagus nerve activation modulates immune suppression in sepsis survivors

Minakshi Rana^{1#}, Yurong Fei-Bloom^{1#}, Myoungsun Son^{1#}, Andrea La Bella¹, Mahendar
Ochani², Yaakov A. Levine^{3,4}, Pui Yan Chiu², Ping Wang², Sangeeta S. Chavan⁴, Bruce T.
Volpe⁴, Barbara Sherry^{2*}, Betty Diamond^{1*}

¹Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute
 for Medical Research, Manhasset, NY, United States; ²Center for Immunology and
 Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States;
 ³SetPoint Medical Corporation, Valencia, California, United States; and ⁴Center for Biomedical
 Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States.

12 ^{*}Correspondence

Betty Diamond, The Feinstein Institute for Medical Research, Center for Autoimmune,
Musculoskeletal and Hematopoietic Diseases, 350 Community Dr, Manhasset, New York 11030;
e-mail: bdiamond@northwell.edu; Phone: 516-562-3830, Fax: 516-562-2953

Barbara Sherry, The Feinstein Institute for Medical Research, Center for Immunology and
Inflammation, 350 Community Dr, Manhasset, New York 11030; e-mail:
bsherry@northwell.edu; Phone: 516-562-3402, Fax: 516-562-1022

[#]MR, [#]YF-B, and [#]MS contributed equally to this study.

- 21
- 22
- 23
- ___
- 24

25 Supplementary Figures and Figure Legends:

Supplementary Figure 1. Splenocytes from CLP-survivors show enhanced TNFa expression *ex vivo*. Splenocytes were isolated from control and CLP-surviving mice at 4 weeks after surgery and cultured for 24 hr with or without LPS (100 ng/ mL). Each data point represents the average of duplicate wells from a single mouse. TNFa in the culture supernatants was measured by ELISA (R&D). Values represent mean \pm SEM (n=4 mice/group) from one of two independent experiments; Control+LPS vs. CLP+LPS ***p < 0.001 (Tukey's post hoc test).

39

40

41

42

43

44

46

Supplementary Figure 2. CLP mice exhibit sustained expansion of the CD11b⁺ Ly6C 47 myeloid population in the spleen that was not altered by vagotomy. (A) Representative 48 gating for CD11b⁺ Ly6C^{high} and CD11b⁺ Ly6C^{low} myeloid cells in control and CLP mice (4 49 weeks). (B) Percentage and numbers of CD11b⁺ Ly6C^{high} and CD11b⁺ Ly6C^{low} myeloid cells per 50 spleen in control or CLP-surviving mice at 2 and 4 weeks post-surgery. (C) Vagotomy (VGX) 51 did not alter the percentages of CD11b⁺ Lv6C^{high} and CD11b⁺ Lv6C^{low} myeloid cells and the 52 actual number of total spleen cells in CLP-survivors. Values represent mean \pm SEM (n=5-14 53 mice/group). Control vs. CLP **p < 0.01; ***p < 0.001 and CLP VGX⁻ vs. CLP VGX⁺ ns=not 54 significant (Mann-Whitney U test). 55

Supplementary Figure 3. Memory ChAT⁺ T cells numbers in ChAT-EGFP mice. The
memory ChAT⁺ T cells in control and CLP-surviving ChAT-EGFP mice with and without
vagotomy after 4 weeks surgery. Values represent mean ± SEM (n=5-11 mice/group). Control
VGX⁻ vs. CLP VGX⁻ **p < 0.01; or CLP VGX⁻ vs. CLP VGX⁺ *p < 0.05; Control VGX⁻ vs.
Control VGX⁺ ns=not significant (Tukey's post hoc one-way ANOVA).