## 1 Supplementary Data

- 2
- 3



4

5 Supplementary Fig. S1 Motifs of CsLOX genes in tea plant. A. Phylogenetic relationship and 6 conserved motifs within eleven CsLOX proteins. The phylogenetic tree among eleven CsLOX 7 are constructed using the NJ method, which shows different colors for each corresponding 8 subfamily. Twenty conserved motifs are set to different colors and the motif numbers are 9 arranged below the motifs. B. A 38-residue motif conserved among tea plant CsLOX sequences. 10 The logo of motifs in CsLOX genes of tea plant is created using amino acid sequences. The 11 sequence conservation at the position are shown by means of overall height in each stack. 12 Height of each residue letter indicates relative frequency of the corresponding amino acid 13 residue and the width is the length of the motif. The five conserved histidines (H) are marked 14 with pink "H" letters.



- 17 Supplementary Fig. S2 Prediction of the 3-dimensional structure of CsLOX proteins. The
- 18 yellow ribbons indicate the ß-barrel, and the red ribbons indicate the bundle of helices.

| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX5<br>CsLOX5<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus           | MLHRVVEGIKGNDGNDEKIKGTVVLMKKNVLDFNDFNASIL<br>MLGTGTHHSHFVLNLLFWRKFFISSLLRFRQSSLRKQNVCFKVNSNHSTIKAISSSSTSSDGTITSVKTVUTVQVQAVGGLLSNLGL<br>MLSGTHGSHTVQILIFWRKFFISSIASSTSSSLHLKFGLGCNQKLKGGVACVFSTIKAIATTTREGTSVNAVVSVKLTVGGIVINGL<br>MLSGTHGSHTNGLIASSGAGUNGLSANGVEVGTRVSNLSSSSSGAVEVGAVTSVKAVTGGAUTVG<br>MSSFIVANSLTSNSSGFLLDVALIGGNNLISSIFGJEKSILIKFUGTEVETSKINGSVLSSSSGAVEVGAVTIRKMKRTSEL<br>MLSGTHGSSTVMASSTULIGGNNLISSIFGJEKSILIKFUGTEVETASISEVUNAVEKAUTUGNSKAVTIRKMSKKOLMENL<br>MLSGTHGSSTVMASSSTULIGGNNLISSIFGGENELIKERUFFERALVEAGSIKVUEFAUNINKATUTVNSKAVGIMENL<br>MLFILFHSSSFFISIIFGIFFERALVEAGGUNUTIFKERMANGGUNUTVANSKAUTUTVNSKAVTUNNSKAUTUF<br>MBAITEMONKRNKHGKINGTVUVIKHLGDALLIFT<br>MLFILFHSSSFFISIIFFIFFERALVENGUNUTVASTENNGSKAUTGUNUTVKHKILIFDGLSELV<br>MLFILFHSSFFISIIFFIFFERALVENGUNUTVASTENNGSKAUTGUNUTKKSKAUTGUNUTVKHILIDADALSL<br>MEFKNIGGNGESSLGNCVNAIHKANTSHSTHHIKGQIVQSRVSGSSVEGSASVQLFSCSQVDPNIGKGK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41<br>90<br>90<br>100<br>95<br>96<br>42<br>80<br>47<br>69                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX6<br>CsLOX7<br>CsLOX8<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus | DRVHELLGÇKVSLQLISAVNADLTVKGLKGKLGKPAYLEDMITTITPLTAG.DSAYDVT DWDEELGVFGAFIIRFFHSGFY KSLTLDHVFGHGRVHF<br>DRGLD.DITDIFGKSILLEUVSADLOPKTGLKKTIKGYARMSQDENEVKYELNEKVADEFGLGAVLVENEHKKMVLKNIAFDGFP.NGEVCV<br>SHGLDIADLGKSIQLEUVSADLOPKTGLKKTIKGYARMSQEKDEVKYELNEKVADEFGLGAVLVENEHKKMVLKNIAFDGFP.NGEVCV<br>SRGLD.UVADHGKSIQLEUVSADLOPKTGLKKTIKGYARMSQEKDEVKYELNEKVADEFGLGAVLVENEHKKMVLKNIAFDGFP.NGEVCV<br>SRGLDIVADHGKSIQLEUVSADLOPKTGLKKTIKGYARMSQEKDEVKYELNEKVADEFGLGAVLVENEHKKMVLKQIVHGFPGGFVID<br>QGKG.FINGQGLILGISDIOFVNSGKCIESVYGGNEV, SSIKHGINTQVE MVESDFGVFGATIVNEKFFFLUSISTEGGAGG.FVF<br>SRFDGFIYFAAEKGVVLQUVSTLDPKKHEFKISKEAVLDIS.KSIKVGFKNYLGVE MVESDFGVFGATIVNEKFFFLUSISTEGGAGG.FLH<br>DRVDELIGHNVLGUVSTDLOPKKEFKSENSALMDSKKSIKKTEKVNIDIE TVESNGKFGATIVNEKFFLUSISTEGGAG.FLH<br>DRVDELIGHNVSLGUSAVGDFKG.FKGKGKKANLEDMIKLTFFSA.UVSFNVT ENDERAGVFGAFIINSHMHFYLKTVILEIFGANGIGF<br>DRIEEVIGGOFGLISSDGGFKG.FKGKGKKANLEDMIKLTFFSA.UVSFNVT ENDERAGVFGAFIINSHMHFYLKTVILEIFGANGIGF<br>DRIEEVIGGKSLGLISSDGGFKG.FKGKGKANLEDMIKKITFSA.UVSASSESSENVTEDNELAGVFGAFIINSHMHFYLKTVILEIFGNAGIGF<br>DRVHEFLGKGVSLGLISSDGGFAN.FHGKVGKFAYLEMINTITSYASSESSENVITEDNEGAGNFVFGAFIINSHMHFYLKTVILEDVFBHDQILF<br>MSGIAKLRDGKTNKHSGIKITTYEIKFHVEFEFGIFGAIVIKNGHKDRFFLGSASLKDSGNRTVYFGAFIINSHMHFYLKTVILEDVFBHDQILF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140<br>184<br>185<br>185<br>196<br>189<br>193<br>139<br>177<br>146<br>163 |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX6<br>CsLOX6<br>CsLOX7<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus           | VISWY YEARYNKTUDY WETRIN THIS WIG TAFLEY ROE WYLFO GORGERKIERWUD YT ALYNT LLCU GORGERWAN UN GORGER FUTRION OF ALWEN FRANKLEWUD YN ALYNT LLCU GORGERWAN UN GORGER FUTRION OF ALWEN FRANKLEWUD YN ALWEN DAWL ALWEN AN ALWEN DAWL ALWEN ALWEN AN ALWEN AL                                                                             | 240<br>283<br>284<br>295<br>288<br>292<br>239<br>277<br>246<br>263        |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX6<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX10<br>CsLOX10<br>Consensus                     | KT FESS SRLALLMSFNINVER OF REGHE MSDFLAVALKSVVQFIV ELGALCEKTPNB DSFQDILKIYEGGILLFEGPLLDKIKENIPLEMIKELVR<br>KT FLSGSRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340<br>376<br>377<br>392<br>385<br>389<br>339<br>377<br>345<br>358        |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX6<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus                     | TIG. GYLKFFMQVIKELKT ANT DE GRAFMING HEVI SRLQFF FRÖTLERKINGNONSITEDE KNNLGG. TIGET KNNRE HI FRAMM<br>DIEEALIRFET. RALVEROFF FREMENSOTIAGEN VI SRLQFF FRÖTLERKINGEN OCH SITEDE KNNLGG. TIGET KNNRE HI<br>DAEGLIRFET. RALFEDRIF REFERSOTIAGEN VI SUUKERKING KUNNE VI SPESATIKET EREITREFNTED GOKKING VI VI<br>DAEGLIRFET. RALFEDRIF REFERSOTIAGEN GOVERNALLER KLENKTER VI SOFTATIKTE FREMENSOTIAGEN GOKKING VI VIL<br>DAEGLIRFET. RALFEDRIF KIEN SOTIAGEN GOVERNALLER KLENKTER VI SOFTATIKTE FREMENSOTIAGEN GOKKING VI VIL<br>DAEGLIRFET. RALFEDRIF KIEN SOTIAGEN GOVERNALLER KLENKTER VI SOFTATIKTE FREMENSOTIAGEN GOKKING VI VIL<br>DAEGLIRFET. RALFEDRIF KIEN SOTIAGEN GOVERNALLER KLENKTER VI SOFTATIKTE FREMENSOTIAGEN GOKKING VIL<br>EFIELTVEN. PROFENSOTIAGEN GOVERNALLER KLENKTER VIKTOR SVOFFGANTERET IGNOLDEN. SVOG LENKK VIN VIN VIL<br>DIG. ERLFHFFVGVI ERLENS SOTIAGEN GOVERNALLER KLENKTER VIKTOR SVOFFGANTERET IGNOLDEN. SVOG ULENKK VIN VIN VIL<br>DIG. ERLFHFFVGVI ERLENS SOTIAGEN GOVERNALLER KLENKTER VIKTOR SVOFFGANTERET IGNOLDEN SVOFFGANTERET IGNOLDEN VIN VIL<br>DIG. ERLFHFFVGVI ERLENS SOTIAGEN GOVERNALLER VIN VIN STALEST VIL VIL SOLTAN SVOFFGANTERET IGNOLDEN SVOFFGANTERET IGNOLDEN SVOFFGANTERET IGNOLDEN SVOFFGANTERET IGNOLDEN VIL VIL<br>DAEGRIFFFFFVGVI ERLENS SOTIAGEN GOVERNALLER VIL VIL SOLTAN SVOFFGANTERET IGNOLDEN SVOFFGANTERET IGNOLDEN VIL VIL SOLTAN VIL SOLTAN SVOFFGANTERET IGNOLDEN SVOFFGANTER SVOFFGANTERET IGNOLDEN SVOFFGANTER SVOFFGANTER SVOFFGANTER SVOFFGANTER SVOFFGANTER SVOFFGANTERET IGNOLDEN SVOFFGANTER SVOFFGANTE                                                       | 438<br>475<br>476<br>477<br>489<br>482<br>488<br>437<br>475<br>444<br>450 |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX6<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus           | YVRRIN.ATSTRINATILLFLQKOSTRILATE SLATE SLA                                                                             | 530<br>566<br>567<br>568<br>573<br>579<br>536<br>574<br>536<br>540        |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX5<br>CsLOX5<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus | EFVT TING CEVIENE HER AND FROM NON AN OTH ALC IN ALC IN STUFFER AN GOAV WIN. BY PEOR FROM ING WINDOW HERE IN JO<br>EVITING ALC AND THE THE FROM NON ALC IN ALC IN THE START OF START OF START OF START IS GREATED TO THE START OF<br>EVITING ALC AND THE THE FROM NON ALC IN ALC IN THE START OF START OF START OF START IS GREATED TO THE START OF<br>EVITING ALC AND THE THE FROM NON ALC IN ALC IN THE START OF START OF START OF START OF START OF START OF START<br>EVITING ALC AND THE THE FROM NON ALC IN ALC IN ALC IN THE START OF START OF START OF START OF START OF START OF START<br>EVITING ALC AND THE THE THE START OF ALC IN ALC IN ALC IN THE START OF START OF START OF START OF START OF START OF START<br>EVITING AND ALC AND THE THE THE START OF ALL AND ALC IN THE START OF START OF START OF START OF START OF START OF START<br>EVITING ALC AND THE THE THE START OF ALL AND ALC OF ALC AND ALC INTO START OF STAR                                                               | 629<br>666<br>667<br>668<br>673<br>679<br>635<br>673<br>635<br>635        |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX6<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus           | E GEVANGELKIE SA ETN GZECHFUKNDEMYKE DIE GEVANGELEE GENKE HAN ENNOTREZIEDSE IN WAAR AL HANDENYKE PROTEKTIEN DIE GEVANGELEE GENKE ENNOTWELTE GEVANGELEE GE                                                                              | 729<br>766<br>767<br>780<br>773<br>779<br>735<br>773<br>735<br>735<br>739 |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX6<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus           | ETLSERFMEFGTFFYEEFKSS DKAT KTITACIGTLLGVSLIEIER SSGLVIE.G.,QRDSADMTDDEFLEAGFGKKGEIER HEIEM D<br>FTIARKHITEDFSQLLNNINKSVLLMSFFSGLGATIVMAVLDVLR MINTEYIGKEMEPTTENFVVRA FEMNSKKELGVIDDRAM<br>FTIARKHITEDFSQLLNNINKSVLLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEDFSQLLNNINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLDVLR<br>TTIARKHITEOFDEENKCINKSVLMSFFSGLGATIVMAVLSVLMSFFSGLGATIVMAVLSVLMSFFSGLGATIVMAVLSVLMSFFSGLGATIVMAVLSVLMSFFSGLGATI | 825<br>864<br>865<br>878<br>870<br>876<br>833<br>870<br>831<br>835        |
| CsLOX1<br>CsLOX2<br>CsLOX3<br>CsLOX4<br>CsLOX5<br>CsLOX5<br>CsLOX5<br>CsLOX7<br>CsLOX8<br>CsLOX9<br>CsLOX10<br>CsLOX11<br>Consensus           | EN. INTERVE PVKVENTER F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 860<br>899<br>900<br>901<br>905<br>911<br>868<br>905<br>872<br>875        |

Supplementary Fig. S3 Multiple sequence alignments of eleven CsLOX proteins. The protein sequences were aligned using the DNAMAN software. The consensus amino acid residues are marked with letters at the bottom. The conserved domains are involved in substrate binding (Domain I) and oxygen binding (Domain II), which are indicated with a solid red box. The red triangle and solid blue box indicate a conserved amino acid sequence proposed to be essential for iron binding (His522, His527, His713, Asn717 and Ile861).



27

Supplementary Fig. S4 Heat map analysis of *CsLOX* gene expression data based on RNASeq. Green and red colors represent low and high levels of transcript abundance, respectively.
A. Expression patterns of Cs*LOX* genes across different tissues (bud, first leaf, mature leaf in
summer, old leaf in winter, root, stem, flower, seed). B. Expression patterns of *CsLOX* genes
under insect feeding treatment (CK for control leaf collected at five time points (3, 6, 9, 12 and
24 h) and E for leaf partially consumed by *Ectropis oblique*, sampled at five time points (3, 6, 9,
12 and 24 h).



35

36 Supplementary Fig. S5 qRT-PCR analysis of *CsLOX* genes under cold-acclimation treatment

37 (CA1-6h, CA1-7d, CA2, see Materials and Methods). Bars show the mean  $\pm$  SD (n= 3) of three

biological replicates. Letters above the bars represent significant differences at P < 0.05.







**Supplementary Fig. S7** Expression pattern of *CsLOX* genes under SA phytohormone treatments. qRT-PCR analysis of *CsLOX* genes at different time points. Black bars and grey bars indicate the full-length and AS transcripts, respectively. Data represent the means  $\pm$  SD (n= 3) of three biological replicates. Different letters above the bars denote significant differences at *P*< 0.05. The asterisks indicate significance level (\**P* < 0.05, \*\**P* < 0.01) based on a Tukey's honestly significant difference test.



54 Supplementary Fig. S8 Heterologous expression of CsLOX in E. coli. A. SDS-PAGE image 55 shows the purified CsLOX2 recombinant protein. 1, protein extracted from empty pGEX-4T-1 56 before induction. 2, protein extracted from empty pGEX-4T-1 after induction. 3, purified protein of CsLOX2. B. SDS-PAGE image shows the purified CsLOX9 recombinant protein. 1, protein 57 58 extracted from empty pGEX-4T-1 before induction. 2, protein extracted from empty pGEX-4T-1 after induction. 3, purified protein of CsLOX9. C. SDS-PAGE image shows the purified 59 60 CsLOX3 recombinant protein. 1, protein extracted from empty pMAL-C2X before induction. 2, 61 protein extracted from empty pMAL-C2X after induction. 3, purified protein of CsLOX3. The 62 solid box shows the position of expected protein.

| Full-lenath |              | CDS length |                    | Protein                |             | Sub-cellular location |                       | Predicted   |               |
|-------------|--------------|------------|--------------------|------------------------|-------------|-----------------------|-----------------------|-------------|---------------|
| ID          | ID (bp) (bp) |            | Predicted Scaffold | Protein length<br>(aa) | Mol.Wt (Da) | PI                    | TargetP               | MultiLoc2   | functionality |
| CsLOX1      | 2796         | 2586       | Scaffold1403       | 861                    | 97915.63    | 5.8                   | Any other<br>location | Cytoplasm   | 9-LOX         |
| CsLOX2      | 3039         | 2703       | Scaffold11162      | 900                    | 102258.59   | 6.39                  | Chloroplast           | Chloroplast | 13-LOX        |
| CsLOX3      | 2947         | 2706       | Scaffold1936       | 901                    | 101802.22   | 6.37                  | Chloroplast           | Chloroplast | 13-LOX        |
| CsLOX4      | 2825         | 2712       | Scaffold1939       | 902                    | 101993.9    | 6.76                  | Chloroplast           | Chloroplast | 13-LOX        |
| CsLOX5      | 2956         | 2745       | Scaffold1275       | 914                    | 103284.87   | 8.27                  | Chloroplast           | Chloroplast | 13-LOX        |
| CsLOX6      | 2872         | 2721       | Scaffold10095      | 906                    | 102826.65   | 6.78                  | Chloroplast           | Chloroplast | 13-LOX        |
| CsLOX7      | 3129         | 2739       | Scaffold338        | 912                    | 102809.89   | 8.28                  | Chloroplast           | Chloroplast | 13-LOX        |
| CsLOX8      | 2610         | 2610       | Scaffold5989       | 869                    | 99648.72    | 5.82                  | Any other<br>location | Cytoplasm   | 9-LOX         |
| CsLOX9      | 2839         | 2721       | Scaffold1291       | 906                    | 104304.95   | 5.87                  | Secretory<br>pathway  | Cytoplasm   | 9-LOX         |
| CsLOX10     | 2776         | 2622       | Scaffold3698       | 873                    | 100256.11   | 7.7                   | Any other location    | Cytoplasm   | 9-LOX         |
| CsLOX11     | 2674         | 2631       | Scaffold844        | 876                    | 99679.47    | 7.37                  | Chloroplast           | Chloroplast | 13-LOX        |

Supplementary Table. S1 Detailed information of *CsLOX* gene family was identified from tea plant genome.

| ID      | α-Helix | $\beta-sheet$ | Random coil |
|---------|---------|---------------|-------------|
| CsLOX1  | 309     | 127           | 425         |
| CsLOX2  | 307     | 117           | 476         |
| CsLOX3  | 307     | 117           | 476         |
| CsLOX4  | 323     | 118           | 461         |
| CsLOX5  | 336     | 122           | 456         |
| CsLOX6  | 330     | 110           | 466         |
| CsLOX7  | 323     | 125           | 464         |
| CsLOX8  | 308     | 124           | 437         |
| CsLOX9  | 317     | 129           | 460         |
| CsLOX10 | 307     | 123           | 443         |
| CsLOX11 | 306     | 111           | 459         |

Supplementary Table. S2 Analysis of secondary structure of CsLOX proteins

| Function (CsLOX1)                 | cis-regulatory element                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------|
|                                   | ACE,AE-box,ATCT-motif,Box 4,Box I,CATT-motif,GA-motif,GAG-motif,GATA-motif,GT1-motif,I- |
| light responsiveness              | box,MNF1,MRE,Sp1,TCCC-motif,as-2-box                                                    |
| auxin responsiveness              | AuxRR-core                                                                              |
| MeJA-responsiveness               | CGTCA-motif,TGACG-motif                                                                 |
| ethylene-responsive               | ERE                                                                                     |
| abscisic acid responsiveness      |                                                                                         |
| salicylic acid responsiveness     |                                                                                         |
| gibberellin-responsive            | GARE-motif,gibberellin-responsive                                                       |
| heat stress responsiveness        | HSE                                                                                     |
| defense and stress responsiveness | TC-rich repeats                                                                         |
| anaerobic induction               |                                                                                         |
| anoxic specific inducibility      |                                                                                         |
| drought-inducibility              |                                                                                         |
| wound-responsive                  |                                                                                         |

Supplementary Table. S3 Analysis of cis-acting regulatory elements in the promoter region of CsLOX genes.

| Function (CsLOX2)                 | cis-regulatory element                                                                              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| light responsiveness              | AAAC-motif,AT1-motif,ATC-motif,ATCT-motif,Box 4,Box I,GA-motif,GAG-motif,GATA-motif,GT1-motif,I-box |
| auxin responsiveness              |                                                                                                     |
| MeJA-responsiveness               | CGTCA-motif,TGACG-motif                                                                             |
| ethylene-responsive               |                                                                                                     |
| abscisic acid responsiveness      |                                                                                                     |
| gibberellin-responsive            | GARE-motif                                                                                          |
| heat stress responsiveness        | HSE                                                                                                 |
| defense and stress responsiveness |                                                                                                     |
| salicylic acid responsiveness     |                                                                                                     |
| anaerobic induction               | ARE                                                                                                 |
| anoxic specific inducibility      |                                                                                                     |
| drought-inducibility              |                                                                                                     |
| wound-responsive                  | WUN-motif                                                                                           |

| Function (CsLOX3)                 | cis-regulatory element    |  |
|-----------------------------------|---------------------------|--|
| light responsiveness              | ATCC-motif,GAG-motif, Sp1 |  |
| auxin responsiveness              |                           |  |
| MeJA-responsiveness               | CGTCA-motif,TGACG-motif   |  |
| ethylene-responsive               |                           |  |
| abscisic acid responsiveness      |                           |  |
| salicylic acid responsiveness     | TCA-element               |  |
| gibberellin-responsive            |                           |  |
| heat stress responsiveness        |                           |  |
| defense and stress responsiveness |                           |  |
| anaerobic induction               |                           |  |
| anoxic specific inducibility      |                           |  |
| drought-inducibility              |                           |  |
| wound-responsive                  | WUN-motif                 |  |

| Function (CsLOX4)                 | cis-regulatory element                                             |  |
|-----------------------------------|--------------------------------------------------------------------|--|
| light responsiveness              | ACE,Box 4,Box I,G-Box,GATA-motif,I-box, Sp1,as-2-box,chs-Unit 1 m1 |  |
| auxin responsiveness              |                                                                    |  |
| MeJA-responsiveness               |                                                                    |  |
| ethylene-responsive               |                                                                    |  |
| abscisic acid responsiveness      | ABRE                                                               |  |
| salicylic acid responsiveness     | TCA-element                                                        |  |
| gibberellin-responsive            | GARE-motif                                                         |  |
| heat stress responsiveness        | HSE                                                                |  |
| defense and stress responsiveness | TC-rich repeats                                                    |  |
| anaerobic induction               | ARE                                                                |  |
| anoxic specific inducibility      | GC-motif                                                           |  |
| drought-inducibility              |                                                                    |  |
| wound-responsive                  | WUN-motif                                                          |  |

| Function (CsLOX5)                 | cis-regulatory element                                                                   |
|-----------------------------------|------------------------------------------------------------------------------------------|
| light responsiveness              | 4cl-CMA2a,AE-box,ATCT-motif,Box 4,Box I,G-box,LAMP-element,Sp1, TCT-motif,chs-CMA1a,chs- |
| light responsiveness              | CMA2a,rbcS-CMA7a                                                                         |
| auxin responsiveness              |                                                                                          |
| MeJA-responsiveness               |                                                                                          |
| ethylene-responsive               | ERE                                                                                      |
| abscisic acid responsiveness      | ABRE                                                                                     |
| salicylic acid responsiveness     |                                                                                          |
| gibberellin-responsive            | GARE-motif                                                                               |
| heat stress responsiveness        | HSE                                                                                      |
| defense and stress responsiveness | TC-rich repeats                                                                          |
| anaerobic induction               |                                                                                          |
| anoxic specific inducibility      |                                                                                          |
| drought-inducibility              | MBS                                                                                      |
| wound-responsive                  |                                                                                          |

| Function (CsLOX6)                 | cis-regulatory element                                                                                             |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| light responsiveness              | AAAC-motif,AT1-motif,Box 4,Box I, Box II,G-Box,GA-motif,GAG-motif,GATA-motif,GT1-<br>motif,MNF1,MRE,Sp1,TCCC-motif |
| auxin responsiveness              |                                                                                                                    |
| MeJA-responsiveness               |                                                                                                                    |
| ethylene-responsive               | ERE                                                                                                                |
| abscisic acid responsiveness      |                                                                                                                    |
| salicylic acid responsiveness     |                                                                                                                    |
| gibberellin-responsive            | GARE-motif                                                                                                         |
| heat stress responsiveness        | HSE                                                                                                                |
| defense and stress responsiveness |                                                                                                                    |
| anaerobic induction               | ARE                                                                                                                |
| anoxic specific inducibility      |                                                                                                                    |
| drought-inducibility              | MBS                                                                                                                |
| wound-responsive                  | WUN-motif                                                                                                          |

| Function (CsLOX7)                 | cis-regulatory element                                                                                        |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------|
| light responsiveness              | 4cl-CMA2b,Box I,G-Box,GA-motif,GATA-motif, GT1-motif,I-box,L-box,LAMP-element,MRE,Sp1,TCCC-<br>motif,as-2-box |
| auxin responsiveness              |                                                                                                               |
| MeJA-responsiveness               |                                                                                                               |
| ethylene-responsive               |                                                                                                               |
| abscisic acid responsiveness      |                                                                                                               |
| salicylic acid responsiveness     | TCA-element                                                                                                   |
| gibberellin-responsive            |                                                                                                               |
| heat stress responsiveness        | HSE                                                                                                           |
| defense and stress responsiveness | TC-rich repeats                                                                                               |
| anaerobic induction               | ARE                                                                                                           |
| anoxic specific inducibility      |                                                                                                               |
| drought-inducibility              |                                                                                                               |
| wound-responsive                  | WUN-motif                                                                                                     |

| Function (CsLOX8)                 | cis-regulatory element                                                                      |
|-----------------------------------|---------------------------------------------------------------------------------------------|
| light responsiveness              | 4cl-CMA2b,ACE,AE-box,ATCT-motif,Box 4,Box I,GAG-motif,GT1-motif,Gap-box,L-box,MRE,chs-CMA1a |
| auxin responsiveness              |                                                                                             |
| MeJA-responsiveness               |                                                                                             |
| ethylene-responsive               | ERE                                                                                         |
| abscisic acid responsiveness      |                                                                                             |
| salicylic acid responsiveness     |                                                                                             |
| gibberellin-responsive            | GARE-motif                                                                                  |
| heat stress responsiveness        | HSE                                                                                         |
| defense and stress responsiveness |                                                                                             |
| anaerobic induction               | ARE                                                                                         |
| anoxic specific inducibility      |                                                                                             |
| drought-inducibility              |                                                                                             |
| wound-responsive                  |                                                                                             |

| Function (CsLOX9)                 | cis-regulatory element                                                       |
|-----------------------------------|------------------------------------------------------------------------------|
| light responsiveness              | ACE,ATCC-motif,Box 4,G-Box,GATA-motif,I-box,Sp1,TCT-motif,as-2-box,chs-CMA1a |
| auxin responsiveness              | AuxRR-core                                                                   |
| MeJA-responsiveness               |                                                                              |
| ethylene-responsive               |                                                                              |
| abscisic acid responsiveness      | ABRE                                                                         |
| salicylic acid responsiveness     | TCA-element                                                                  |
| gibberellin-responsive            | P-box                                                                        |
| heat stress responsiveness        | HSE                                                                          |
| defense and stress responsiveness | TC-rich repeats                                                              |
| anaerobic induction               | ARE                                                                          |
| anoxic specific inducibility      |                                                                              |
| drought-inducibility              |                                                                              |
| wound-responsive                  |                                                                              |

| Function (CsLOX10)                | cis-regulatory element                                                             |
|-----------------------------------|------------------------------------------------------------------------------------|
| light responsiveness              | ACE,AE-box,Box 4,G-Box,GA-motif,GAG-motif,GT1-motif,I-box,Sp1,TCCC-motif,TCT-motif |
| auxin responsiveness              |                                                                                    |
| MeJA-responsiveness               | CGTCA-motif,TGACG-motif                                                            |
| ethylene-responsive               |                                                                                    |
| abscisic acid responsiveness      |                                                                                    |
| salicylic acid responsiveness     | TCA-element                                                                        |
| gibberellin-responsive            |                                                                                    |
| heat stress responsiveness        | HSE                                                                                |
| defense and stress responsiveness | TC-rich repeats                                                                    |
| anaerobic induction               | ARE                                                                                |
| anoxic specific inducibility      |                                                                                    |
| drought-inducibility              | MBS                                                                                |
| wound-responsive                  |                                                                                    |

| Function (CsLOX11)                | cis-regulatory element                         |
|-----------------------------------|------------------------------------------------|
| light responsiveness              | ACE,Box 4,Box I,G-Box,GT1-motif,Sp1,TCCC-motif |
| auxin responsiveness              |                                                |
| MeJA-responsiveness               | CGTCA-motif,TGACG-motif                        |
| ethylene-responsive               |                                                |
| abscisic acid responsiveness      | ABRE                                           |
| salicylic acid responsiveness     | TCA-element                                    |
| gibberellin-responsive            |                                                |
| heat stress responsiveness        | HSE                                            |
| defense and stress responsiveness | TC-rich repeats                                |
| anaerobic induction               | ARE                                            |
| anoxic specific inducibility      |                                                |
| drought-inducibility              |                                                |
| wound-responsive                  |                                                |

| Organism                | Sequence ID | GeneBank Accession |
|-------------------------|-------------|--------------------|
|                         | AtLOX1      | Q06327             |
|                         | AtLOX2      | P38418             |
| Arabidopsis thaliana    | AtLOX3      | Q9SMW1             |
|                         | AtLOX4      | Q9FNX8             |
|                         | AtLOX5      | Q9FNX7             |
|                         | AtLOX6      | Q9CAG3             |
|                         | GmLOX1      | P08170             |
|                         | GmLOX2      | P09435             |
| Chucino mov             | GmLOX3      | P09186             |
| Glycine max             | GmLOX4      | P38417             |
|                         | GmLOX6      | AAA96817           |
|                         | GmLOX7      | P24095             |
|                         | HvLOX1      | P93184             |
|                         | HvLOX2      | Q8GSM3             |
|                         | HvLOX3      | Q8GSM2             |
| Hordeum vulgare         | HvLOX4      | CAI84707           |
|                         | HvLOXA      | P29114             |
|                         | HvLOXB      | AAB60715           |
|                         | HvLOXC      | AAB70865           |
| Lens culinaris          | LcLOX1      | P38414             |
|                         | LeLOX1      | P38415             |
|                         | LeLOX2      | P38416             |
| Lycopersicon esculentum | LeLOX3      | AAG21691           |
|                         | LeLOX4      | Q96573             |
|                         | LeLOX5      | Q96574             |
|                         | NaLOX1      | AAP83136           |
| Nicotiana attenuata     | NaLOX2      | AAP83137           |
|                         | NaLOX3      | AAP83138           |
| Nicotiana tabacum       | NtLOX1      | CAA58859           |
|                         | OsLOX1      | Q76l22             |
|                         | OsLOX2      | P29250             |
|                         | OsLOX3      | Q7G794             |
| Orvza sativa            | OsLOX3b     | Q53RB0             |
| Cryza Saliva            | OsLOX5      | Q7XV13             |
|                         | OsLOX6      | Q8H016             |
|                         | OsLOX7      | P38419             |
|                         | OsLOX8      | Q84YK8             |

Supplementary Table. S4 Plant lipoxygenase sequences used for phylogenetic tree construction

|                     | OsLOXRCI1 | Q9FSE5         |
|---------------------|-----------|----------------|
|                     | PsLOX1    | AAB71759       |
|                     | PsLOX2    | P14856         |
|                     | PsLOX3    | P09918         |
| Pisum sativum       | PsLOX7    | CAC04380       |
|                     | PsLOX8    | CAA75609       |
|                     | PsLOX9    | CAG44504       |
|                     | PsLOXG    | CAA53730       |
|                     | PvLOX1    | P27480         |
| Phasoolus vulgaris  | PvLOX1b   | AAB18970       |
| Fliaseolus vulgaris | PvLOX2b   | AAG42354       |
|                     | PvLOX2c   | AAF15396       |
|                     | StLOX1    | CAA64765       |
|                     | StLOX2    | AAD09202       |
| Solanum tuberosum   | StLOX3    | AAB67865       |
|                     | StLOX4    | CAA65268       |
|                     | StLOX5    | CAA65269       |
| Zea mays            | ZmLOX1    | AAL73499       |
| 200 mayo            | ZmLOX2    | AAF76207       |
| Triticum aestivum l | TaLOX1    | GQ166692       |
| nnioum doolivum E.  | TaLOX2    | GQ166691       |
| Actinidia deliciosa | AdLOX2    | DQ497797       |
|                     | VvLOXA    | XP_002285574   |
|                     | VvLOXC    | FJ858257       |
|                     | VvLOXG    | XP_002283147   |
|                     | VvLOXH    | XP_002283135   |
|                     | VvLOXI    | XP_002283123   |
| Vitis vinifera      | VvLOXJ    | XP_002263854   |
|                     | VvLOXL    | XP_002278007   |
|                     | VvLOXP    | XP_002265505   |
|                     | VvLOXT    | XP_010651289.1 |
|                     | VvLOXU    | XP_010659819.1 |
|                     | VvLOXV    | XP_010659859.1 |
|                     | VvLOXW    | NP_001290017.1 |
|                     | PtLOX1    | XP_002299250.1 |
|                     | PtLOX2    | XP_002297796.2 |
| Populus trichocarpa | PtLOX3    | XP_006368564.1 |
| ,                   | PtLOX4    | XP_006388115.1 |
|                     | PtLOX5    | XP_006369132.1 |
|                     | PtLOX6    | XP_002304125.1 |

|                   | PtLOX7  | XP_006382593.1 |
|-------------------|---------|----------------|
|                   | PtLOX8  | XP_006382594.1 |
|                   | PtLOX9  | XP_011036799.1 |
|                   | PtLOX10 | XP_006382595.1 |
|                   | PtLOX11 | XP_002311617.1 |
|                   | PtLOX12 | XP_002311724.1 |
|                   | PtLOX13 | XP_002314229.2 |
|                   | PtLOX14 | XP_002314548.2 |
|                   | PtLOX15 | XP_002315780.1 |
|                   | PtLOX16 | XP_002319014.2 |
|                   | PtLOX17 | XP_002319015.2 |
|                   | PtLOX18 | XP_002320037.2 |
|                   | PtLOX19 | XP_002320571.2 |
|                   | PtLOX20 | XP_002323952.2 |
|                   | CsLOX1  | EU195885.2     |
|                   | CsLOX2  | FJ418174.1     |
|                   | CsLOX3  | FJ794853.1     |
|                   | CsLOX4  | MG708225       |
|                   | CsLOX5  | MG708226       |
| Camellia sinensis | CsLOX6  | MG708227       |
|                   | CsLOX7  | MG708228       |
|                   | CsLOX8  | MG708229       |
|                   | CsLOX9  | MG708230       |
|                   | CsLOX10 | MG708231       |
|                   | CsLOX11 | MG708232       |

| Primer name        | Sequence (5 '- 3 ' )                          | Target gene                 |  |
|--------------------|-----------------------------------------------|-----------------------------|--|
| P1 (5' RACE, GSP1) | CCATGATGCCTCCATGTCCTTACCGAG                   |                             |  |
| P2 (5' RACE, GSP2) | TCAAGAGTGCAACTTCGGGCTTGTTG                    | USLUX3                      |  |
| P3 (3' RACE, GSP2) | GTGGAGCTGGTGTGGTTCCTTATGAGC                   |                             |  |
| P4 (3' RACE, GSP2) | GACAGGAAAGGGAGTTCCAAAGAGC                     | USLUX3                      |  |
| P5 (5' RACE, GSP1) | ATCTGTTGCACGAATTCCTCATCATCC                   |                             |  |
| P6 (5' RACE, GSP2) | TGTTTCTGTCTGGTTATCTTGGTTGCGAC                 | CSLUXII                     |  |
| P7 - F             | AAACACATTATGAGAGCCAC                          |                             |  |
| P8 - R             | CACAAATGCATTCACTTCTC                          | USLUX3                      |  |
| P9 - F             | GGGGATTGAGCAAAAACCC                           | Cal 0V11                    |  |
| P10 - R            | GATACCTAATAGCATATCAATTTGA                     | CSLUXII                     |  |
| P11 - F            | ATCTGGTTCCGCGTGGATCCATGTTGCAGACTCAAACGCA      |                             |  |
| P12 - R            | TCACGATGCGGCCGCTCGAGTCAAATTGAGATGCTATTAGGAA   | USLOX2                      |  |
| P13 - F            | AGGATTTCAGAATTCGGATCCATGTTGAATAGTCAAACCCAC    |                             |  |
| P14 - R            | CAAGCTTGCCTGCAGGTCGACTCAAATTGAGATGCTCTTTGG    | USLUX3                      |  |
| P15 - F            | ATCTGGTTCCGCGTGGATCCATGCTACCAACCCTCTTCC       |                             |  |
| P16 - R            | TCACGATGCGGCCGCTCGAGTTAGATTGAGACACTATTAGGAATT | CsLOX9                      |  |
| P19 - F            | TCTTGATTAATGCCGATGG                           | a -CsLOX1                   |  |
| P20 - F            | TATCAAGAGTGGATGGAC                            | $\beta$ -CsLOX1             |  |
| P21 - R            | AAATGCCTCCAATGGTTC                            | α , β <b>-CsLOX1</b>        |  |
| P22 - F            | CAACAAGTCATACTTGCCAG                          | a -CsLOX2                   |  |
| P23 - F            | AATGCAAGACAGTGTTGCAC                          | $\beta$ -CsLOX2             |  |
| P24 - R            | GCCTGTTACTCGCTATTATG                          | <i>a</i> , β <b>-CsLOX2</b> |  |

Supplementary Table. S5 Primers used in this study (application details of primers are described in materials and methods)

| P25 - F | ATCCAGACAGTAGTCCTAC      | a -CsLOX3             |
|---------|--------------------------|-----------------------|
| P26 - F | AACATTTTCAGGTGTTAACC     | $\beta$ -CsLOX3       |
| P27 - R | ATGTAAGGCTCTGTCACG       | <i>α</i> , β -CsLOX3  |
| P28 - F | ATTCTCAGCAAACTAGATCCTG   | a -CsLOX5             |
| P29 - F | GTCAAAGAGAGTTTGATAAATGG  | eta -CsLOX5           |
| P30 - R | GTGTCTTGAACGGCCATTAC     | α , β <b>-CsLOX5</b>  |
| P31 - F | TGGCTGCTTCAACTTCTTATTCTG | a -CsLOX9             |
| P32 - F | ATGGTGACCCTGGGGCTTTC     | β-CsLOX9              |
| P33 - R | TGTAGTGACATAGTGGAGCTGG   | a , $eta$ -CsLOX9     |
| P34 - F | TTCCAGCTAGATATGCAATGG    | a -CsLOX10            |
| P35 - F | CATGGTCTTGGTGGATAGAG     | $\beta$ -CsLOX10      |
| P36 - R | GGTTGGGTATCCGCAGTC       | α , β <b>-CsLOX10</b> |
| P37 - F | GAACCATTGGAGGCATTTG      |                       |
| P38 - R | ATTCAAATTGAAACACTATTAGG  | CSLOX1                |
| P39 - F | TTTGAAGAATAGGGTTGGAGC    | 0-1.0/2               |
| P40 - R | TCACTGTTAATCTCTTAGCCC    | CsLOX2                |
| P41 - F | CTAAACACATTATGAGAGCCAC   | 0.1010                |
| P42 - R | TAGGATTTGGACAGTATGAGAC   | CSLOX3                |
| P43 - F | ACTTGAAGAATAGATGTGGAGC   | CsLOX4                |
| P44 - R | TCTTACAAATGCATTCACTTCTC  |                       |
| P45 - F | GTTCCTAACAGCATCTCTATC    |                       |
| P46 - R | GTAGCCATTACAATCACTCTC    | USLUX5                |
| P47 - F | GACCCAAGCCTCACAAATAG     | CsLOX6                |

| P48 - R | GCTTCATTTATGCTACTCACAC   |                 |  |
|---------|--------------------------|-----------------|--|
| P49 - F | ATTTCTCTTCTCACTCTCAC     |                 |  |
| P50 - R | GAACACCTCTCCATCACACT     | USLUX7          |  |
| P51 - F | GGACTATTGCTCCTTCTACTAT   | CsLOX8          |  |
| P52 - R | GGTACATGTTTCGACTAGCTC    |                 |  |
| P53 - F | TTTGAGAGATTTGGAAAGACGC   |                 |  |
| P54 - R | ACCATTAGATTGAGACACTATTAG | CSLOX9          |  |
| P55 - F | AGTGCCTTATACCTTGCTCT     | 0-1 0)///0      |  |
| P56 - R | TTCTAGATTGAGATACTGTTGG   | CsLOX10         |  |
| P57 - F | AGGATAATCATGGAACAACGTG   | 0-1-0)////      |  |
| P58 - R | GCTCCGTTGAACGATAATTTG    | CsLOX11         |  |
| P59 - F | TATCAAGAGTGGATGGAC       | $\beta$ -CsLOX1 |  |
| P60 - R | CCATTTCGTCATTCTTGTA      |                 |  |
| P61 - F | ATGCAAGACAGTGTTGCAC      |                 |  |
| P62 - R | GTGGAAGGTTTACTCCTTC      | p-USLUX2        |  |
| P63 - F | AACATTTTCAGGTGTTAACC     | $\beta$ -CsLOX3 |  |
| P64- R  | AAAGACCTTCTTCAGCATC      |                 |  |
| P65 - F | GTCAAAGAGAGTTTGATAAATGG  |                 |  |
| P66 - R | GGATCCTCAACAGCCATAC      | P-USLUX5        |  |
| P67 - F | ATGGTGACCCTGGGGCTTTC     | β-CsLOX9        |  |
| P68 - R | TGTAGTGACATAGTGGAGCTGG   |                 |  |
| P69 - F | CATGGTCTTGGTGGATAGAG     |                 |  |
| P70 - R | ACCCATATAACAATGGTGCATG   | ₽-CsLOX10       |  |
| P71 - F | TTGGCATCGTTGAGGGTCT      | GADPH           |  |

| P72 - R | CAGTGGGAACACGGAAAGC                                  |          |  |
|---------|------------------------------------------------------|----------|--|
| P73 - F | CTAAACACATTATGAGAGCCAC                               | CsLOX3   |  |
| P74 - R | GGCTCTTCCGATGTGCATAT                                 |          |  |
| P75 - F | CTCAACTTTGGGCAGTATCC                                 | 0.1010   |  |
| P76 - R | GCTTCATTTATGCTACTCACAC                               | CSLOX6   |  |
| P77 - F | ATTTCTCTTCTCTCACTCTCAC                               | CsLOX7   |  |
| P78 - R | GCAACACAACATTCCTTCCG                                 |          |  |
| P79 - F | GGTTGATCCTGCCAGTAGTC                                 | 18S rRNA |  |
| P80- R  | CTACGGAAACCTTGTTACGAC                                |          |  |
| P81 - F | GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTTGCAGACTCAAACGCA    |          |  |
| P82- R  | GGGGACCACTTTGTACAAGAAAGCTGGGTAATTGAGATGCTATTAGGAACTC | USLUX2   |  |
| P83 - F | GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCTACCAACCCTCTTCC     | CsLOX9   |  |
| P84- R  | GGGGACCACTTTGTACAAGAAAGCTGGGTGATTGAGACACTATTAGGAATTC |          |  |