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Supplementary Figures and Legends 
 

 
Figure S1: Representative morphology of iPSCs maintained in StemFlexTM, Related to 
Figure 1. Images of a human iPSC line (MBE2906), from day 0 to day 7, at different 
magnifications (x4, 10 and 20). Cells were cultivated using an automated platform, on 
Vitronectin and in StemFlexTM; medium was changed every 2-3 days. Images are representative 
of all cell lines. Scale bars: 100 µM. 
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Figure S2: Differentiation of iPSCs into the three germ layers, Related to Figures 1, 2 and 
3. Embryoid bodies of iPSCs maintained in (A) StemFlexTM and (B) TeSRTM-E8TM showing 
differentiation into the three germ layers by immunostaining with NESTIN, SMA, AFP and with 
DAPI nucleic acid counterstain. Bottom right: representative negative isotype control with its 
corresponding DAPI. Scale bars: 20 µM. 
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Figure S3: Copy Number Variation Analysis, Related to Figures 1 and 2. (A) Representative 
analysis of iPSCs with a normal virtual karyotyping (FSA0005). Anomalies were revealed in the 
iPSC lines MBE2899 (B), MBE2901 (C) and TOB0218 (D). Each panel shows the B allele 
frequency (BAF) and the log R ratio (LRR). BAF at values others then 0, 0.5 or 1 indicate an 
abnormal copy number. Similarly, the LRR represents a logged ratio of “observed probe 
intensity to expected intensity”. A deviation from zero corresponds to a change in copy number.  
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Figure S4: Characterisation of WAB0450 and WAB0069, Related to Figure 3. (A-F) Copy 
Number Variation Analysis of WAB0450 (A-C) and WAB0069 (D-F) in original fibroblasts (A, 
D), iPSCs at p8 in StemFlexTM (B, E) and TeSRTM-E8TM (C, F). Each panel shows the B allele 
frequency (BAF) and the log R ratio (LRR).  
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Figure S5. Expression of key pluripotency gene markers in the two media, Related to 
Figure 3 and Tables S1-2. (A) Cells in StemFlexTM (the pool of WAB0450SF and WAB0069SF 
cells) and TeSRTM-E8TM (the pool of WAB0450E8 and WAB0069E8) expressing pluripotency 
markers are displayed in two dimensional tSNE plots. The majority of cells express common key 
pluripotency markers, such as POU5F1 (OCT4), NANOG, SOX2, and OTX2. For all 16 genes 
shown in the figure, the number of expressing cells are even between the two media. (B) Gene 
set activities calculated by applying AUCell approach for three sets of known markers shown in 
Table S2. The regulation activity, ranging from 0 to 1, is the enrichment of the genes in the input 
gene set across the expression ranking of all genes in a cell. The three sets include "Core 
pluripotency markers" (Core), "Naïve pluripotency markers" (Naïve), and "Other pluripotency 
markers" (Other).  
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Figure S6. Distribution of NANOG in all cells, Related to Figure 3 and Tables S1-2. The 
percentage of cells expressing NANOG is at 75.5th percentile of all 16,270 reliably detected 
genes, higher than 13,349 genes.  
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Figure S7: Single-cell subpopulation analysis of WAB0450 and WAB0069 in StemFlexTM 
and TeSRTM-E8TM media, Related to Figure 3 and Tables S3-6. Subpopulations were 
identified by our unsupervised clustering algorithm so that a subpopulation consist of cells that 
are more similar to cells within the subpopulation compared to cells in other subpopulations. For 
each sample, a dendrogram tree with branches colored by subpopulations and the numbers of 
cells in each subpopulation are shown (panels A, C, E, and G for WAB0450SF, WAB0450E8, 
WAB0069SF and WAB0069E8, respectively). The distribution of cells in two first PCA 
principal components are shown as scatter plots accompanied by density plots on the right and 
top axes (panels B, D, F, and H for WAB0450SF, WAB0450E8, WAB0069SF and 
WAB0069E8 respectively).  
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Figure S8. Subpopulation analysis of all cells in all four samples, Related to Figure 3 and 
Tables S3-6. (A) Dendrogram showing clustering results for more than 20,000 cells from the 
merged expression data of all four samples. The three clusters are shown by different colored 
branches. (B) The percent of cells distributed to each of the three clusters for each sample.   
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Figure S9. Predicted cell cycle stage for every cell in all combinations, Related to Figure 3 
and Tables S3-6. WAB0450 and WAB0069 cells in StemFlex (SF) and TeSR-E8 (E8) showed 
no significant difference in proportions in the different cell cycle phases (G1, G2M, S).  
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Figure S10: Quality control statistics for the single cell RNA sequencing of 21,597 human 
iPSCs, Related to Figure 3. (A)The library size (total mapped reads) range for each cell in each 
of the four samples. (B) Expression range of all genes detected. The range is greater than 6 
orders of magnitudes. Genes detected in fewer than 0.1% of all cells were removed. (C) Percent 
reads mapped to mitochondrial genes as an indicator of cell conditions. The x-axis shows four 
samples, and the y-axis shows reads mapped. Cells with mitochondrial reads exceeding 3 x 
median absolute deviation (MAD) or mitochondrial reads above 20% were removed. (D) Percent 
reads mapped to ribosomal genes. We removed cells with over 3 x MAD or over 50% reads 
mapped to ribosomal genes.   
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Supplemental Tables added as Supplemental Data 
 
Table S1. Reactome and DE genes. Differential expression and functional enrichment 
analysis (Reactome differences in SF and E8; WAB0069 reactome differences; WAB0450 
reactome differences; DE genes in SF and E8_2lines), Related to Figures 3, S5 and S6. 
 
Table S2. Comparative summary of levels of expression of key genes involved in 
pluripotency and metabolism in StemFlexTM and TeSRTM-E8TM media (pluripotency; 
proliferation and survival; metabolism), Related to Figures 3, S5 and S6. 
 
Table S3. Pathway analysis subpopulations, Related to Figures 3, S7-S9. 
 
Table S4. Comparing subpopulations between four samples (same cell line or different cell 
lines) by a machine-learning classification approach, Related to Figures 3, S7-S9. 
 
Table S5. Percent positive cells by subpopulations, Related to Figures 3, S7-S9. 
 
Table S6. Pathway Enrichment & Gene Markers, Related to Figures 3, S7-S9. 
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Transparent Methods 

Ethics. All experimental work performed in this study was approved by the Human Research 
Ethics committees of the Royal Victorian Eye and Ear Hospital (11/1031H) and University of 
Tasmania (H0014124) with the requirements of the National Health & Medical Research 
Council of Australia (NHMRC) and conformed with the Declarations of Helsinki (McCaughey et 
al., 2016). 
 
Fibroblast Culture. Human skin biopsies were obtained from subjects over the age of 18 years. 
Fibroblasts were cultured in DMEM with high glucose, 10% fetal bovine serum (FBS), L-
glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin (all from Thermo Fisher Scientific, 
USA). All cell lines were mycoplasma-free (MycoAlert mycoplasma detection kit, Lonza, 
Switzerland). Fibroblasts at passage (p) 8-10 were used for reprogramming. 
 
Generation, selection and maintenance of iPSCs. A TECAN liquid handling platform was 
used to cultivate cells, as described in (Crombie et al., 2017). iPSCs were generated by 
nucleofection (AmaxaTM NucleofectorTM) with episomal vectors expressing OCT-4, SOX2, 
KLF4, L-MYC, LIN28 and shRNA against p53 (Okita et al., 2011) in feeder- and serum-free 
conditions using TeSRTM-E7TM medium (Stem Cell Technologies, Canada) as described 
previously (Crombie et al., 2017). The reprogrammed cells were maintained on the automated 
platform using TeSRTM-E7TM medium, with daily medium change. Pluripotent cells were 
selected by sorting anti-human TRA-1-60 Microbeads using a MultiMACS (Miltenyi, Germany) 
as described in (Crombie et al., 2017). Cell number was determined and cell were subsequently 
plated onto vitronectin XFTM (Stem Cell Technologies) in TeSRTM-E8TM medium (Stem Cell 
Technologies) or StemFlexTM medium (Thermo Fisher Scientific). Subsequent culturing was 
performed on the automated platform using TeSRTM-E8TM or StemFlexTM medium, and medium 
was changed every two days. Passaging was performed weekly on the automated platform using 
ReLeSRTM (Stem Cell Technologies) onto vitronectin XFTM coated plates as described in 
(Crombie et al., 2017). 
 
iPSC quality control. TRA-1-60 quantifications were performed on a MACSQUANT 
immediately prior to passaging to fresh plates as described (Crombie et al., 2017). Pluripotency 
was assessed by expression of the markers OCT3/4 (sc-5279, Santa Cruz Biotechnology, USA), 
TRA-1-60 (MA1-023-PE, Thermo Fisher Scientific, USA). Copy number variation (CNV) 
analysis of original fibroblasts and iPSCs was performed using Illumina HumanCore Beadchip 
arrays. CNV analyses were performed using PennCNV (Colella et al., 2007) and QuantiSNP 
(Wang et al., 2007) with default parameter settings. Chromosomal aberrations were deemed to 
involve at least 20 contiguous single nucleotide polymorphisms (SNPs) or a genomic region 
spanning at least 1MB (Colella et al., 2007)(Wang et al., 2007). The B allele frequency (BAF) 
and the log R ratio (LRR) were extracted from GenomeStudio (Illumina, USA) for 
representation. Day 14 embryoid bodies (EBs) were plated on 24-well plates coated with 0.1% 
gelatin to differentiate for 7 days cultured in differentiation medium: DMEM, 20% FBS, 1% 
Non-Essential Amino Acid solution, 0.1mM 𝛽-mercaptoethanol and 1% Pen-strep. Germ layer 
differentiation was assessed by immunochemistry. For immunochemistry, cells were fixed with 
4% paraformaldehyde, permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) and blocked with 
2% normal goat serum (Life Technologies). Standard immunostaining procedures were 
performed using the following primary antibodies: mouse anti- Nestin (Abcam, AB22035) for 
ectoderm; mouse anti- Smooth Muscle Actin (SMA, clone 1A4, R&D Systems, MAB1420) for 
mesoderm; mouse anti- Alpha-fetoprotein (AFP, Merck Millipore, ST1673) for endoderm. 
Secondary antibody used was Alexa Fluor 488 goat anti-mouse IgG (ThermoFisher, A11029). 
Nuclei were counterstained with DAPI (Sigma Aldrich). 
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Flow cytometry. The intracellular and extracellular immunolabelling of iPSCs and FACS 
analyses were all similarly performed as previously described (O’Brien et al., 2017). Briefly, 
cells grown in culture flasks or dishes were washed twice with 5 mL PBS -/- (Gibco, Life 
Technologies) and harvested using 1-2ml TrypLE Express (Gibco, Life Technologies) incubated 
for 5 minutes at 37°C. The cells were washed twice with PBS supplemented with 10% v/v FBS, 
which neutralises the TrypLETM Express and help with cell viability before staining. The cells 
were resuspended in 10% v/v PBS -/- and aliquoted into individual 5ml FACs tubes for single 
extracellular labelling with primary monoclonal antibodies Anti-GPR64 (CSIRO, CSTEM7), 
Anti-CDCP1 (CSIRO, CSTEM26), Anti-F11R (CSIRO, CSTEM27), Anti-DSG2 (CSIRO, 
CSTEM28), Anti-CDH3 (CSIRO, CSTEM29), Anti-NLGN4X (CSIRO, CSTEM30), and Anti-
PCDH1 (CSIRO, CSTEM31) and the stem cell markers TRA-1-60 and SSEA3 (both Merck 
Millipore). Primary and secondary antibodies were incubated for 20 minutes on ice and washed 
twice with PBS. The fluorescent secondary antibody goat anti-mouse IgG Alexa FluorTM 488 
(AF488, Thermo Fisher Scientific) was used to counterstain the primary antibodies. Non-cross 
reacted secondary antibodies were washed away with PBS and cells were resuspended with PBS 
containing 0.1% v/v propidium iodide (Sigma-Aldrich, USA). The propidium iodide was used to 
exclude non-viable cells during FACS analysis. For intracellular staining with Anti-OCT3/4 
(Merck Millipore), cells were fixed with 4% paraformaldehyde for 30 minutes at RT, 
permeabilised with 0.01% Triton-X100 (Sigma-Aldrich) for 5 minutes and blocked with 10% 
Goat Serum (Thermo Fisher Scientific) for 30 minutes at RT after two washes with PBS. The 
fixed cells were labelled with Anti-OCT3/4 for 20 minutes at RT and washed twice with PBS. 
The secondary conjugated goat anti-mouse IgG1 AF488 fluorophore (Thermo Fisher Scientific) 
was used for the cross-reaction with Anti-OCT3/4 antibodies. The washed cells were finally 
resuspended in PBS for FACS analysis using BDTM Biosciences LSR II cell analyzer.   
 
Single cell RNA sequencing. Cells were harvested using ReleSRTM, colonies were dissociated 
into single cell suspension. Cells were counted and assessed for viability with Trypan Blue using 
a Countess II automated counter (Thermo Fisher Scientific), then pooled at a concentration of 
391-663 cells/µL (3.91x10^5-6.63x10^5 cells/mL). Final cell viability estimates ranged between 
85-97%. Cells were partitioned and barcoded using high-throughput droplet 10X Genomics 
ChromiumTM Controller (10X Genomics, USA) and the Single Cell 3' Library and Gel Bead Kit 
(V2; 10X Genomics; PN-120237). The estimated number of cells in each well in the 
ChromiumTM chip was optimized to capture approximately 8000-10,000 cells per cell pool. GEM 
generation and barcoding, cDNA amplification, and library construction were performed 
according to standard protocol. The resulting single cell transcriptome libraries were pooled and 
sequenced on an Illumina NextSeqTM500, using a 150 cycle High Output reagent kit 
(NextSeqTM500/550 v2; Illumina) in standalone mode as follows: 26bp (Read 1), 8bp (Index), 
and 98 bp (Read 2).  
  
Bioinformatics mapping of reads to original genes and cells. Raw sequencing data (Illumina 
BCL files) were processed directly with the cellranger pipeline v2.0.0 (mkfastq, count, aggr) 
using the default parameters, except for the estimated cell number set at 5,000 cells. The reads 
were aligned to the homo sapiens GRCh38p10 Cell Ranger 2.0 reference genome using the 
STAR software (Dobin et al., 2013). Cell barcodes and unique molecular identifiers (UMI) were 
filtered using default parameters in the cellranger count processing. Reads with > 90% base 
calling accuracy were kept and UMI sequences were corrected based on high-quality sequenced 
UMIs with Hamming distance 1. A gene count expression matrix for four samples was generated 
using the cellranger aggr function.We have made available both the raw and normalised data on 
ArrayExpress under accession E-MTAB-6524. 

Combining individual and cell SNP genotypes to assign cells to samples. We developed a 
new computational pipeline to combine SNP-chip data with scRNA SNP calling data in 
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individual cell to de-multiplex mixture of cells from different samples pooled into one 
sequencing reaction. Two cell lines, including WAB0450 and WAB0069 in TeSRTM-E8TM and 
StemFlexTM media, were genotyped separately by Infinium HumanCore-24 v1.1 BeadChip assay 
(Illumina). GenomeStudioTM V2.0 (Illumina) was used for SNP genotype calling of the 
BeadChip data. The full genotype report files were reformatted into Plink map, fam, and lgen 
files using custom Shell script and were then converted into variant calling format (vcf) using 
Plink 2 (Chang et al., 2015). For each sorted, indexed vcf file (separated by chromosomes), a 
strand fixing step was performed using bcf fixref function (Li, 2011). To increase the genome 
coverage of the BeadChip genotype data (total 306,670 SNPs), we performed imputation to the 
whole genome. Prior to imputation, Eagle V.2.3.5 was used for haplotype phasing the strand-
fixed genotype vcf files (Loh et al., 2016). The phased data were imputed based on the 1000 
genome phase 3 reference panel (2,535 samples) using the minimac3 program (Fuchsberger, C 
Abecasis, GR Hinds, DA, n.d.). Single-cell SNPs were called from the mapped RNA BAM files 
using Freebayes V1.0.2 (Garrison and Marth, 2012). The likelihood that a cell originated from a 
sample is the cumulative likelihoods of variants identified in each cell. We applied Demuxlet 
software (Kang et al., 2017) to calculate posterior probability of a genotype g identified for a cell 
based on scRNA data given the DNA data from the imputed BeadChip genotypes. Each cell was 
assigned to the sample with the highest likelihood. 
 
scRNA data filtering and normalisation. Sequencing reads from four samples were pooled and 
normalised at two levels - between samples and between cells. Briefly, to account for potential 
systematic measurement variation in total read depth per sample, we utilised unique information 
in read unique molecular identifiers (UMIs), sample indexes, and cell barcodes to perform 
random binomial sampling of reads. From all reads mapped to each gene in each cell, a subset of 
reads was randomly drawn from the binomial distribution, at the rate Ratei, (Readsg, Ratei). Ratei 
was determined based on: total reads per sample, number of cells per sample, and fraction of 
mapped reads in a sample. This method has been shown to be less biased than other global-
scaling methods and can equalise between sample sequencing depth while maintaining original 
read distribution (Zheng et al., 2017). The total mapped reads per cell may be affected by 
sequencing artefacts such as dropouts (RNA molecules not amplified at the initial PCR 
amplification round), PCR duplicates, or high amount of ribosomal RNA. Cells with high 
proportion of reads mapped to mitochondrial are likely cells suffering from more stress due to 
technical cell handling during library preparation and cell sorting. Transcriptional changes in 
those cells, therefore, do not reflect the biological changes of interest. After sample aggregation 
and between sample normalisation, cells and genes were filtered to remove potential technical 
noise in the data, ensuring subsequent analysis was not affected by cells that were inconsistently 
outside the threshold of three times the Median Absolute Deviation (MAD), which is a more 
robust method to detect outlier than using standard deviation around the mean (Leys et al., 2013). 
We calculated MAD for total mapped reads per cell, total genes detected in a cell, expression of 
mitochondrial, and expression of ribosomal genes for every cell in the data set (Figure S10). 
Using the outside 3 x MAD range, we found 163 cells with low or high total mapped reads, and 
456 cells by high mitochondrial gene expression and 57 cells high ribosomal genes. After 
removing cells, we subsequently removed 16,459 genes that were detected in less than 0.1% of 
all remaining cells (Figure S9B). Following sample normalisation and cell-gene filtering, a 
pooling and deconvolution method was implemented to normalise variation in read depth 
between cells (Lun et al., 2016). The method sequentially and randomly pools 40, 60, 80 and 100 
cells to form pseudo cells, in which the expression values of a gene across cells are summed. A 
size factor was calculated for each pool based on the summed expression values. The pool size 
factors then deconstructed into the size factors of individual cells by QR decomposition. This 
approach alleviates the statistical challenge in a dataset with an inflation of zero count measures, 



15 

including stochastic zero expression of genes that are lowly expressed (higher dropout rates), or 
genes that are turned on/off in different subpopulations of cells. 

Differential expression and functional enrichment analysis. We compared gene expression 
for cells in TeSRTM-E8TM and StemFlexTM media in three experimental designs: the pool of two 
cell lines, WAB0069 alone, and WAB0450 alone. General linear model and negative binomial 
test were implemented to identify differentially expressed (DE) genes as described in the DESeq 
package (Anders and Huber, 2010). In each condition, each cell was considered as one biological 
replicate. Prior to estimating dispersion and normalization factors, a pseudo count of one was 
added to the UMI count expression matrix, which was subtracted post DE test to adjust for 
estimated fold-change. Significantly differentiated genes were those with p-adjusted values less 
than 5% (Benjamini-Hochberg adjustment for false discovery rate). To identify functional 
pathways different between cell lines and media, we applied Reactome functional network 
analysis, a reliably curated functional network (Wu et al., 2014), to find enriched pathways in 
DE gene lists. We predicted cell cycle stage for every cell, and found no differences in cell cycle 
effects in all conditions (Figure S9).Therefore, we performed normalisation between cells and 
opted not to regress out cell cycle genes to maintain biological variation. To estimate the activity 
of three gene groups as listed on Table S2, we applied AUCell method (Aibar et al., 2017).  The 
regulation activity, ranging from 0 to 1, is the enrichment of the  genes in the input gene set 
across the expression ranking of all genes in a cell. The three sets include "core pluripotency 
markers", "Naïve pluripotency markers", and "Other pluripotency markers". A cell with a high 
gene set score suggests that the gene set actively regulate transcriptional state in the cell. As 
shown in Figure S5, no difference was observed in the activity of the three gene sets in the four 
samples, suggesting that the StemFlex and E8 equally maintain pluripotency states in the cell. 
 
Statistical analysis. Data are expressed as mean ± standard error of the mean (SEM). All 
statistical analyses and graphical data were generated using Graphpad Prism software (v6, 
www.graphpad.com). Statistical methods utilised were two-tailed t-test and two-way ANOVA 
test followed by Sidak’s multiple comparisons test. Statistical significance was established from 
p<0.05. 
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