- 1 The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and
- 2

RNA homeostasis in chloroplasts

3

ShouDong Zhang^{1,2}, Huoming Zhang², Yiji Xia^{1,3}, Liming Xiong²

⁴ ¹ Department of Biology, Hong Kong Baptist University, Hong Kong; ² Division of Biological and

5 Environmental Sciences and Technology, King Abdullah University of Science and Technology (KAUST),

6 Thuwal 23955-6900, Saudi Arabia; ³Partner State Key Laboratory of Agrobiotechnology, Chinese

7 University of Hong Kong, Hong Kong

8

9 Supplementary data

		1st batch 4-week-old (LD)			2nd batch	(2 biological r	Nishimura et al (2013)	
proteases symbol					2-week-old (LD)			6-week-old (SD)
	accession	clpc1/WS	∆N/WS	CP/WS	clpc1/WS	ΔN/WS	CP/WS	clpc1-1/wt
CLPP1	ATCG00670.1	4.7±0.3	3.2±0.1	1.0±0.2	1.5±0.0	1.2±0.2	1.0±0.0	1.2
ClpR3	AT1G09130.1	4.6±1.1	2.5±0.6	0.7±0.1	1.8±0.0	1.4±0.1	0.7±0.2	1.4
ClpT1	AT4G25370.1	4.4±0.3	2.8±0.2	0.9±0.1	1.9±0.7	1.2±0.4	1.0±0.0	2.1
CLPR1	AT1G49970.1	4.1±1.5	2.3±0.5	0.9±0.1	2.3±0.9	1.5±0.4	0.7±0.0	1.9
CLPC2	AT3G48870.2	4.0±1.1	3.1±0.5	1.4±0.1	1.5±0.1	1.7±0.0	0.8±0.0	2.5
CLPR2	AT1G12410.1	3.8±0.3	2.7±0.1	0.8±0.1	2.4±0.7	1.5±0.4	0.8±0.1	2.1
CLPP4	AT5G45390.1	3.8±0.2	2.6±0.2	0.7±0.1	2.0±0.3	1.6±0.3	0.7±0.1	1.3
CLPP6	AT1G11750.1	3.4±0.3	2.9±0.3	0.9±0.1	1.7±0.5	1.7±0.3	0.7±0.1	3.6
CLPP3	AT1G66670.1	3.3±0.3	2.6±0.2	0.9±0.2	1.5±0.2	1.3±0.1	0.7±0.3	1.0
CLPR4	AT4G17040.1	3.1±1.0	2.0±0.4	0.9±0.1	2.0±0.2	1.6±0.1	0.7±0.2	1.5
ClpT2	AT4G12060.1	3.0±0.2	2.1±0.1	0.9±0.1	1.9±0.2	1.5±0.1	1.1±0.1	1.4
CLPB3	AT5G15450.1	2.3±0.9	1.6±0.2	1.1±0.1	2.3±0.3	1.5±0.1	0.7±0.0	3.4
PREP1	AT3G19170.1	4.0±0.5	2.5±0.2	0.9±0.0	1.7±0.1	1.7±0.1	0.6±0.0	1.8
DegP2	AT2G47940.1	3.6±1.1	2.7±0.5	1.2±0.2	1.3±0.2	1.4±0.2	1.0±0.3	2.5
LON	AT1G75460.1	2.5±0.0	2.7±0.1	1.1±0.0	3.0±0.1	2.3±0.1	1.3±0.1	n.a
FTSH12	AT1G79560.1	2.0±0.1	2.0±0.2	0.9±0.0	1.5±0.1	1.9±0.0	1.1±0.0	1.2
AraSP	AT2G32480.1	1.4±0.4	1.2±0.2	1.0±0.0	2.0±0.1	1.6±0.2	1.1±0.1	1.4
DegP1	AT3G27925.1	0.7±0.1	0.9±0.0	1.0±0.0	0.8±0.0	0.8±0.0	1.2±0.1	n.a

10 Table S1. Proteases accumulation in seedlings of different genotypes

12 Notes:

11

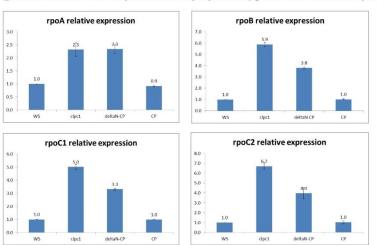
13 1. WS: wild type; *clpc1*: the *clpc1* mutant; ΔN , N-terminal (1-93 amino acid) deleted CLPC1

complementary line; CP, full-length CLPC1 complementary line, LD, long-day; SD, short-day.

- The first batch dataset was from 4-week-old seedlings with three technical replicates. The second
 batch was from 2-week-old seedlings with two biological replicates and each biological replicate
 included 3 technical replicates.
- 18 3. Data are means and standard errors of protein abundance relative to the wild type (WS).
- 19 4. Data from Nishimura et al (2013) in [27].
- 20

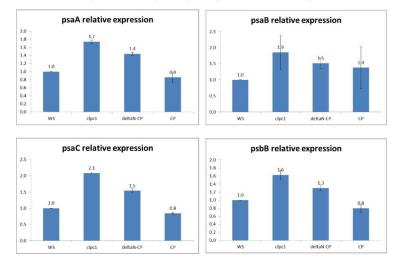
Table S2. Primers used in the study.

CLPC1-F	CAATCGACTCCACCGTCTTT
CLPC1-R	TCCCATAAACCCTTGCATTCT
CLPC2-F	GAGGGTGTGTGATGAAGATGAG
CLPC1-R	TGTCAGAAGAGGTGCTTGTAAA
pClpP-F	CGACCCGATGTACAGACAATA
pClpP-R	TAGCGTGAGGGAATGCTATAC
ACT2-F	TGCTTATGTCGCTCTTGACTAC
ACT2-R	CTCTCAGCTCCGATGGTTATG
rbcL-F	GTGTTGGGTTCAAAGCTGGT
rbcL-R	CATCGGGTCCACACAGTTGTC
accD-F	TGTGGATTCAATGCGACAAT
accD-R	TTTTGCGCAGAGTCAATACG
atpA-F	CGGAAATCTTACCTCGACCA
atpA-R	ATGGGTGACGGTTTGATGAT
atpH-F	ATCCACTGGTTTCTGCTGCT
atpH-R	TTCCTTCTGCCTCAGGTTGT
atpl-F	ATTGGCAAATAGGGGGTTTC
atpl-R	GCCGTCGATTGGAATTGTTT
ccsA-F	CACAATAACTGCGCCAAGTG
ccsA-R	AACAGAGCGCCATAGCCTAA
cemA-F	TTTGCCCTGGTTGATCTCTC
cemA-R	TTGGATCGTTTCTTTGTGGA
ndhB-F	CCAGAAGAAGATGCCATTCA
ndhB-R	TCATCAATGGACTCCTGACG
ndhl-F	TTTGCCTGTTGTTGATTGGA
ndhl-R	ATTGGTAAACGACCCAAAGC
petA-F	CAGAGGGCGAATCCATTAAA
petA-R	GCCAAAACAACCGATCCTAA
petB-F	ATTGGGCGGTCAAAATTGTA
petB-R	AGACGGCCGTAAGAAGAGGT
psaA-F	GCCAAGAAATCCTGAATGGA
psaA-R	CATCTTGGAACCAAGCCAAT
psaC-F	GAGCATGCCCTACAGACGTA
psaC-R	CAGGCGGATTCACATCTCTT
psbL-F	CAATCAAATCCGAACGAACA
psbL-R	GAAATAATTCGAAAATAAAACAGCAA
rpL14-F	AGCGGGGCTAGAGAATTGAT
rpL14-R	ACTGCGGCATTGTCATCATA
rpL20-F	TCGGAGGCGTAGAACAAAAC
rpL20-R	CGATGAGCCGAAACTAAAGC
rpoA-F	GCGATGCGAAGAGCTTTACT
rpoA-R	CCAGGACCTTGGACACAAAT
rpoB-F	AAAAAGCACGGATACGGATG
rpoB-R	CTTCTTGAATGCCCCGATTA
rpoC1-F	TCGGATACGAAGATATCAAATGG
rpoC1-R	TTAGTTATGGGCCTAGCAAAAGA
	TAGTA GOOD AGOAAAGA

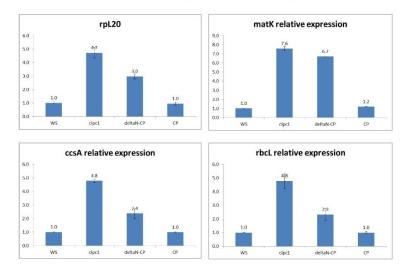

rpoC2-F	ATGGAGCCCGTAAAGGAGTT
rpoC2-R	CGTCTGCTAAGACACGACCA
rpS18-F	CAAGCGATCTTTTCGTAGGC
rpS18-R	AAAGCTCACTCTATTCACCCGTCT
ycf2-F	TAGCCCTCGGTCTATTGGTG
ycf2-R	GGATCCACTTTTTGGGGAAT
ycf3-F	TCCAATACTCAGCGGCTTG
ycf3-R	TTCGGGCATTAGAACGAAAC
ycf5-F	GCGAACAACCGGAGCTATTA
ycf5-R	CCGACATGCGTATTTTTGATT
23s rRNA-F	GGGCGACTGTTTACCAAAAA
23s rRNA-R	TTACCCGACAAGGAATTTCG
16s rRNA-F	CGGTATCTGGGGAATAAGCA
16s rRNA-R	GATTTGACGGCGGACTTAAA
atpB-F	CCGTTTCGTACAAGCAGGAT
atpB-R	CGGGGTCAGTCAAATCATCT
atpE-F	TCCACAAGAAGCTCAGCAAA
atpE-R	GTGTCCGAGCTCGTCTGAG
atpF-F	GCTCCTTCACGCAGTTCTTC
atpF-R	TACTTGGGTCACTGGCCATC
matK-F	ATCCTTTGTTGCCAGAATGC
matK-R	TTTTTCTACGCAAGCGGTCT
ndhA-F	TTGACGCCACAAATTCCAT
ndhA-R	TTAGGTGGTCTGCGAGCTG
ndhD-F	TGGAGAATGGGAATAGATGGAC
ndhD-R	TCCCGAGAAGAAAATGATCCTA
ndhK-F	GCAGTCCGCATATTGGAAAT
ndhK-R	CGTGGGACGATACTGGACTT
petD-F	TCCTTTTGCAACTCCTTTGG
petD-R	CCGCTGGTACTGAAACCATT
psaB-F	GGACCCCACTACTCGTCGTA
psaB-R	ATTGCTAATTGCCCGAAATG
psbA-F	GAGCAGCAATGAATGCGATA
psbA-R	CCTATGGGGTCGCTTCTGTA
psbB-F	CGTGCGACTTTGAAATCTGA
psbB-R	TAGCACCATGCCAAATGTGT
psbC-F	ACTTCCCCACCTAGCCACTT
psbC-R	AGCCCAAAACTGCAGAAGAA
psbD-F	CACAAATCTTTGGGGTTGCT
psbD-R	CCATCCAAGCACGAATACCT
rpL16-F	TGTACGACGTGGTGGAAAA
rpL16-R	GCATTTTTGATGCCGCTATT
rpL22-F	AAAGCTGAGGTGAACCAAGG
rpL22-R	TGTCCCATAGGCCTCCACTA
rpL32-F	CTCGAAAAAGCGTATTCGTAAAA
rpL32-R	TGAAAAAGCTTTCAACGATGTC
rpS2-F	GGGCTCGGTGTCATTATGTT

rpS2-R	TCTTCAACACAGCTGCATCC
rpS4-F	CGATTGGGTATGGCTTTGAC
rpS4-R	ATGGTTTGGCAATTCCTCAG
rpS8-F	CGACCGGGTCTACGAATCTA
rpS8-R	ATTTCTCCGCCGATTCTTT
rpS14-F	AATCCCCACCGCGTAATAGT
rpS14-R	AACATGCCTGAACCATTTCC

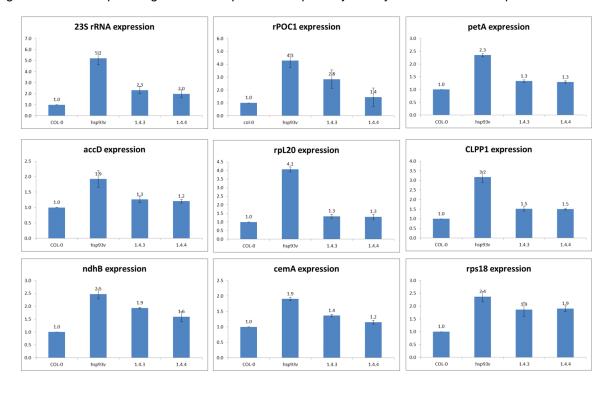
23 Table S3. Peptides identified of CLPC1 in SVR7-GFP CO-IP experiment

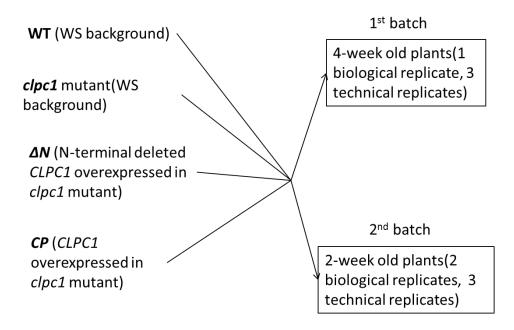

accession No.	Protein	probability	percentage of	unique	total	Peptide	Mascot	Modifications identified
gene ID	name		total spectra	spectra	spectra	sequence	lon score	by spectrum
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	HIEKDPALER	18.5	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	HIEKDPALER	26.6	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	RIIGQDEAVK	37.4	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	RIIGQDEAVK	37.5	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	VIMLAQEEAR	50.2	Oxidation (+16)
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	VLENLGADPSNIR	30.4	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	VLENLGADPSNIR	48.5	

- 1 Figure S1. Relative expression levels of sense transcripts in the *clpc1* mutant and its complementation
- 2 lines. Shown are means and SD from 3 replicates. qRT-PCR was conducted using gene-specific
- 3 primers (Table S2) normalized against the expression of the ACTIN2 gene. WS, the wild type; clpc1, the
- 4 *clpc1* mutant; ΔN-CP, *clpc1* expressing N-terminus-truncated CLPC1; CP, *clpc1* expressing the
- 5 full-length wild-type CLPC1.



PEP (plastid encoded DNA-dependent RNA polymerase) genes relative transcript level


Chloroplast encoded photosystem gene relative transcript level


Other chloroplast encoded gene relative transcript level

2 Figure S2. Over-expressing CLPC2 in *clpc1* mutant partially or fully restored the chloroplast RNA level.

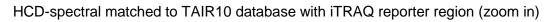
1 Figure S3. Schematic diagram to show the plant materials we used.

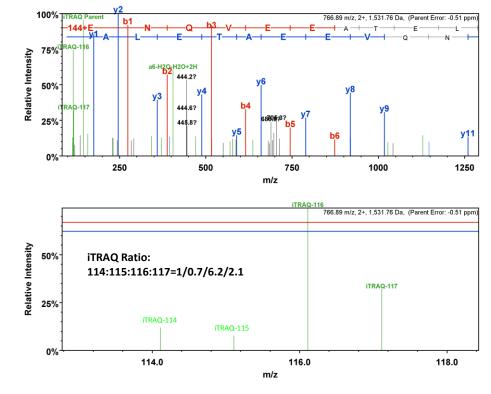
Note: Plant materials(all the plant materials used for proteomics are from Dr. Hsou-min Li (Chu & Li, 2012), and were grown at 21 degree with 16h light and 8h dark)

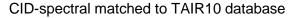
2

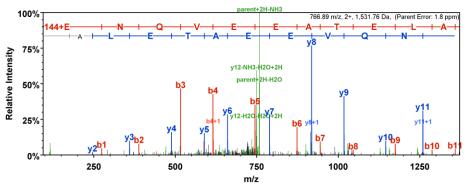
3 Supplementary dataset 1. Spectral examples of 4 proteins from our iTRAQ-based

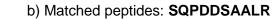
4 proteomics analysis

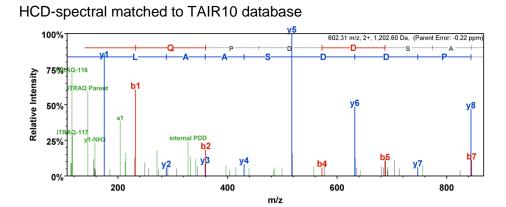

5 four proteins with each having two peptides and each peptide having two spectra (HCD and CID

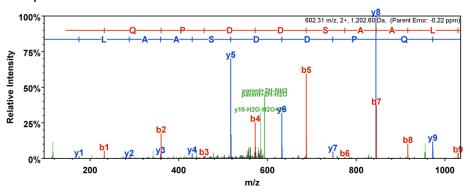

6 spectra) were shown below. The protein quantitation value was obtained by the weighted ratios

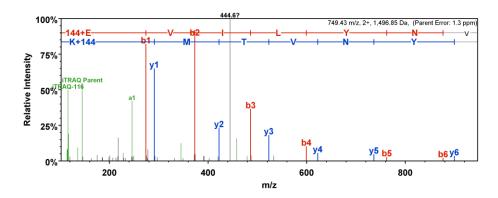

7 of iTRAQ reporters from all identified peptides that belonged to the protein (enlarged iTRAQ


8 reporter region was shown in the first spectral).

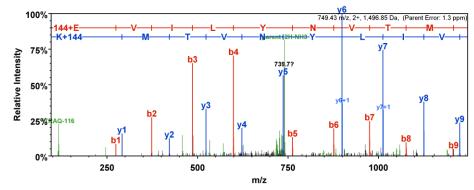

- 10 1. AT3G53700.1 [| Symbols: MEE40 | Pentatricopeptide repeat (PPR) superfamily protein |
- 11 a) Matched peptides: ENQVEEATELAR



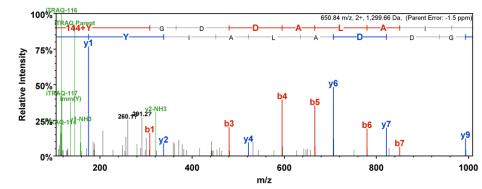




CID-spectral matched to TAIR10 database

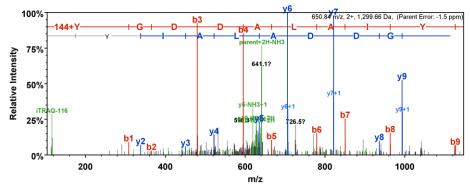


- 1 2. AT4G16390.1 [| Symbols: SVR7 | pentatricopeptide (PPR) repeat-containing protein
- 2 a) Matched peptides: EVILYNVTMK
- 3 HCD-spectral matched to TAIR10 database

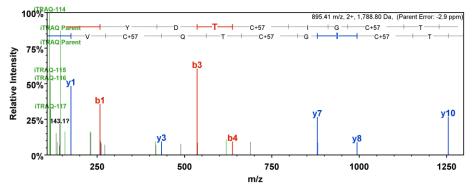


5

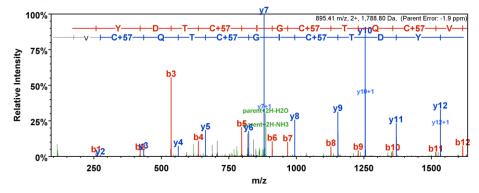
CID-spectral matched to TAIR10 database



b) Matched peptides: YGDDALAIYR

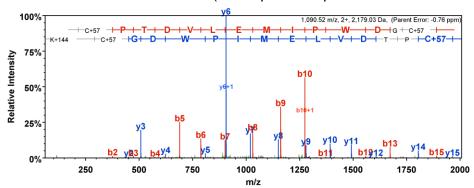


HCD-spectral matched to TAIR10 database

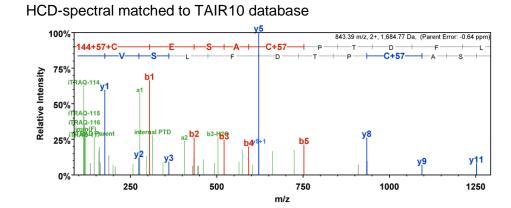


- ATCG01060.1 [| Symbols: PSAC | iron-sulfur cluster binding;electron carriers;4 iron, 4 sulfur
 cluster binding
- 3 a) Matched peptide: IYDTCIGCTQCVR
- 4 HCD-spectral matched to TAIR10 database

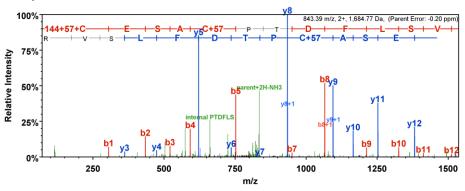
6


CID-spectral matched to TAIR10 database

8

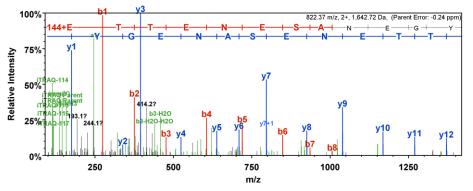

b) Matched peptide: ACPTDVLEMIPWDGCK

2 CID-spectral matched to TAIR10 database (HCD spectral is poor so no match to



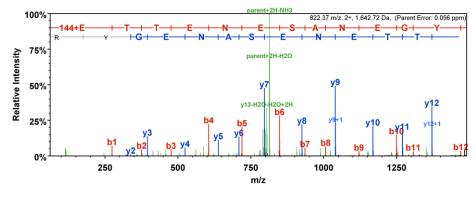
3 database)

4 c) Matched peptide: CESACPTDFLSVR

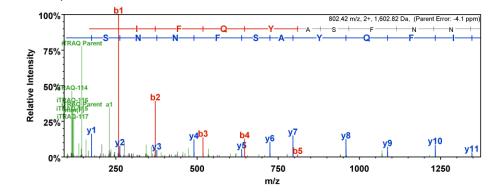

CID-spectral matched to TAIR10 database

1 4. ATCG00020.1 [| Symbols: PSBA | photosystem II reaction center protein A

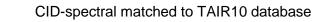
2 a) Matched peptide: ETTENESANEGYR

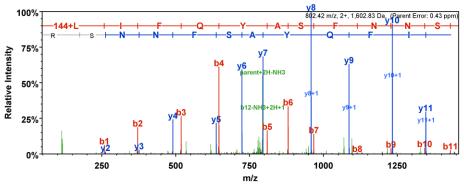

3 HCD-spectral matched to TAIR10 database

4


5

CID-spectral matched to TAIR10 database




7

1 b) Matched peptide: LIFQYASFNNSR

2 HCD-spectral matched to TAIR10 database

