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The lognormal model of risk 

Pharoah et al. [1] used a lognormal distribution of risk to describe polygenic effects, but the 

model is useful for other risk factors as well.  If the log relative risk is the sum of independent or 

weakly dependent risk factor-specific log relative risks, then the log relative risk tends to 

normality by the central limit theorem[2].  Logistic models with many main effects yield log 

relative odds, which are approximately equal to log relative risks for rare diseases or for diseases 

like breast cancer over time intervals like 5 years.  Thus, estimates of log-odds from logistic 

models approximate log-relative risks, which are approximately normally distributed.  Over a 

time interval ( , ],a b  the pure risk of disease for those disease-free at a  is, under proportional 

hazards,  1 11 exp{ ( ) } ( )

b b

a a

pure risk rr h t dt rr h t dt     for small risks, where rr  is the relative 

risk of the event of interest and 1( )h t  is the hazard of that event for those at the reference risk 

factor level.  Thus, 1log( ) log{ ( ) } log( )

b

a

pure risk h t dt rr  , which is normally distributed with 

mean equal to 
1log{ ( ) } mean of {log( )}

b

a

h t dt rr   .  If 2( )h t  is the hazard of competing 

mortality, and if 1( )h t  and 2( )h t are nearly constant at their mean values in the interval, then 

1 1 2 1 2 1absoluterisk { / ( )}{1 exp{ ( )( )} ( )rr h rr h h b a rr h h rr h b a           . Hence 

log(absolute risk)  is approximately normally distributed.  Over time intervals over which the 

probabilities of the event of interest and competing mortality are large, the absolute risk is not 

strictly proportional to rr  and the distribution of its logarithm may deviate from normality.  

 

Let { }iX be a set of risk factors with means { }i  and variances ( ).iVar X  As mentioned in the 

previous paragraph, the logarithm of  relative risk from several risk factors, i i

i

X , is 

approximately normally distributed[2], provided iX are independent or weakly dependent.  

There is little evidence for interactions among the iX for SNPs[3, 4], justifying this 

representation.  From the previous paragraph, the logarithm of risk in the population is normally 

distributed with mean 1log{ ( ) }

b

i i

ia

h t dt   , and variance 2 ( )i i

i

Var X   , which 



reduces to 2 2 ( )i i

i

Var X  for independent{ }.iX    Moreover, as shown in [1], the distribution 

of the logarithm of risk in cases is also normal with variance 
2  but with mean 2  .   We use 

these facts to calculate the AUC and other quantities used in the paper.  

 

AUC 

Let Y  be the logarithm of risk in the general population and Z  be the logarithm of risk in cases. 

If  Y  is normally distributed with mean   and variance 
2  , then Z is also normally 

distributed, but with mean  2   and variance 
2 [1].  Regarding Y and Z as independent 

samples from their respective distributions, we calculate 
2 2 1/2 1/2( ) ( 0) { / (2 ) } ( 2 ) .P Z Y P Y Z AUC          Here   is the standard normal 

distribution.  ( )P Z Y approximates the probability that a randomly selected case has a 

projected risk greater than that of a randomly selected non-case, which is the usual definition of 

.AUC The approximation is excellent for low risk, such as 5-year breast cancer risk[5]. In any 

case, ( )P Z Y is a more appropriate criterion than AUC for discriminating cases from the 

general population, as is required for screening applications. 

PCF(p) 

To calculate ( ) { (1 )  quantile of the distribution of },thPCF p P Z p Y    as in[6], we use

1 2 1( ) 1 [{ (1 ) ( )}/ }] 1 { (1 ) }.PCF p p p                    

Fraction of deaths prevented by risk-based allocation of screening 

mammograms  

Suppose h  is the fraction of the amount of money available to the amount of money needed  to 

give screening mammograms to the entire population[7].  If k  is the ratio of the cost of a risk 

assessment to the cost of a screening mammogram, then, if we give a risk assessment to the 

entire population, we will have enough money left to give screening mammograms to a 

proportion p h k   of the population.  If we allocate those mammograms to those at highest 

risk, we will screen women who account for a fraction ( )PCF h k  of breast cancer risk in the 

population.  The ratio of the deaths prevented by mammographic screening this high-risk group 

to the deaths prevented by screening the entire population is, therefore, ( )PCF h k .   

Contributions to AUC from BRCA1 mutations and CHEK2 mutations 

Because BRCA1 mutations are rare, they contribute little to discriminatory accuracy in the 

general population.  In BOADICEA, the relative risk for BRCA1 mutation carriers aged 50-59 

was 9.6, with an allele frequency 0.0006[8].  Let X be one for a carrier and zero otherwise.  The 

mean and variance of X are approximately 2(0.0006) = 0.0012 and 0.0012(1-0.0012) = 0.0012.  



Thus, X would contribute 2 2( ) {log(9.6)} (0.0012)(1 0.0012) 0.0061Var X     to the 

lognormal variance, which is only 1.1% of the 
2 0.5500   that corresponds to 0.7.AUC   

Thus rare highly penetrant mutations have little impact on discriminatory accuracy in the general 

population.  Recent test versions of BOADICEA have incorporated more common, but less 

penetrant, truncating mutations[9].  The relative risk for a mutation in CHEK2 for women aged 

45-49 years was 3.0 with allele frequency 0.0026, yielding a contribution to 
2  of 0.0062.  

Thus, measuring very highly penetrant and moderately highly penetrant mutations will not 

improve AUC much in the general population (Figure 1B).  Such measurements are very useful, 

however, for advising the rare women with such mutations, who might be concentrated in high-

risk clinics.  

 

Impact on AUC from 65 recently discovered SNPs 

A recent publication[10] based on more than 100,000 breast cancer cases and controls identified 

65 new breast cancer risk loci and stated: “We estimate that the newly identified susceptibility 

loci explain around 4% of the twofold familial relative risk of breast cancer…”  A familial 

relative risk of 2 corresponds to a lognormal variance of 
2 2log(2) 1.3863FFR   , four percent 

of which is 
2 0.0555.new   The previous best AUC from combining SNPs, mammographic 

density and epidemiologic risk factors (Table 1) was 0.68, which corresponds to a lognormal 

variance of 2 0.4375previous best  .  If we add in the results from newly discovered SNPs, we get  

2 0.4375 0.0555 0.4930,new best     which corresponds to AUC=0.69.  Thus, these newly 

discovered SNPs could improve the best available model from AUC=0.68 to AUC=0.69.  
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