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1. Key Assumptions for Individual Treatment Rule Estimation

We use the notation R∗(a) to denote the outcome under the treatment a ∈ A, and p(A|X)

to denote the conditional probability of A given X. Recall that the ITR is a map D :

Rp → A which assigns a patient with X to the treatment D(X). The three key assumptions

mentioned in the beginning of Section 2 of the main paper are listed as below:

• Assumption 1 (Positivity). There exists a positive ε that makes p(a|X) > ε hold for ∀a ∈ A

with probability 1.

• Assumption 2 (Strong ignorability). The potential outcome reward R∗(a) : a ∈ A are con-

ditionally independent of A given X.

• Assumption 3 (Consistency). The potential outcome satisfies R∗(A) = R.

These assumptions aim to build the connections between the observed outcome and the

potential data.

2. Computational Algorithm for GOWL

Recall the main optimization problem

n∑
i=1

K−1∑
k=1

|ri|
P (ai|xi)

[
I(ri > 0)

[
1− a(k)

i f(x
(k)
i )
]

+
+ I(ri < 0)

[
1 + a

(k)
i f(x

(k)
i )
]

+

]
+λ||f ||2. (1)

We now introduce our algorithm to solve (1). Due to the convexity of the objective function

in (1), we generalize the primal-dual method Vazirani (2013) used in SVM to estimate the

classifier f(x
(k)
i ). Starting from (1), by introducing a series of slack variable ξ

(k)
i and ψ

(k)
i for

all observations i = 1, · · · , n and all duplicates k = 1, · · · , K−1, we rewrite the minimization

in (1) by minimizing the following objective function with respect to f and all slack variables,
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i ), and ψ
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i f(x
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i ).
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Next, we discuss how to solve (2) for the linear case in Section 2.1 and the non-linear case

in Section 2.2 of the main paper.

2.1 Linear Decision Function Estimation

Suppose that the decision function f(x
(k)
i ) above is a linear function of x

(k)
i with the slope

β̃ and an intercept b̃, i.e. f(x
(k)
i ) =

[
x

(k)
i

]T
β̃ + b̃. Before introducing the algorithm, we

express f(x
(k)
i ) =

[
x

(k)
i

]T
β̃ + b̃ = xiβ + bk by denoting x

(k)
i = (xTi , e

T
k )T , where eTk is a

K− 1 dimensional row vector whose kth element is 1 while others are zeros. Note that β̃T =

(βT , b1 − b̃, · · · , bK−1 − b̃). In other words, the decision function on the duplicated covariate

set x
(k)
i can also be understood as a varying intercept function of xi, i.e. f(x

(k)
i ) = g(xi)+bk.

On one hand, such a form of the decision function constructs K−1 parallel boundaries in the

original sample space to avoid contradicting classifying results. On the other hand, for the

ordinal treatment scenario, it is usually desirable to have theK−1 intercepts monotonic along

the treatment group in terms of the interpretation, i.e. bi < (>)bi+1 for all i = 1, · · · , K − 2

when K > 3. We show in Section 4 of the paper that GOWL enjoys such a property under a

reasonable condition. When the assumption of parallel linear boundaries becomes too strong,

one can use nonlinear learning techniques to achieve more flexible boundaries as in Section

3.3.2 in the main paper.

To solve (2) with a linear decision function, we plug the expression of f(x
(k)
i ) above back

into (2) and reparamatrize the formula as:
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i ), ψ

(k)
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(k)
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i ), and (ξ,ψ) denote all slack variables.

By introducing Lagrange multipliers, we can derive the Lagrange function for the primal
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problem as:

LP =
1
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The corresponding dual problem can be derived by taking partial derivatives with respect

to (β̃, ξ, ψ) and simplifying the results using the Karush–Kuhn–Tucker conditions. Then,

the dual problem becomes maximizing LD with respect to the slack variables {α(k)
i , η

(k)
i ; i =

1, . . . , n; k = 1, . . . , K − 1}, where
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with 0 6 α
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i 6 C·r(k)i

P (ai|xi)I(r
(k)
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(k)
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(k)
i =

0. Note that the parameters in the dual problem above can be solved by applying standard

quadratic programming with linear constrains. Furthermore, the slope estimate can be

obtained via ˆ̃β =
∑n

i=1

∑K−1
k=1 (α̂

(k)
i a

(k)
i sign(r

(k)
i > 0)x

(k)
i ). The intercept vector {b1, · · · , bK−1}

can be estimated by plugging ˆ̃β back into the original maximization in (1) and solving

a standard linear programming problem with linear constraints (Vazirani (2013)). Because

there are 2n(K−1) parameters in the dual problem above, with a finite K, the computational

complexity of (1) is the same as that of the standard primal-dual problem in the SVM.

2.2 Nonlinear Decision Function Estimation

The previous subsection solves (2) for the linear case. However, in practice, the linear

assumption can be too strong for some problems. To make our model more flexible, we
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perform nonlinear learning by applying the kernel learning approach in Reproducing Kernel

Hilbert Spaces (RKHS). Kernel learning in RKHS is flexible and has achieved great successes

in many nonlinear learning studies (Kimeldorf & Wahba, 1970; Hastie et al., 2011).

Under the binary treatment case, we can show by the Representer Theorem (Kimeldorf

& Wahba (1970)) that under some regularity conditions, the decision function on the data

(x
(1)
i , a

(1)
i , r

(1)
i ) can be written in the form f(x

(1)
i ) =

∑n
j=1 k(xi,xj)cj + b̃, where k(·, ·) is

the standard kernel function associated with the RKHS H. When the treatment is extended

to an ordinal variable, we need to define an extended version of the kernel function on

the duplicated covariates x
(k)
i to construct the decision function. In particular, we have

f(x
(k)
i ) =
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j=1

∑K−1
h=1 k̃(x

(k)
i ,x

(h)
j )c̃

(h)
j + b̃, where k̃(·, ·) is the extended kernel function with

the definition k̃(x
(k)
i ,x

(h)
j ) = k(xi,xj) + eTk · eh, and ek is defined as in Section 3.1. Similar

discussions were made in Ling & Lin (2006) and Cardoso & Pinto da Costa (2007). According

to the newly defined extended kernel, f(x
(k)
i ) can be rewritten as
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(k)
j + b̃. One can tell from the new f(x
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due to the conversion of the ordinal problem into a large binary problem, the corresponding

decision boundaries in the kernel-induced feature space are guaranteed not to cross with

each other. Consequently, the sets {f(X(k)) < 0} for 1 6 k 6 K − 1 produce more flexible

noncrossing boundaries for the K ordinal treatments in the original space.

Given the expression of f with respect to the kernel representation, we can follow similar

Lagrange optimizer steps as before to obtain the generalized primal-dual formula. We can

derive the dual problem of maximizing LD with respect to all slack variables, where
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0. After the dual coefficients are estimated, the decision function can be written as f(x
(k)
i ) =∑n

j=1

∑K−1
h=1 k̃(x

(k)
i ,x

(h)
j )(α̂

(h)
j a

(h)
j sign(r

(h)
j > 0)).

To implement quadratic programming in the dual problems above, we use the open source

package CVXOPT based on the Python language in practice.

3. Additional Simulation Results

3.1 A toy example to show the limitation of the reward shifting strategy

To investigate the performance of the reward shifting strategy as discussed in Section 2

of the main paper, we modify the first non-linear boundary example in the simulation

study, and fit OWL with different ways to shift the reward. In particular, we vary the

constant that is selected to shift the rewards within the range {5, 10, 100, 500}. Then we

report the misclassification rates and estimated value functions, and also compare them

with those produced by GOWL (see Figure 1 of the supplement). From the boxplots, both

the misclassification rates and value functions differ a large amount when the reward is

shifted with different constants. In the extreme case when one uses a large constant, the

estimated optimal treatment tends to be very close to the actually assigned one. From this

result, it appears that a smaller shifting constant may work better, and our GOWL method

works the best.

[Figure 1 about here.]

3.2 Nonlinear Boundary Examples

For the nonlinear boundary examples, we consider the following four scenarios with µ(X)

and t(X, A) defined as,

(1) Example S1 (K = 2): µ(X) = 1 +X2
1 +X2

2 −2X3 + 0.5X4 and t(X, A) = 4(0.7−X2
1 −

X2
2 )(2A− 3), and P (A = 2|X) = exp(X1)/(exp(X1) + 1);
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(2) Example S2 (K = 3): µ(X) = −5+2X1 +X2 +0.5X3 and t(X, A) = 4
∑3

i=1 I(g(X) ∈

(−bi−1,−bi])(2 − |A− i|), where g(X) = 3 + X2
1 − 2 exp{X2} − (X3 − 0.6X4)2 −X3

5 −

exp{X2
6}, P (A = k|X) = k/6, b0 =∞, b1 = 0, b2 = −1.3 and b3 = −∞;

(3) Example S3 (K = 5): µ(X) = 2 + 2X1 +X2 + 0.5X3 and t(X, A) = 4
∑5

i=1 I(g(X) ∈

(−bi−1,−bi])(2 − |A − i|), where g(X) = 3 + X2
1 − 2 exp{X2} − (X3 − 0.6X4)2 −X3

5 −

exp{X2
6}, P (A|X) = 1/5, b0 = ∞, b1 = 0.4, b2 = −0.3, b3 = −1.1, b4 = −2.1 and

b5 = −∞;

(4) Example S4 (K = 7): µ(X) = 2 + 2X1 +X2 + 0.5X3 and t(X, A) = 4
∑7

i=1 I(g(X) ∈

(−bi−1,−bi])(2 − |A − i|), where g(X) = 3 + X2
1 − 2 exp{X2} − (X3 − 0.6X4)2 − X3

5 ,

P (A = k|X) = 0.1 + 0.1I(k > 5), b0 = ∞, b1 = 0.7, b2 = 0.2, b3 = −0.4, b4 = −1,

b5 = −1.8, b6 = −2.8 and b7 = −∞.

Similar to the linear boundary cases, we have a symmetric reward-treatment curve in each

scenario. We repeat the simulation 500 times with the tuning parameters ranging in the same

domain. The results are provided in Table 1 of the supplement. In all the four examples, PLS-

l1 performs the worst due to its incorrect model specification. Similar to the linear boundary

examples, GOWL-Gaussian with both data duplicate strategies show better performance

than OWL-Gaussian in terms of both classification accuracy and value functions. The results

of the two data duplicate methods do not demonstrate a significant difference. In the end,

we find that none of the methods performs well when the true boundaries have complex

structures such as shown in the K = 7 setting.

[Table 1 about here.]

3.3 An Example with both Linear and Nonlinear Boundaries

We would like to point out that the proposed GOWL could also work well when the

parallel assumption of the true boundaries does not hold. Under these circumstances, one

should consider using nonlinear learning techniques hence the estimated boundaries would
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be flexible enough to approach the underlying true boundaries. To illustrate the idea with

a 2-dimensional graph, we use a case with n = 300, p = 2 and K = 3 and follow the

previous settings to simulate X and A. At this time, we have the Q-function generated by

Q(X, A,D∗(X)) = 2 +X1 + 0.5X2− 2|A−D∗(X)| where D∗(·), the optimal treatment rule

is defined as D∗(x) = 1 if (X1 +1)2 +(X2 +1)2 < 1; D∗(X) = 2 if X1 +X2 > 2/3; D∗(X) = 3

otherwise.

Different from what was discussed in the previous examples, the current boundary set

consists of a straight line and one-fourth of a circle. Using GOWL-Gaussian with the same

tuning range as in Section 5 of the paper, we plot the estimated boundaries (dashed curves)

as well as the true boundaries (solid curves) in Figure 2 of the supplement. The results show

that the estimated ITR can still capture the underlying pattern of the optimal ITR well

since the RKHS with the Gaussian kernel is very flexible. We repeated the simulation 50

times and the average testing misclassification rate was 5.05%, which illustrates GOWL’s

competitive prediction ability under the cases of complex boundaries.

[Figure 2 about here.]

3.4 Comparison with Chen et al. (2016)

We have applied the method by Chen et al. (2016) for the ordinal treatment setting, despite

it being originally designed for continuous dose finding. We used two examples, in which

the covariates X are generated the same way as done in Section 5 of the paper, and where

treatment A follows a discrete uniform distribution. The treatment has five levels in both

cases with the first one following equal treatment effect distances between each pair of the

adjacent levels. In this case, using a continuous approximation can be reasonable. In the

second example, however, such a structure no longer holds. This implies that it can be

inappropriate to approximate the ordinal levels by a continuous variable. Specifically, the

two simulation settings are described as follows:
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(1) K = 5: µ(X) = 2X1+X2+0.5X3 and t(X, A) = 4
∑5

i=1 I (g(X) ∈ (bi−1, bi]) (2−|A− i|),

where g(X) = −X1 + 2X2 + X3 + 0.6X4 − 1.5(X5 + X6), P (A|X) = 1/5, b0 = −∞,

b1 = −1.9, b2 = −0.5, b3 = 0.5, b4 = 1.7 and b5 =∞;

(2) K = 5: µ(X) = 2X1 + X2 + 0.5X3 and t(X,U) = 4
∑5

i=1 I (g(X) ∈ (bi−1, bi]) (2 −

|U − ui|), where U represents the underlying strength of the observed ordinal treatment

A. In particular, we set U = A · I(A < 3) + 2A · I(A > 3) + 4I(A = 3), u1 = 1, u2 = 2,

u3 = 4, u4 = 8, and u5 = 10.

The estimated value functions are summarized in Table 2 of the supplement. From the

table, we can see that the proposed methods have larger average value functions in both

settings. The advantage becomes stronger for the second setting for unequal distances among

adjacent levels of treatments. Under both situations, the fitted ITRs of GOWL are nearly

optimal. Thus, GOWL works generally well for ITR estimation under ordinal treatments.

[Table 2 about here.]

4. Additional Dataset Applications

4.1 Irritable Bowel Syndrome Dataset

This dataset consists of a dose ranging trial that aims to develop a treatment for irritable

bowel syndrome (IBS) (see Biesheuvel & Hothorn (2002) for more details). The clinical study

enrolled four active treatment arms, corresponding to doses 1, 2, 3, 4 and placebo. The pri-

mary endpoint is a baseline adjusted abdominal pain score with larger values corresponding

to a better treatment effect. There are 369 patients completing the study, with an almost

balanced allocation across the groups of different doses. The final data set only contains three

variables: patient gender, treatment, and adjusted abdominal pain score. Approximately 72%

of the observed pain scores are greater than 0.

Given the small covariate dimension, we merge doses 1 and 2 together as the low dose
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group and merge doses 3 and 4 together as the high dose group. The average adjusted

abdominal pain scores of the total data set is 0.475, with standard deviation equal to 0.769.

To estimate the optimal ITR, we apply methods including PLS-l1, OWL-Gaussian, and

GOWL-Gaussian, and modify the first two methods in the same way as in the simulation

study. As to the evaluation criterion, we calculate the empirical value functions with the

following cross-validation strategy. In particular, we randomly partition the dataset into 5

equal-sized parts, train the model based on 4 of them, and predict the value function using the

remaining part. We repeat the partition 50 times and the corresponding means and standard

deviations of the predicted value functions are 0.491(0.029), 0.503(0.004), and 0.537(0.011)

for PLS-l1, OWL-Gaussian, and GOWL-Gaussian.

The result shows that GOWL returns the highest predicted value function with a mod-

erately low standard deviation. By reassigning the treatment, GOWL could improve the

predicted value function by approximately 13%. Furthermore, as to the estimated optimal

treatment assignment, PLS-l1 suggests the optimal treatment to be either placebo or low

dose. OWL assigns almost all the patients to the low dose group whereas GOWL suggests

about 60% patients in high dose and 40% in low dose. Around 70% of patients are female

among those recommended to be in the high dose group. This conclusion appears consistent

to what Biesheuvel & Hothorn (2002) reported.

4.2 Data Proprocessing of the T2DM study

In this study, 634 patients satisfying aforementioned requirements are enrolled while around

5% have complete observations. To handle the missing data issue before analysis, we choose to

remove observations with missing entries at any variable after certain screening steps. Thus,

it is important to remove variables whose missing patterns are associated with the values

of the clinical outcome significantly. To that end, a t-test is conducted to evaluate whether

the missingness, i.e. the missing indicator, of each covariate is associated with the clinical
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outcome (i.e. change of hba1c). Based on the test results with Bonferroni multiple-testing

adjustment, we consider removing the variables that are not missing at random so that more

observations can be retained in the dataset. For categorical covariates having significant test

results, we relabel the missing value as a new class when encoding the covariate. We also

delete the covariates with missing proportions greater than 70%.

4.3 T2DM Dataset Analysis without the covariates HDL and LDL

To have a larger sample size, we have tried to remove the variables high-density lipoprotein

cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) so that the total number of

observations increased to 350. Then we refit all the methods on the new data set. The value

functions are presented in Table 3 of the supplement. From the results, all of the methods

produce worse value functions than those before removing the two variables, and GOWL

still appears to work the best. This can be viewed as an evidence that the two cholesterol

related variables can be important even though they have larger missingness proportions.

[Table 3 about here.]

5. Additional Statistical Learning Theory

We define some essential notation before getting into the details. First, in our context, a

risk can be understood as a function of the decision f that averages out all the covariates

and treatment information, and is commonly used to evaluate the performance of f . Cor-

respondingly, we define the risk associated with the 0-1 loss as R(f) =
∑K−1

k=1 R(k)(f) =

E{
∑K−1

k=1
R(k)

P (A|X)
I(A(k) 6= sign(f(X(k))))}, where E is taken over (R,A,X) to remove all the

randomness of the data, R(k)(f) = E[ R(k)

P (A|X)
I(A(k) 6= sign(f(X(k))))] for k = 1, · · · , K −

1, and f(X(k)) is an ITR associated decision function. According to the 0-1 risk above,

we define its Bayes risk, the best risk one can achieve under the 0-1 loss, as R(f ∗) =

inff {R(f)|f : X → R} and the corresponding optimal ITR as D∗(X) =
∑K−1

k=1 I(f ∗(X(k)) >
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0) + 1. Correspondingly, we define the φ-risk associated with the proposed surrogate loss as

Rφ(f) =
∑K−1

k=1 R
(k)
φ (f) = E{

∑K−1
k=1

|R(k)|
P (A|X)

[φ(A(k)f(X(k)), R(k))]} where

R(k)
φ (f) = E[ |R

(k)|
P (A|X)

φ(A(k)f(X(k)), R(k))] and φ(u, r) = I(r > 0)[1−u]++I(r < 0)[1+u]+. We

also define the minimal φ−risk as Rφ(f ∗φ) = inff {Rφ(f)|f : X → R} and the corresponding

surrogate optimal ITR as D∗φ(X) =
∑K−1

k=1 I(f ∗φ(X(k)) > 0) + 1. Furthermore, we assume

that the number of treatment levels K is finite in the following discussions. All the details

of theorem proofs are included in Section 6 of the supplement.

5.1 Further Illustration of the assumption of Theorem 4.2

We use a numerical illustration to explain when the assumption (i.e. E(R|X, A > k) >

E(R|X, A 6 k) if and only if D∗(X) > k) in Theorem 4.2 may fail. Suppose that the

conditional expected rewards given certain covariates, i.e. ER(A|X), take values −2, 0, 8, 6, 5

when A = 1, 2, 3, 4, 5 respectively. Assume that A is uniformly assigned among the five

treatments. In this case, when k = 4, the expected reward on the left side, where the optimal

level 3 is included, is E[R|X,A 6 4] = 3, and the expected reward on the right side is

E[R|X,A > 4] = 5, which is larger. In this way, a wrong decision of the direction can be

made in the duplicate space with k = 4. As a consequence, the estimated optimal treatment

for this subject may be incorrectly greater than the underlying truth after cumulation, i.e.

level 4 instead of level 3. In contrast, the decisions of direction will always be correct if the

second data duplicate strategy is applied, because comparisons are only made between each

two neighboring treatments without any cumulation.

5.2 Excess 0-1 Risk and Excess φ−Risk

The following theorem shows that for any decision function f , the excess risk of f under the

0-1 loss, R(f) − R(f ∗), can be bounded by the excess risk of f under the surrogate loss,

Rφ(f)−Rφ(f ∗φ).
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Theorem 4.4 For any measurable function f : X → R and any probability distribution of

(X,A,R), we have Rφ(f)−Rφ(f ∗φ) > R(f)−R(f ∗) > 0.

Because some of our theoretic discussions are based on the φ−risk, it is necessary to first

show how the 0-1 loss risk R(f) could be controlled accordingly. The proof of Theorem

4.4 uses the idea of partitioning and integration by dividing Rφ(f) into K − 1 parts with

Rφ(f) =
∑K−1

k=1 R
(k)
φ (f). For each part R(k)

φ (f), we use the idea of Zhao et al. (2012) and

make use of the risk bound theories in Bartlett et al. (2006) to derive the relationship between

the two excess risks.

5.3 Consistency and Convergence Rate

Denote f̂n as the sample solution for our proposed GOWL as a minimizer of (1) with f ∈ H.

We next discuss the consistency of φ−risk with f̂n in the following Theorem 4.5.

Theorem 4.5 (Consistency of Rφ(f̂n)) Assume the tuning parameter λn is selected such that

λn → 0 and nλn →∞. Then for any distribution of (X,A,R), we have thatRφ(f̂n)→ inf
f∈H̄
Rφ(f)

in probability as n→∞, where f̂n is the empirical minimizer of (1) and H̄ denotes the closure

of a selected space H.

By Theorem 4.5, minimization of the φ−risk depends on the selection of H. Additionally, if

f ∗φ, the global minimizer of φ−risk, belongs to the closure of lim sup
n→∞

H, where H can depend

on n, then we have inf
f∈H̄
Rφ(f) = Rφ(f ∗φ) and thus lim inf

n→∞
Rφ(f̂n) = Rφ(f ∗φ) in probability.

This result will lead to lim inf
n→∞

R(f̂n) = R(f ∗) in probability by Theorem 4.4. In particular,

the above conditions are met when H is an RKHS with the Gaussian kernel for which the

bandwidth decreases to zero as n→∞ (see Zhao et al. (2012) for a related discussion).

In the next theorem, we discuss the convergence rate of the excess 0-1 risk R(f̂n)−R(f ∗)

based on the geometric noise assumption for each measure P (k) introduced in Steinwart &

Scovel (2007). For our problem, we define the decision boundary for the optimal ITR as
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{2η(X(k))−1 = 0} in each classification subproblem between {1, · · · , k} and {k+1, · · · , K}

for k = 1 · · · , K − 1, where η(X(k)) = E[R(k)|X(k)=X(k),A(k)=1]−E[R(k)|X(k)=X(k),A(k)=−1]

E[R(k)|X(k)=X(k),A(k)=1]+E[R(k)|X(k)=X(k),A(k)=−1]
+ 1

2
.

Furthermore, we define the purity of the corresponding data set as ∆(X(k)) = |2η(X(k))−1|.

Note that ∆(X(k)) can be viewed as a measure of closeness of X(k) to the corresponding kth

decision boundary. Using these notations, we state the geometric noise assumption in our

problem for each duplicate k for k = 1, · · · , K − 1 as follows: Let X(k) ∈ Rp be compact,

we define the measure Pk to have geometric noise exponent qk > 0 if there exists a constant

Ck > 0 such that E[|2η(X(k)) − 1| exp(−∆(X(k))2

t
)] 6 Ckt

qkp/2, for t > 0. According to

Steinwart & Scovel (2007), the geometric noise exponent describes the concentration and the

noise level of the data generating distribution near the decision boundary. As we will discuss

further, the geometric noise exponent qk of the distribution of (X(k), A(k), R(k)) depends on

how the density of the data set decreases when the point gets close to the boundary. In the

extreme case, qk can be arbitrarily large when η(X(k)) is continuous and ∆(X(k)) > δ > 0 for

some constant δ > 0 (i.e., the distinctly separable case). In addition to the geometric noise

condition, we also consider the RKHS associated with the Gaussian kernel as in Steinwart

& Scovel (2007) in Theorem 4.6 below. We use σn to denote the kernel bandwidth for the

Gaussian kernel.

Theorem 4.6 (Convergence Rate of the Excess Risk) Suppose that the distribution of

(X(k), A(k), R(k)) satisfies the geometric noise assumption with exponent qk ∈ (0,∞) for

k = 1, · · · , K−1. Then for any δ > 0 and ν ∈ (0, 2), there exists a C, which depends on ν, δ,

the dimension p, and P (A|X), such that ∀τ > 1 and σn = λ
− 1

(q+1)p
n for the Gaussian kernel,

we have Pr∗(R(f̂n) 6 R(f ∗) + ε) > 1− e−τ , where q = arg maxqkλ
qk/(qk+1)
n , Pr∗ denotes outer

probability and ε = C(λ
− 2

2+ν
+

(2−ν)(1+δ)
(2−ν)(1+q)

n n−
2

2+ν + τ
nλn

+ λ
q
q+1
n ).

Taking a closer look at the ε expression in Theorem 4.6, we can find that the first two terms
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can be treated as the bound for the stochastic error, whereas the last term is an error bound

for the noise associated with the corresponding RKHS. There is a trade off between the two

components. For example, the noise bound term will decrease and the stochastic error will

inflate if the RKHS is selected to be more complex. Based on the ε expression, one can tell

that an optimal choice of λn is n−
2(1+q)

(4+ν)q+2+(2−ν)(1+δ) and the corresponding rate of the excess

risk can be expressed as R(f̂n) − R(f ∗) 6 Op(n
− 2q

(4+ν)q+2+(2−ν)(1+δ) ). By the geometric noise

exponent property, such a q can be sufficiently large when different optimal treatment groups

are separated well enough just as in the distinctly separable case we discuss previously. In

this way, the rate of convergence can be almost Op

(
n−1/2

)
when we let δ and ν be small.

6. Proofs of Theorems

In this Section, we give the technical proofs for Lemma 4.1 and Theorem 4.2-4.6.

Proof of Lemma 4.1. We show the Fisher consistency property of GOWL for the binary

treatment case in Lemma 4.1. Note that when A ∈ {1, 2}, the true optimal treatment rule

D∗(x) can be rewritten as

I (E(R|X = x, A = 2)− E(R|X = x, A = 1) > 0) + 1.

Because X contains the intercept term, the duplicated covariate matrix X(k) is degenerated

into X at this time with A(k) = A(1) = sign(A−1). Starting from the φ-risk Rφ(f), we apply

the total probability theorem to obtain

E

[
|R|

P (A|X)
φ
(
A(1)f(X)), R|X

)]
=

∑
a∈{−1,1}

E

{
|R|

P (A|X)
φ(A(1)f(X)), R)|X, A(1) = a

}
P (A|X)

= E{|R|φ(f(X)), R)|X, A(1) = 1}

+E{|R|φ(−f(X)), R)|X, A(1) = −1},

where φ (Af(X)), R) = I(R > 0) [1− Af(X)]+ + I(R < 0) [1 + Af(X)]+ and the event

A(1) = 1 is equivalent to that of A = 2. To obtain an explicit minimizer f ∗φ for the objective
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function above, we need to discuss its range. In particular, when f < −1,

E

[
|R|

P (A|X)
φ
(
A(1)f(X)), R

)]
= E [RI(R > 0)(1− f(X))|X, A = 2]

−E [RI(R < 0)(1− f(X))|X, A = 1]

= {E [RI(R < 0)|X, A = 1]− E [RI(R > 0)|X, A = 2]} f(X)

+E [RI(R < 0)|X, A = 1]− E [RI(R > 0)|X, A = 2] .

In this case, one can tell that E
[
|R|

P (A|X)
φ
(
A(1)f(X)), R

)]
is always non-negative. This is be-

cause for R > 0, E
[
|R|

P (A|X)
φ
(
A(1)f(X)), R

)]
= −E [R|X, A = 2] f(X)−E [R|X, A = 2] >

0 since f < −1. In addition, a similar argument can be made for R < 0. When f > 1, one

can show that E
[
|R|

P (A|X)
φ
(
A(1)f(X)), R

)]
> 0 still holds based on the same derivation.

When −1 6 f 6 1, noting that φ
(
A(1)f(X)), R

)
= I(R > 0)

(
1− A(1)f(X)

)
+ I(R <

0)
(
1 + A(1)f(X)

)
, we have

E

[
|R|

P (A|X)
φ
(
A(1)f(X)), R

)]
= E [RI(R > 0)(1− f(X))−RI(R < 0)(1 + f(X))|X, A = 2]

+E [RI(R > 0)(1 + f(X))−RI(R < 0)(1− f(X))|X, A = 1]

= {E [R|A = 1]− E [R|A = 2]} f(X)

+E [R|A = 2]− E [R|A = 1] .

The right hand side of the equation above shows that, E
[
|R|

P (A|X)
φ
(
A(1)f(X)), R

)]
becomes

zero when f(X) = 1 and takes negative values as long as E [R|A = 2] − E [R|A = 1] < 0.

Therefore, the minimizer of the φ−risk, f ∗φ, should be within the interval [−1, 1]. More

specifically, f ∗φ should satisfy sign(f ∗φ) = sign(E [R|A = 2] − E [R|A = 1]), which indicates

the surrogate ITR D∗φ(x) = I
(
f ∗φ(x) > 0

)
+ 1 = D∗(x).

Proof of Theorem 4.2. We show that the Fisher consistency property of GOWL still

holds for the ordinal treatment case in Theorem 4.2. By Lemma 4.1, for each R(k)
φ for which

k = 1, · · · , K − 1, we note that the minimizer f ∗φ has a universal formula for all k so
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that sign(f ∗(X(k))) = sign
(
E(R|X(k) = X(k), A(k) = 1)− E(R|X(k) = X(k), A(k) = −1)

)
.

Therefore, by definition, the surrogate ITR of x is

D∗φ(x) =
K−1∑
k=1

I(E(R(k)|X(k) = X(k), A(k) = 1) > E(R|X(k) = X(k), A(k) = −1)) + 1

=
K−1∑
k=1

I (E(R|X = x, A > k) > E(R|X = x, A 6 k)) + 1

=
K−1∑
k=1

I(D∗(x) > k) + 1

= D∗(x).

The second equality holds due to the definition of a duplicated data set wherein X(k) =

(X, k) and A(k) = sign(A − k). The third equality holds due to the reward distribution

assumption in Theorem 4.2. Note that the second and third equality always hold under the

modified duplicate method introduced in Section 4 in which r
(k)
i = ri if ai ∈ {k, k + 1}.

Proof of Theorem 4.3. Recall the discussion in Section 3.3 that the φ−risk can be rewrit-

ten as

Rφ = E

{
K−1∑
k=1

[
|R|

P (A|X)

(
I(R > 0)φ1

(
A(k)(g(X) + bk)

)
+ I(R < 0)φ2

(
A(k)(g(X) + bk)

))]}
,

where φ1(u) = [1− u]+ and φ2(u) = [1 + u]+. Without loss of generality, we only need to

show that under E(R|A = k) > 0 for k = 1, · · · , K, the φ−risk will not be decreased by

swapping any two neighbors in the intercept vector b under bk > bk+1 for k = 1, · · · , K − 2.

Suppose that we swap bm and bm+1 for any m ∈ {1, · · · , K − 2}, then the new φ−risk based

on the swapped b can be written as

Rs
φ = E

{ ∑
k 6=m,m+1

[
|R|

P (A|X)

(
I(R > 0)φ1

(
A(k)(g(X) + bk)

)
+ I(R < 0)φ2

(
A(k)(g(X) + bk)

))]}

+ E

[
|R|

P (A|X)

(
I(R > 0)φ1

(
A(m)(g(X) + bm+1)

)
+ I(R < 0)φ2

(
A(m)(g(X) + bm+1)

))]
+ E

[
|R|

P (A|X)

(
I(R > 0)φ1

(
A(m+1)(g(X) + bm)

)
+ I(R < 0)φ2

(
A(m+1)(g(X) + bm)

))]
.
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Now we discuss how the two risks above are different based on the values of A(m) and

A(m+1). One can note that A(m) > A(m+1) always holds for any m by the fact that A(m) =

sign (A > m). In this way, there are three possible situations for the values of
(
A(m), A(m+1)

)
to take: (1,−1), (−1,−1), and (1, 1). We discuss each situation as follows.

First, given the event A(m)
10 =

{
A(m) = 1, A(m+1) = −1

}
, we have that the difference

between the swapped risk and original φ−risk is

EA(m)
10

(
Rs
φ −Rφ

)
= EA(m)

10

[
|R|

P (m+ 1|X)
I(R > 0) (φ1 (g(X) + bm+1)− φ1 (g(X) + bm))

]
+ EA(m)

10

[
|R|

P (m+ 1|X)
I(R > 0) (φ1 (− (g(X) + bm))− φ1 (− (g(X) + bm+1)))

]
+ EA(m)

10

[
|R|

P (m+ 1|X)
I(R < 0) (φ2 (g(X) + bm+1)− φ2 (g(X) + bm))

]
+ EA(m)

10

[
|R|

P (m+ 1|X)
I(R < 0) (φ2 (−(g(X) + bm))− φ2 (−(g(X) + bm+1)))

]
= E

[
RI(R > 0) · ψ1(x,b)|A(m)

10

]
+ E

[
RI(R < 0) · ψ2(x,b)|A(m)

10

]
,

where EA(m)
10

(
Rs
φ −Rφ

)
denotes the difference of the two risks under the event A(m)

10 ={
A(m) = 1, A(m+1) = −1

}
, ψ1(x,b) = φ1(g(X)+bm+1)−φ1(g(X)+bm)+φ1(−(g(X)+bm))−

φ1(−(g(X)+bm+1)), and ψ2(x,b) = φ2(g(X)+bm)−φ2(g(X)+bm+1)+φ2(−(g(X)+bm+1))−

φ2(−(g(X) + bm)). The difference of such conditional expected rewards depends on whether

g(X) + bm and g(X) + bm+1 are greater than −1 or not. We summarize the result of each

scenario in Table 4. One can find that ψ1(x,b) is always equal to ψ2(x,b) and they are always

non-negative. In this way, EA(m)
10

(
Rs
φ −Rφ

)
= ψ1(x,b){E[RI(R > 0)|A(m)

10 ] + E[RI(R <

0)|A(m)
10 ]} = ψ1(x,b)E(R|A(m)

10 ). Thus, one can see that when bm > bm+1, EA(m)
10

(Rs
φ−Rφ) > 0

will hold for arbitrary m = 1, · · · , K − 2 under the assumption that E(R|A(m)
10 ) > 0 where

A(m)
10 = {A(m) = 1, A(m+1) = −1} = {A = m+ 1}.

[Table 4 about here.]
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Under the second situation when the event A(m)
11 =

{
A(m) = 1, A(m+1) = 1

}
holds, the

conditional difference between the two risks can be expressed as

EA(m)
11

(
Rs
φ −Rφ

)
= EA(m)

11

[
|R|

P (A > m+ 1|X)
I(R > 0) (φ1 (g(X) + bm+1)− φ1 (g(X) + bm))

]
+ EA(m)

11

[
|R|

P (A > m+ 1|X)
I(R > 0) (φ1 (g(X) + bm)− φ1 (g(X) + bm+1))

]
+ EA(m)

11

[
|R|

P (A > m+ 1|X)
I(R < 0) (φ2 (g(X) + bm+1)− φ2 (g(X) + bm))

]
+ EA(m)

11

[
|R|

P (A > m+ 1|X)
I(R < 0) (φ2 (g(X) + bm)− φ2 (g(X) + bm+1))

]
= 0.

Lastly, when the event A(m)
00 =

{
A(m) = −1, A(m+1) = −1

}
holds, EA(m)

11

(
Rs
φ −Rφ

)
= 0

and the deductions are the same as that in the second scenario. Therefore, when EA(k)
10

[R] > 0,

we will have E
(
Rs
φ −Rφ

)
> 0, which means bk > bk+1 always holds for k = 1, · · · , K − 1.

The same deduction can be made for bk < bk+1 when the assumption EA(k)
10

[R] < 0 holds.

Proof of Theorem 4.4. We first decompose the 0-1 risk based on its definition,

R(f) =
K−1∑
k=1

R(k)(f) =
K−1∑
k=1

E

[
R

P (A|X)
I
(
A(k) 6= sign

(
f(X(k))

))]
,

where R(k)(f) = E
[

R
P (A|X)

I
(
A(k) 6= sign

(
f(X(k))

))]
. Similarly, the φ−risk can be decom-

posed as,

Rφ(f) =
K−1∑
k=1

R(k)
φ (f) =

K−1∑
k=1

E

[
|R|

P (A|X)
φ
(
A(k)f(X(k)), R

)]
,

where R(k)
φ (f) = E

[
|R|

P (A|X)
φ
(
A(k)f(X(k)), R

)]
and the φ(·) function has the same definition

as before. Next, we discuss the property of each R(k)(f) piece following a similar idea found

in Zhao et al. (2012) and then combine them to draw the final conclusion.

Without loss of generality, we consider the case where the reward is a discrete variable

and the derivation for the continuous case is analogous. To simplify notation, we let ηr(x) =
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Pr(A(k) = 1|R = r,X(k) = x) and qr(x) = |r|Pr(R = r|X(k) = x) for certain k. When the

reward is discrete, the kth component of the Bayes risk is

R(k)(f) =E

∑
r

|r|Pr
(
R = r|X(k)

)
E

I
(
A(k) 6= sign

(
f(X(k))

))
P (A|X)

|R = r,X(k)


=E

[∑
r

qr(X
(k))E

(
ηr(X

(k))

P (A > k|X)
I
(

1 6= sign(f(X(k)))
)

+
1− ηr(X(k))

P (A 6 k|X)
I(−1 6= sign(f(X(k))))

)]
. (3)

To further simplify the expression, we define h(x) and ψ(x) such that given r and x, the

following equations are satisfied:

h(x)ψ(x) =
∑
r

qr(x)
ηr(x)

P (A > k|X)

h(x) (1− ψ(x)) =
∑
r

qr(x)
1− ηr(x)

P (A 6 k|X)
.

It can be shown that h(x) =
∑

r qr(x)[ ηr(x)
P (A>k|X)

+ 1−ηr(x)
P (A6k|X)

] > 0 and ψ(x) = [
∑

r qr(x)[ ηr(x)
P (A>k|X)

+

1−ηr(x)
P (A6k|X)

]]−1[
∑

r qr(x) ηr(x)
P (A>k|X)

]. Therefore, (3) becomes

R(k)(f) = E
{
h(X(k))

[
ψ(X(k))I

(
sign

(
f(X(k))

)
6= 1
)

+ (1− ψ(X(k)))I
(

sign
(
f(X(k))

)
6= 1
)]}

.

(4)

We follow the same steps above and obtain that the kth component of the φ−risk is

R(k)
φ (f) = E

{
h(X(k))

[
ψ(X(k))φ

(
f(X(k))

)
+
(

1− ψ(X(k))
)
φ
(
−f(X(k))

)]}
.

We define the new function C (ψ, α) = ψφ(α) + (1−ψ)φ(−α) to rewrite the optimal φ−risk

as

Rφ(f ∗) =
K−1∑
k=1

R(k)
φ (f ∗) = inf

α∈R

K−1∑
k=1

E
[
h
(
X(k)

)
C
(
ψ(X(k)), α

)]
.

Then the excess φ−risk is

Rφ(f)−Rφ(f ∗φ) =
K−1∑
k=1

E

[
C
(
ψ(X(k)), f(X(k))

)
h(X(k))− inf

α∈R
C
(
ψ(X(k)), α

)
h(X(k))

]
.
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According to the result of Bartlett et al. (2006) and the convexity of the loss φ(x), we have

for an arbitrary element x in the duplicated sample space X (k),

h(x) (2ψ − 1) = inf
α:α(2ψ−1)60

C (ψ, α)h(x)− inf
α∈R

C (ψ, α)h(x). (5)

In this way, according to (4) and (5), we have for each k = 1, · · · , K − 1,

R(k)(f)−R(k)(f ∗) 6 E

{
I

[
sign

(
f(X(k))

)
6= sign

(
h(X(k))

(
ψ(X(k))− 1

2

))]
×
∣∣∣h(X(k))

(
2ψ
(
X(k)

)
− 1
)∣∣∣}

= E

{
I

[
sign

(
f(X(k))

)
6= sign

(
h(X(k))(ψ(X(k))− 1

2
)

)]
×
∣∣∣∣ inf
α:α(2ψ−1)60

C
(
ψ(X(k)), α

)
h(X(k))− inf

α∈R
C
(
ψ(X(k)), α

)
h(X(k))

∣∣∣∣} .
Since C(ψ(X(k)), f(X(k)))h(X(k)) > inf

α:α(2ψ−1)60
C(ψ(X(k)), α)h(X(k)) holds when sign(f(X(k))) 6=

sign(h(X(k))(ψ(X(k)) − 1
2
)), the second term on the right side of the equal sign above is

bounded by C(ψ(X(k)), f(X(k)))h(X(k)) − inf
α∈R

C(ψ(X(k)), α)h(X(k)). Therefore, when we

sum the inequality through k = 1, · · · , K − 1, we have

R(f)−R(f ∗) =
K−1∑
k=1

{
R(k)(f)−R(k)(f ∗)

}
6

K−1∑
k=1

E

[
C
(
ψ(X(k)), f(X(k))

)
h(X(k))− inf

α∈R
C
(
ψ(X(k)), α

)
h(X(k))

]
= Rφ(f)−Rφ(f ∗φ).

Proof of Theorem 4.5. We consider the same decomposition idea used in the proof of

Theorem 4.4 and express the φ−risk as

Rφ(f) =
K−1∑
k=1

R(k)
φ (f) =

K−1∑
k=1

E

[
|R|

P (A|X)
φ
(
A(k)f(X(k)), R

)]
.

For the kth component of the φ−risk, we define the loss part as L
(k)
φ (f) = |R|

P (A|X)
φ(A(k)f,R).

Then for any f ∈ H and any minimizer f̂n of Pn
(∑K−1

k=1 Lφ(f) + λn||f ||2
)

, where Pn denotes
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the empirical mean, we have

Pn

(
K−1∑
k=1

L
(k)
φ (f̂n)

)
6 Pn

(
K−1∑
k=1

L
(k)
φ (f̂n) + λn||f̂n||2

)

6 Pn

(
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2

)
. (6)

The second inequality holds because f̂n minimizes Pn
(∑K−1

k=1 Lφ(f) + λn||f ||2
)

given λn. By

taking the limit superior on both sides of (6), we have that the following inequality holds for

any f ∈ H:

lim sup
n→∞

Pn

(
K−1∑
k=1

L
(k)
φ (f̂n)

)
6 lim sup

n→∞
Pn

(
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2

)
= P

(
K−1∑
k=1

L
(k)
φ (f)

)
.

This yields the fact that

lim sup
n→∞

Pn

(
K−1∑
k=1

L
(k)
φ (f̂n)

)
6 inf

f∈H̄
P

(
K−1∑
k=1

L
(k)
φ (f)

)
.

Furthermore, since λn → 0 when n → ∞, Theorem 4.5 will be proved if we can show

Pn
(∑K−1

k=1 L
(k)
φ (f̂n)

)
− P

(∑K−1
k=1 L

(k)
φ (f)

)
→ 0 in probability.

To show the convergence condition above, we first prove that ||f̂n||2 can be bounded by

some constant depending on n. By (6), if we let f = 0 then the inequality becomes

Pn

(
K−1∑
k=1

L
(k)
φ (f̂n)

)
+ λn||f̂n||2 6 Pn

(
K−1∑
k=1

L
(k)
φ (0)

)
= Pn

(
K−1∑
k=1

|R|
P (A|X)

φ (0, R)

)
.

Based on the fact that Pn
(∑K−1

k=1 L
(k)
φ (f̂n)

)
> 0 and φ(0, R) is bounded by 2, if we denote

π0 = min {P (ai|xi)} for i = 1, · · · , n (i.e. the smallest prior probability among the K

treatments), then

||f̂n||2 6
(K − 1)φ (0)

π0λn

n∑
i=1

|ri|
n

6
2 (K − 1)

π0λn

n∑
i=1

|ri|
n
.

Due to the existence of E|R|, ∃N ∈ N+ so that ∀n > N , there is an upper bound M such that

||f̂n||2 < M . Furthermore, since the class {
√
λnf : ||λnf || 6

√
M} is included in a Donsker

class and
∑K−1

k=1 L
(k)
φ (f) is Lipschitz continuous with respect to f , then {

√
λn
∑K−1

k=1 L
(k)
φ (f) :

||λnf || 6
√
M} is also a P-Donsker class. In this way, if we denote P as the population mean
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operator, then

√
n (Pn − P)

K−1∑
k=1

L
(k)
φ (f̂n) =

√
λ−1
n

√
n (Pn − P)

(√
λn

K−1∑
k=1

L
(k)
φ (f̂n)

)
= Op(

√
λ−1
n ).

Finally, moving the
√
n from the left hand side to the right hand side in the equation

above and taking limits in probability on both sides, we have lim
n→∞

(Pn − P)
∑K−1

k=1 L
(k)
φ (f̂n) =

lim
n→∞

Op

(√
(nλn)−1

)
= 0 in probability as nλn →∞.

Proof of Theorem 4.6. We apply the same technique used in Vert & Vert (2006), Steinwart

& Scovel (2007) and Zhao et al. (2012) to show the risk convergence property presented in

Theorem 4.6. According to Theorem 4.4, Theorem 4.6 will be obtained immediately if we

can show the same convergence results for Rφ(f̂n)−Rφ(f ∗φ). We decompose the upper bound

of Rφ(f̂n)−Rφ(f ∗φ) using the decomposition idea discussed before, then

Rφ(f̂n)−Rφ(f∗φ) 6
K−1∑
k=1

[
λn||f̂n||2 +R(k)

φ (f̂n)−R(k)
φ (f∗φ)

]

=

K−1∑
k=1

[
λn||f̂n||2 +R(k)

φ (f̂n)− inf
f∈H

(
λn||f ||2 +R(k)

φ (f)
)]

+

K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)
)
−R(k)

φ (f∗φ)

]

=

K−1∑
k=1

[
λn||f̂n||2 +R(k)

φ (f̂n)− inf
f∈H

(
λn||f ||2 +R(k)

φ (f)
)]

+

K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)−R(k)
φ (f∗φ)

)]
. (7)

Now, we are to bound each of the K − 1 pieces on the right hand side of (7) under the new

loss function.

We first discuss how to bound the second term in (7). Because the distribution Pk has

geometric noise exponent 0 < qk <∞ with constant Ck for each k = 1, · · · , K − 1, then we

can find K − 1 pairs of qk and Ck such that the following inequality holds for all k

E

[
exp

(
−∆(X(k))2

t

)∣∣∣2η (X(k)
)
− 1
∣∣∣] 6 Ckt

qkp/2, t > 0.

By Theorem 2.7 in Steinwart & Scovel (2007), we can show that there exists K−1 constants
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cp,k such that for arbitrary λn > 0, we have

K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)−R(k)
φ (f ∗φ)

)]
6

K−1∑
k=1

cp,k

(
σpnλn + Ck (2p)qkp/2 σ−qkpn

)
. (8)

Noting that the kth item in the summation of (8) can be considered as O(λ
qk/(qk+1)
n ) for k =

1, · · · , K−1, we can further bound the summation as follows by defining q = arg max
qk

λ
qk/(qk+1)
n

and thus,

K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)−R(k)
φ (f ∗φ)

)]
6 O(λq/(q+1)

n ).

As to bounding the first term in (7), we choose to apply Theorem 5.6 of Steinwart & Scovel

(2007). To meet the assumptions, we first need to define the corresponding F , Z, T , G, fT,F

and fP,F in Theorem 5.6 of Steinwart & Scovel (2007) in our new framework.

We define Z as our sample space X in Section 2, T as the empirical measure Pn, F as

BH(
√

M
λn

), the subspace ofH which is a ball ofH of radius
√

M
λn

(where M is the upper bound

of ||λnf || according to the proof of Theorem 4.5), fP,F as the minimizer of the regularized

φ−risk under F and fT,F as the empirical minimizer f̂n, i.e.,

fP,F = arg min
f∈BH(

√
M
λn

)

(
K−1∑
k=1

R(k)
φ (f) + λn||f ||2

)
.

We define G as the function space considering the loss Lφ(f) + λn||f ||2 where Rφ(f) =

ELφ(f). That is to say,

Gφ,λn =

{
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2 −

K−1∑
k=1

L
(k)
φ (fP,F)− λn||fP,F ||2 : f ∈ BH(

√
M

λn
)

}
.

Then the remaining work is to show the two conditions in Theorem 5.6 of Steinwart & Scovel

(2007): First, ∃c > 0, 0 < α 6 1 and B > 0 such that ||g||∞ 6 B and EP (g2) 6 c (EPg)α for

∀g ∈ Gφ,λn . Second, ∃a > 1 and 0 < b < 2 such that supPn∈X logN (B−1Gφ,λn , ε, L2 (Pn)) 6

aε−b for ∀ε > 0.

For the first condition, because the new φ−loss function in L
(k)
φ (f) is Lipschitz continuous
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for k = 1, · · · , K−1 as discussed early, there exists constants Ck such that
∣∣∣L(k)

φ (f)− L(k)
φ (fP,F)

∣∣∣ 6
Ck |f − fP,F |, therefore

|Lφ(f)− Lφ(fP,F)| 6
K−1∑
k=1

∣∣∣L(k)
φ (f)− L(k)

φ (fP,F)
∣∣∣ 6 C||f − fP,F ||,

where C =
∑K−1

k=1 Ck. In this way,

|g| 6

∣∣∣∣∣
K−1∑
k=1

L
(k)
φ (f)−

K−1∑
k=1

L
(k)
φ (fP,F)

∣∣∣∣∣+
∣∣λn||f ||2 − λn||fP,F ||2∣∣

6 C||f − fP,F ||+ λn||f ||2 − λn||fP,F ||2 (9)

6 C||f − fP,F ||+ λn||f ||2.

Because we have f ∈ BH(
√

M
λn

), then both f and fP,F are bounded by
√

M
λn

so that

||g||∞ 6 2C

√
M

λn
+M.

In other words, the constant B in the first condition can be taken to be 2C
√

M
λn

+ M . To

reach the second part of the first condition, we take the second moment of (9) on both sides

and obtain

E
(
g2
)

6 E
(
C||f − fP,F ||+ λn||f ||2 − λn||fP,F ||2

)2

6 E (C||f − fP,F ||+ λn |||f + fP,F || · ||f − fP,F |||)2

6

(
C + 2λn

√
M

λn

)2

||f − fP,F ||2. (10)

To show EP (g2) 6 c (EPg)α, we need to prove that the right hand side of (10) can be upper

bounded by c (EPg)α. Due to the convexity of Lφ(f), we have

1

2

[
Lφ(f) + Lφ(fP,F ) + λn||f ||2 + λn||fP,F ||2

]
> Lφ

(
f + fP,F

2

)
+

1

2

[
λn||f ||2 + λn||fP,F ||2

]
= Lφ

(
f + fP,F

2

)
+ λn||

f + fP,F
2

||2 + λn||
f − fP,F

2
||2.

Taking expectation on both sides and by the definition of fP,F we have

1

2

[
Rφ(f) +Rφ(fP,F ) + λn||f ||2 + λn||fP,F ||2

]
> Rφ

(
f + fP,F

2

)
+ λn||

f + fP,F
2

||2 + λn||
f − fP,F

2
||2

> Rφ (fP,F ) + λn||fP,F ||2 + λn||
f − fP,F

2
||2.
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Adjusting the inequality slightly, we obtain

1

2
EPg =

1

2

[
Rφ(f)−Rφ(fP,F) + λn||f ||2 − λn||fP,F ||2

]
> λn||

f − fP,F
2

||2. (11)

Then combining (10) and (11), we have

E
(
g2
)
6 2

(
C + 2

√
λnM

)2

λ−1
n EPg.

Thus, EP (g2) 6 c (EPg)α holds when α = 1 and c = 2
(
C + 2

√
λnM

)2
λ−1
n . The proof for

the first condition is now completed. For the second condition, the entropy we are concerned

about can be decomposed by the subadditivity property,

logN
(
B−1Gφ,λn , ε, L2 (Pn)

)
= logN

(
B−1{

K−1∑
k=1

L
(k)
φ (f) + λn||f ||2} : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)

6 logN

(
B−1Lφ (f) : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)

+ logN

(
B−1λn||f ||2 : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)
. (12)

Since we have|Lφ(f1)− Lφ(f2)| 6 C||f1 − f2|| for any f1 and f2, the corresponding b1 =

B−1Lφ (f1) and b2 = B−1Lφ (f2) in
{
B−1Lφ (f) : f ∈ BH

(√
M
λn

)}
must also satisfy ||b1 −

b2|| 6 B−1C||f1 − f2||. In this way, the first term in (12) can be bounded as

logN

(
B−1Lφ (f) : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)
6 logN

(
BH

(√
M

λn

)
,
B

C
ε, L2 (Pn)

)

6 logN

(
BH (1) ,

B

C

[√
M

λn

]−1

ε, L2 (Pn)

)
.

If we apply Theorem 2.1 in Steinwart & Scovel (2007), because B
C

[√
M
λn

]−1

is a constant,

then ∀0 < ν 6 2 and ∀δ > 0, there exists a constant c1 such that for ε > 0:

logN

(
B−1Lφ (f) : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)
6 c1σ

(1−ν/2)(1+δ)p
n ε−ν .

In this way, there exists a constant c2 such that

logN
(
B−1Gφ,λn , ε, L2 (Pn)

)
6 c1σ

(1−ν/2)(1+δ)p
n ε−ν + logN

(
B−1λn||f ||2 : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)

6 c1σ
(1−ν/2)(1+δ)p
n ε−ν + log

(
M

Bε

)
6 c2σ

(1−ν/2)(1+δ)p
n ε−ν .

The proof for the second condition is accomplished. Having established the two conditions
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above, we can apply Theorem 5.6 in Steinwart & Scovel (2007) directly and reach the

conclusion that there exists a cν > 0 depending only on ν such that ∀n > 1 and ∀τ > 1,

Pr∗
(
Rφ

(
f̂n

)
+ λn||f̂n||2 > Rφ

(
f ∗φ
)

+ λn||f ∗φ||2 + cνε (n, a,B, c, δ, x)
)
6 e−τ ,

where

ε (n, a,B, c, δ, x) = B2ν/(4−2α+αν)c(2−ν)/(4−2α+αν)
(a
n

)2/(4−2α+αν)

+Bν/2δ(2−ν)/4
(a
n

)1/2

+B
(a
n

)2/(2+ν)

+

√
δτ

n
+
(cτ
n

)1/(2−α)

+
Bτ

n
,

and α = 1, c = c2σ
(1−ν/2)(1+δ)p
n , σn = λ

−1/(q+1)p
n . Once we obtain the convergence rate results

of the surrogate risk, the same conclusion can be reached for the 0-1 loss immediately by

applying our Theorem 4.4.

7. Software and Sample Code

The following Python files are available from the Biometrics website on Wiley Online Library:

• gowl ord.py is the key class that contains the functions ti implement our method as well

as all the other methods involved in the numerical studies.

• lin example.py and nonlin example.py are two examples (linear and non-linear) con-

sisting of data generation, method implementation, and output saving.
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Figure 1. Misclassification rates (MISC) and value functions (VALUE) comparison be-
tween GOWL (G) and OWL with different constants (5, 10, 100, 500) used for reward shifting.
The simulations are repeated 500 times.
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Figure 2. Illustrating plot for the example with the true boundaries containing a linear
line and a nonlinear curve. The solid curves indicate the true boundaries and the dashed
curves represent the estimated boundaries by GOWL-Gaussian in one simulation. The points
correspond to the observations in the test set with the color representing the optimal
treatment: red-1, green-2 and blue-3.
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Methods (K,n) (2,300) (3,300) (5,500) (7,500)

PLS-l1
MISC 0.399 (0.110) 0.493 (0.189) 0.552 (0.099) 0.746 (0.377)

VMSE 1.327 (0.427) 1.275 (0.564) 1.601 (0.325) 1.502 (0.894)

OWL-Lin
MISC 0.204 (0.016) 0.381 (0.055) 0.460 (0.089) 0.686 (0.224)

VMSE 0.489 (0.060) 0.912 (0.429) 1.780 (0.448) 1.659 (0.532)

OWL-Gau
MISC 0.177 (0.027) 0.351 (0.155) 0.373 (0.249) 0.683 (0.222)

VMSE 0.097 (0.064) 0.712 (0.429) 1.311 (0.471) 1.694 (0.557)

GOWL1-Lin
MISC 0.217 (0.009) 0.362 (0.042) 0.387 (0.022) 0.641 (0.168)

VMSE 0.222 (0.049) 0.453 (0.130) 0.681 (0.146) 1.085 (0.371)

GOWL1-Gau
MISC 0.092 (0.034) 0.152 (0.047) 0.251 (0.081) 0.529 (0.124)

VMSE 0.023 (0.012) 0.112 (0.064) 0.189 (0.042) 0.622 (0.112)

GOWL2-Lin
MISC 0.217 (0.009) 0.386 (0.038) 0.392 (0.018) 0.660 (0.214)

VMSE 0.222 (0.049) 0.462 (0.276) 0.634 (0.127) 1.280 (0.279)

GOWL2-Gau
MISC 0.092 (0.034) 0.144 (0.036) 0.264 (0.125) 0.514 (0.135)

VMSE 0.023 (0.012) 0.177 (0.068) 0.231 (0.077) 0.448 (0.154)

Table 1
Results of nonlinear boundary examples: K represents the number of treatment levels; n represents the training set
size; the MISC rows show the means and standard deviations (in parenthesis) of the misclassification rates; and the

VMSE rows show the means and standard deviations (in parenthesis) of the value function MSEs. PLS−l1
represents penalized least squares including covariate-treatment interactions with l1 penalty (Qian & Murphy, 2011);

OWL represents the outcome weighted learning, and GOWL1 and GOWL2 represent the proposed generalized
outcome weighted learning with the first and second data duplication methods. In each scenario, the model producing

the best criterion is in bold.
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Methods Dose-Lin Dose-Gau GOWL1-Lin GOWL1-Gau GOWL2-Lin GOWL2-Gau Optimal

1
3.591 3.650 3.869 3.877 3.850 3.714 4.019

(0.109) (0.055) (0.105) (0.085) (0.116) (0.158) (0.112)

2
5.006 5.619 6.228 6.300 6.180 6.280 6.876

(0.279) (0.145) (0.269) (0.313) (0.317) (0.327) (0.213)

Table 2
Results of the means and standard deviations (in parenthesis) of the value functions between GOWL and the dose
finding method (Chen et al. (2016)). Dose-Lin and Dose-Gau represent the method by Chen et al. (2016) under
linear and Gaussian kernels, GOWL1 and GOWL2 represent the proposed methods with the two data duplicate

techniques, and the Optimal column refers to the value function when the optimal ITR is used.
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Model Training Testing
PLS-l1 1.804 (0.001) 1.791 (0.014)

OWL-Linear 1.886 (0.010) 1.888 (0.362)
OWL-Gaussian 2.024 (0.005) 1.996 (0.031)
GOWL1-Linear 2.126 (0.042) 2.101 (0.060)
GOWL2-Linear 2.123 (0.044) 2.103 (0.062)

GOWL1-Gaussian 2.445 (0.005) 2.339 (0.046)
GOWL2-Gaussian 2.429 (0.004) 2.328 (0.044)

Table 3
Analysis Results for the T2DM Dataset without HDL and LDL. Empirical Value Function Results using 5-fold
Cross-Validation with 500 Replications are reported. The abbreviations of methods are the same as those in the

tables of simulation studies.
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When ψ1(x,b), ψ2(x,b)
g(X) + bm+1 < g(X) + bm 6 −1 bm − bm+1 > 0
g(X) + bm+1 6 −1 < g(X) + bm 2 + bm − bm+1 − φ1(g(X) + bm) > 0
−1 < g(X) + bm+1 < g(X) + bm bm − bm+1 + φ1(g(X) + bm+1)− φ1(g(X) + bm) > 0

Table 4
All possible ψ1(x, b) and ψ2(x, b) results


