Developmental Cell, Volume 46

Supplemental Information

FACT Sets a Barrier for Cell Fate Reprogramming

in Caenorhabditis elegans and Human Cells

Ena Kolundzic, Andreas Ofenbauer, Selman I. Bulut, Bora Uyar, Gülkiz Baytek, Anne Sommermeier, Stefanie Seelk, Mei He, Antje Hirsekorn, Dubravka Vucicevic, Altuna Akalin, Sebastian Diecke, Scott A. Lacadie, and Baris Tursun

Supplemental Items

Supplemental Figures S1 – S6 and figure legends Supplemental Tables S6 – S8 and description of all tables Supplemental Tables S1 - S5 can be downloaded as Excel files

Kolundzic et al.

I

C

hmg-3	RNAi: /	ATAC down	hmg-4 F	RNAi: A	TAC down	spt-16 F	RNAi: AT	AC down
<i>de novo</i> motif	P- value	best TF match	de novo motif	P- value	best TF match	<i>de novo</i> motif	P- value T	best F match
s CAGATG	<1e-8	cnd-1 (-)	IGATIGACAS	0.19	ceh-40 (+) ceh-20 (+)	JATA	<1e-8	elt-2/7 (+)
Gas Gale a	<1e-8	unc-55 (+)	actgtcaat	0.2	skn-1 (+)	REPER	<1e-8	_
SA-STUR	<1e-8	lin-32 (-)	TIAPASIT	0.31	—	ICITATCI	<1e-8	elt-1/2/7 (-)
- - I ATTAGA	<1e-8	lin-39 (+)	1941-9441114-149	0.50	pha-4 (-) fkh-6 (-)	IG_CAATCA	<1e-8	ceh-40 (-) ceh-20 (-)
aga COCCC	<1e-8	sptf-3 (-)	IAIA cati	0.53	elt-2/3/7 (+)	ATT GACAG e	8.86e-6	unc-62 (+)
- Googead	<1e-8	_	AAACTGTCAATI	0.85	unc-62 (-)	tCAATCA_A	1.79e-5	ceh-40 (-) ceh-20 (-)
GAATGAG	<1e-8	_	elCichte	0.95	—	ATTICAGE	5.87e-4	
e choloffi I	<1e-8	—	<u>clit(AATca</u> a	0.95	ceh-40 (-) ceh-20 (-)	C r atcaa	0.0063	ceh-40 (-) ceh-20 (-)
A A A A A A A A A A A A A A A A A A A	<1e-8	lin-32 (-)	A#TATAAA	0.98	tbp-1 (-)	A TAAIn	0.25	unc-62 (+)
IGACCO	<1e-8	ztf-14 (+)	IArCAGrCA	0.98	_	II <mark>cA</mark> gII	0.34	php-3 (+)

mg-3 RN	Ai: ATA	C up	hmg-4	RNAi: AT	AC up	spt-16 F	RNAi: A	TAC up
<i>de novo</i> motif	P- value	best TF match	<i>de novo</i> motif	P- value	best TF match	<i>de novo</i> motif	P- value	best TF match
. IGIAA	<1e-8	elt-6 (+)	LAGALGALA	<1e-8	jun-1 (-)	JGA ICA	<1e-8	jun-1 (+)
IGHR G.AS	<1e-8	elt-7 (+)	AATGACICA	<1e-8	jun-1 (-)	ARTRAGAC	<1e-8	_
L.	<1e-8	—	ATCA CTCAT	<1e-8	crh-1 (+)	TEL	<1e-8	B0310.2 (+)
GATCAL +	<1e-8	—	seelfelCecle	2e-8	jun-1 (-)	s she	<1e-8	jun-1 (-)
LA CATEGAT	<1e-8	_	Sel Logian I	1.2e-7	atf-8 (+)	Sollar	<1e-8	tag-97 (-)
	<1e-8	—	ANTI S	1.2e-7	ztf-28 (+)	CccCCCCAC.cc	<1e-8	gei-11 (-)
GTC_ATCATC	<1e-8	—		1.6e-7	lin-1 (-) ets-5 (-) ast-1 (-)	Is <mark>Ac IC</mark> AIR	<1e-8	zip-11 (+)
eqa TCAG	<1e-8	—	I CALLE	1.06e-6	_	e Itale I	<1e-8	ztf-6 (-)
	<1e-8	ztf-16 (+)	CAGerTer	3.33e-6	—	a Gassi CAIsa a	<1e-8	zip-3 (+)
s.TCCIC.A	<1e-8	_	s Aleles	6.72e-6	_	GeoGAAco	<1e-8	_

Figure S5

Kolundzic et al.

Supplemental Figure Legends:

Figure S1. Assessment of Ectopic *gcy-5::GFP* Induction in Germ Cells Upon RNAi Against *hmg-3*, Related to Figure 2

(A) Representative images of $hmg-3^{RNAi}$ animals with and without *che-1^{oe}* (no *hs::che-1* construct in the background), or with only *gcy-5::GFP* (*ntIs1*) construct in the background. *gcy-5::GFP* is not induced upon *hmg-3* RNAi without *che-1^{oe}*. Scale bars, 20 µm.

(B) Quantification of gcy-5::GFP induction in $hmg-3^{RNAi}$ with and without $che-1^{oe}$ (no hs::che-1 construct in the background) or with only gcy-5::GFP (ntIs1) construct in the background. Error bars represent SEM.

(C and D) Representative images of (D) *lmn-1::GFP* and (E) *let-858::GFP* animals after *hmg-3* RNAi. Neither expression of *lmn-1::GFP* nor expression of *let-858::GFP* changes upon FACT depletion. Scale bars, 20 µm.

(E) Quantification of neuronal markers *ceh-36::RFP*, *ift-20::NLS::RFP* and *rab-3::NLS::RFP* in *gcy-5::GFP* positive germline of $hmg-3^{RNAi}$ animals. Error bars represent SEM.

(F and G) Control quantification of smFISH based on counts of hybridization signals (red dots) in (F) ventral nerve cord (VNC) and (G) ASER neurons. For each condition, more than 15 cells were counted for smFISH-derived transcript detection based on fluorescence signals. Ordinary one-way ANOVA was used for statistical analysis. p^1 not significant, $p^2 < 0.0001$.

(H) The germ cell fate marker *pie-1::mCherry::his-58* is lost in reprogrammed germ cells. Dashed lines indicated the outline of the gonad, Asterisk labels distal tip of the germline. Scale bars, 5 mm.

Figure S2. Depletion of HMG-3 Allows Germ Cell Reprogramming to GABA Neuron-Fate and Mass Spectrometry Analysis of HMG-3 / HMG4 Immunoprecipitations, Related to Figures 2 and 3

(A) Representative images for induction of the GABA fate reporter *ttr-39::mCherry* in the germ line of $hmg-3^{RNAi}$ animals upon overexpression of GABA neuron-fate inducing TF UNC-30 (*unc-30^{oe}*). Dashed lines indicated the outline of the worm, boxes indicate the magnification area and arrows in the zoom indicate reprogrammed germ cells. Scale bars, 20 mm, and 5 mM in magnifications.

(B) Quantification of germ cell conversion upon induction of different fate-inducing TFs. Neuronal fate induction can be detected in 20-30% animals after *che-1*^{oe} (ASE neuron) or *unc-30*^{oe} (GABA neuron), but no intestinal or muscle fate induction by over-expressed ELT-7 (*elt-7*^{oe}) or HLH-1 (*hlh-1*^{oe}), respectively. Number of animals counted for each condition are indicated as n. Error bars represent SEM.

(C) Schematic representation of transgenic animals for GABA neuron fate induced by $unc-30^{oe}$. $unc-30^{oe}$ in adults after *hmg-3* RNAi induces reprogramming of germ cell to GABA neurons.

(D) Representative pictures showing that overexpression of intestinal (ELT-7) or muscle (HLH-1) fate-inducing TFs do not convert germ cells into gut or muscle cells in *hmg*- 3^{RNAi} animals. Scale bars, 20 µm.

(E) Germ cell conversion is not lost in the glp-l(gf) mutant background (hyperactive Notch) which lacks meiotic germ cells, but retains mitotic germ cells. More than 150 animals were counted for each condition. Error bars represent SEM.

(F) Reprogramming is independent of cell cycle. Phenotype penetrance remained unchanged after HU-mediated cell cycle arrest (-HU, no treatment, +HU, 6 hr HU treatment). More than 150 animals were counted. Error bars represent SEM.

(G) Time course experiment gcy-5::*GFP* induction in *hmg-4*^{*RNAi*} and *spt-16*^{*RNAi*} animals. Time in h after induction of *che-1*^{*oe*}. More than 150 animals were counted for each time point. Error bars represent SEM.

(H) Time course experiment of gcy-5::GFP induction in hmg- 3^{RNAi} animals. Time in h after induction of *che*- 1^{oe} . More than 150 animals were counted for each time point.

(I and J) In order to assess HMG-3 and HMG-4 protein interactions, coimmunoprecipitations with subsequent mass spectrometry (IP-MS) were performed using protein lysates of HMG-3::HA and HMG-4::HA CRISPR tagged animals. Volcano plots show statistically significant enrichment of co-precipitated proteins by (I) HMG-3::HA IP and (J) HMG-4::HA IP. SPT-16 is the most significant co-precipitated protein for both HMG-3 and HMG-4, indicating that both proteins associate predominantly with SPT-16. All IP-MS measurements and statistical values are provided in Table S2.

Figure S3. Analysis of HMG-3 ChIP-seq, ATAC-seq, and RNA-seq, Related to Figure 4.

(A) Schematic illustration of ChIP-seq, RNA-seq, and ATAC-seq using isolated nuclei of animals treated with RNAi against FACT subunits without induction.

(B) Meta-analysis of library-normalized, input-subtracted HMG-3 ChIP-seq signal at annotated genes where gene bodies have been scaled to a relative length.

(C) Average positional profiles and heat maps of HMG-3 ChIP-seq signal for gene TSS windows classified as HMG-3 high or HMG-3 low (see Methods) and detected in isolated gonad RNA-seq. Signal is library normalized and input subtracted (see Methods).

(D) Log2 ratio of HMG-3 ChIP/Input plotted against FPKM expression values from isolated gonad RNA-seq for genes classified as HMG-3 high. Density scatter plot scale shows number of genes plotted per hexbin.

(E) Distribution violin plots of detected gene FPKM values from isolated gonad RNA-seq for genes with high or low HMG-3.

(F) Log10 gene length for genes determined as HMG-3 high or HMG-3 low and detected in gonad-isolated RNA-seq.

(G) Tissue enrichment analysis of genes identified as HMG-3 ChIP-seq positive using wormbase.org provided analysis (Angeles-Albores et al., 2016).

(H and I) Average positional profiles and heat maps for library-normalized ATAC-seq signal from (H) isolated gonads and (I) whole worms following FACT knockdown for genes classified as HMG-3 high or HMG-3 low and detected in RNA-seq.

(J) Density distributions of isolated gonad ATAC-seq fragment lengths intersecting TSS windows for genes classified as HMG-3 high or HMG-3 low and detected in RNA-seq.

(K) Average positional profiles and heat maps of library-normalized whole worm ATAC-seq signal with and without FACT knockdown. Plots are anchored on downstream edges of promoter-annotating ATAC-seq peaks (see Methods).

Figure S4. RNA-seq Analysis and *de novo* Motif Generation from Worm ATAC-seq, Related to Figure 4.

(A, B, and C) Expression changes in *C. elegans* with RNAi against (A) *hmg-4*, (B) *spt-16*, or (C) containing a mutation in *hmg-3*. Up/down regulated genes are detected based on the differential expression criteria of adjusted p-value of at least 0.1 and at least two-fold increase or decrease in expression levels in relation to the control samples. Transcription levels of these up- and down regulated genes are represented as boxplots.

(D) A heatmap of unsupervised hierarchical clustering of the top 100 genes with most variant gene expression across control, *hmg-4* and *spt-16* RNAi samples shows that $hmg-4^{RNAi}$ and *spt-16*^{RNAi} are more similar to each other than the control. Independently generated biological replicates clustered together (individual samples and batches are indicated).

(E and F) Venn-diagram showing overlap of (E) up-regulated and (F) down-regulated genes (numbers given) in $hmg-4^{RNAi}$ and $spt-16^{RNAi}$ animals.

(G) Log2 fold-changes in expression levels from whole worm RNA-seq after *hmg*- 3^{RNAi} plotted against log2 ratio of HMG-3 ChIP/Input for genes classified as HMG-3 high and detected in the RNA-seq. Density scatter plot scale shows number of genes plotted per hexbin.

(H) –Log10 enrichment pvalues of genes assigned only up-regulated or only down-regulated ATAC-seq peaks that intersected genes detected as up- or down-regulated in differential RNA-seq analysis for *spt-16* (left), *hmg-4* (middle), and *hmg-3* (right) depletion experiments.

(I-K) Browser shots of library-normalized, input-subtracted HMG-3 ChIP-seq signal, library-normalized ATAC-seq from isolated gonads, library-normalized ATAC-seq signal from whole worms with and without RNAi against *hmg-3, hmg-4,* or *spt-16,* and library-normalized RNA-seq signal with and without RNAi against *hmg-3, hmg-4,* or *spt-16.* Genes and ATAC-seq peaks called as differentially regulated upon FACT knockdown are shown below the respective signal tracks.

(L and M) *De novo* motif generation (see Methods) in closing (L) or opening (M) regions upon $hmg-3^{RNAi}$, $hmg-4^{RNAi}$ and $spt-16^{RNAi}$. Top 10 enriched motifs for each indicated set together with the p value and the best TF match are given. The orientation of the generated motif relative to the best TF match in the database is indicated in parentheses.

Figure S5. FACT siRNA Knockdown efficiency and Pluripotency Marker Expression in FACT-Depletion Derived iPSCs, Related to Figure 5

(A) Quantitative RT-PCR (qRT-PCR) analysis to confirm knock-down of SSRP1, SUPT16H and TP53 at 24 h, 48 h, 72 h and 7 days after transfection with siRNAs.

(B) qRT-PCR analysis for expression of levels of Oct4, Sox2, Klf4, and c-Myc 48 hours after SSRP1 or SUPT16H depletion. Gene expression levels were normalized to GAPDH expression levels and compared to control siRNA. Error bars represent SD.

(C and D) Representative images of antibody staining for NANOG, OCT4, SOX2 SSEA-4 and Tra-1-60 in iPSC colonies derived from SSRP1 (C) or SUPT16H (D) depleted hiF-T cells. Scale bars, 25 µm.

Figure S6. FACT ChIP-seq, RNA-seq, and ATAC-seq Analysis, Related to Figure 6.

(A) Meta-analysis of library- and input-normalized SSRP1 and SUPT16H ChIP-seq signal at annotated genes. Signal in gene bodies is scaled to relative lengths.

(B) Log2 ratio of SSRP1 ChIP/Input plotted against FPKM expression values from control RNA-seq for genes classified as FACT high and detected in the RNA-seq. Density scatter plot scale shows number of genes plotted per hexbin.

(C) Log2 fold-changes in expression levels from RNA-seq after SSRP1 knockdown plotted against log2 ratio of SSRP1 ChIP/Input for genes classified as FACT high and detected in the RNA-seq. Density scatter plot scale shows number of genes plotted per hexbin.

(D) Average positional profiles and heat maps of library- and input-normalized SSRP1 ChIP-seq signal for genes whose TSS windows classified as FACT high or FACT low (see Methods).

(E-G) Violin distribution plots of wild-type RNA-seq FPKM expression values, E, ATAC-seq counts in promoter windows, F, and log10 gene lengths, G, for genes classified as FACT high or FACT low and detected in the RNA-seq.

(H) Average positional profiles and heat maps of H2AFZ, H3K4me3, and H3K27ac ChIP-seq signal from ENCODE human lung fibroblasts datasets for genes classified as FACT high or FACT low and detected in the RNA-seq.

(I) *De novo* motif generation results (Methods) in closing and opening regions upon SSRP1^{RNAi} and SUPT16H^{RNAi}. Top 5 enriched motifs for each indicated set together with the p value and the best TF match are given. The orientation of the generated motif relative to the best TF match in the database is indicated in parentheses.

(J) Observed/Expected Go analysis enrichments using PANTHER on differentially expressed genes called as up-regulated or down-regulated in either SSRP1 or SUPT16H knockdown compared to all genes detected in the RNA-seq analysis.

(K) -Log10 enrichment pvalues of genes assigned only up-regulated or only downregulated ATAC-seq peaks following SSRP1 or SUPT16H knockdown that intersect genes called as differentially expressed in RNA-seq after SSRP1 or SUPT16H knockdown.

(L) Browser shots as described in Figure 7M for BMP2, SUMO2, SUV39H1, and KDM4C genes.

Supplemental Table S6. Summary of FACT depletion effects based on RNA-seq and ATAC-seq in *C. elegans* and Human Cells, Related to Figures 4, S3, S4, 6, and S6

WORM:

RNA-seq

299/3596 genes bound strongly by hmg-3 ('HMG-3 high genes') are UP in hmg-3 RNAi 540/3596 genes bound strongly by hmg-3 ('HMG-3 high genes') are DOWN in hmg-3 RNAi 3593/15711 genes bound moderately by hmg-3 ('HMG-3 low genes') are UP in hmg-3 RNAi 3136/15711 genes bound moderately by hmg-3 ('HMG-3 low genes') are DOWN in hmg-3 RNAi

ATAC

592/3596 genes bound strongly by hmg-3 ('HMG-3 high') have assigned UP peaks in hmg-3 RNAi 369/3596 genes bound strongly by hmg-3 ('HMG-3 high') have assigned DOWN peaks in hmg-3 RNAi 2021/15711 genes bound moderately by hmg-3 ('HMG-3 low') have assigned UP peaks in hmg-3 RNAi 2006/15711 genes bound moderately by hmg-3 ('HMG-3 low') have assigned DOWN peaks in hmg-3 RNAi

HUMAN:

RNA

758/6337 genes bound strongly by FACT ('FACT high') are UP in either SSRP1 or SUPT16H RNAi 884/6337 genes bound strongly by FACT ('FACT high') are DOWN in either SSRP1 or SUPT16H RNAi 453/2959 genes bound moderately by FACT ('Iow') are DOWN in either SSRP1 or SUPT16H RNAi 324/2959 genes bound moderately by FACT ('Iow') are UP in either SSRP1 or SUPT16H RNAi

ATAC

1072/6337 'FACT high' genes have assigned UP peaks in either SSRP1 or SUPT16H RNAi 1089/6337 FACT high genes have assigned DOWN peaks in either SSRP1 or SUPT16H RNAi 539/2959 FACT low genes have assigned UP peaks in either SSRP1 or SUPT16H RNAi 544/2959 FACT low genes have assigned DOWN peaks in either SSRP1 or SUPT16H RNAi

Table S7. C. elegans strains used in the study, Related to STAR Methods

Name	Genotype
BAT012	barIs12[elt-2prom::gfp; myo-3p::NmBirAo]
BAT026	otls284 [hsp-16.48prom::che-1::3XHA::BLRP; rol-6(su1006)]; ntls1 [gcy-5::gfp; lin- 15b(+)] V: hdls30 [glr-1::dsRED]
BAT028/OH9846	otIs305 [hsp-16.48prom::che-1::3XHA::BLRP; rol-6(su1006)]; ntIs1 [gcy-5::gfp; lin- 15b(+)] V.
BAT032	glp-1(ar202) III.; otIs305 [hsp-16.48prom::che-1::3XHA::BLRP; rol-6(su1006)]; ntIs1 [gcy-5::gfp; lin-15b(+)] V.
BAT044	juls244 [ttr-39prom::mCherry, ttx-3prom::gfp]; otls305 [hsp-16.48prom::che- 1::3XHA::BLRP; rol-6(su1006)]; ntls1 [gcy-5::gfp; lin-15b(+)] V.
BAT046	otIs133 [ttx-3prom::mCherry]; otIs284 [hsp-16.48prom::che-1::3XHA::BLRP; rol- 6(su1006)]; ntIs1 [gcy-5::gfp; lin-15b(+)] V.; hdIs30 [glr-1::dsRED]
BAT068	otEX4945 [hs:hlh-1, rol-6(su1006)]; mgIs25 [unc-97prom::gfp]
BAT109	otIs305 [hsp-16.48prom::che-1::3XHA::BLRP; rol-6(su1006)] V.
BAT139	stIs10086 [ges-1::H1-Wcherry + unc-119(+)]
BAT160	itIs37 [pie-1p::mCherry::his-58(pAA64), unc-119(+)]; otIs305 [hsp-16.48prom::che- 1::3XHA::BLRP; rol-6(su1006)] ntIs1 [gcy-5p::GFP, lin-15(+)] V.
BAT282	barIs40 [vit-5::2xNLS::TagRFP]
BAT284	stIs10131 [elt-7::H1-wCherry + unc-119(+)]
BAT287	ntIs1 [gcy-5::gfp; lin-15b(+)] V.
BAT326	otls263 [ceh-36prom::tagRFP]; otls305 [hsp-16.48prom::che-1::3XHA::BLRP; rol- 6(su1006)]; ntls1 [gcy-5::gfp; lin-15b(+)] V.
BAT453	barEx147 [hsp-16.4prom::unc-30; hsp-16.2prom::unc-30; rol-6(su1006)]; juIs244 [ttr- 39prom::mCherry, ttx-3prom::gfp]
BAT522	otis393 [ifi-20prom::NLS::tagRFP]; otIs305 [hsp-16.48prom::che-1::3XHA::BLRP; rol 6(su1006)]; ntIs1 [gcy-5::gfp; lin-15b(+)] V.
BAT525	hmg-3 (tm2539) / dpy-5(e61) unc-13(e1091) I.
BAT527	otIs355 [rab-3prom::NLS::TagRFP]; otIs305 [hsp-16.48prom::che-1::3XHA::BLRP; rol-6(su1006)]; ntIs1 [gcy-5::gfp; lin-15b(+)] V.
BAT606	edIs6 [unc-119::gfp + pRF4[rol-6(su1006)]] IV.; otIs305 [hsp-16.48prom::che- 1::3XHA::BLRP; rol-6(su1006)] V.
BAT1560	hmg-3(bar24[hmg-3::3xHA]) I. protein tag CRISPR engineered
BAT1753	hmg-3(bar24[hmg-3::3xHA]) I. 2x outcrossed
BAT1945	jun-1(gk557) II; otIs305[hsp::che-1::3xHA, rol-6] ntIs1[gcy-5::GFP]
BAT1967	hmg-4(bar32[hmg-4::3xHA]) III
JR3373	wIs125[hsp-16-2::elt-7 hsp-16-41::elt-7]; rrIs1 [elt-2::GFP + unc-119(+)]
LW697	ccls4810[pJKL380.4; lmn-1p::lmn-1::GFP::lmn-1 3'utr + pMH86; dpy-20(+)] I.
NL2507	<i>pkIs1582[let-858::GFP</i> + <i>rol-6(su1006)]</i>
SS104	glp-4(bn2) I.
OD56	<i>ltIs</i> 37[pie-1p::mCherry::his-58 unc-119(+)];unc-119(ed3) III.

Supplemental Table S8. Sequences of smFISH Oligos, PCR primers, and siRNAs, Related to Star Methods

7A. smFISH probes		
rrobe set	Sequences	rluorophore
	catteggatgetecaagaac	
	caattecaactegaagegte	
	caattggaagagttccacca	
	tategeatteggtatattee	
	teccactacaacatetacat	
	leccuciaculculculcul	
	tattggtatcagccaactgg	
	anggarougeeanergg	
	tgccactcgatcaaattgga	
	tttacagtagtcttggtcgt	
	ettaaggttgeeteaacate	
	enniggingeorennouro	
	atccgcactggatatagatc	
	0 00 0	4
	cgatettgttaatgeeteat	
	tacgagetegaetetttaca	
	ggaccactaattgcgcataa	
	5.5	
	ccaatactcctcattgtcaa	
	tettteecaaacttgtttgt	
	togagttagtccatttgcaa	
	Bengungroounigoun	
	ctactgtgaatgactcccaa	
	atttetaacageateegeaa	
	tgccatcccgtataagtaaa]
	tagtaaccatttgcggcata	1
	gcggtagagattttgaccaa	1
	tcatgttaactagtgccact	Ι.
gcy-5_set1	ccataacaattacaaaaaca	Fluor Red 610
	ccgtgacaattgcgaagacg	
	egittitettittgiggeat	
	gtgatettegaetatttgge	
	acttteteeggttatagttg	
	gctatgatgtttggtggtta	
	attteteettettettta	
	ggtccatcgatagataatcc	
	gatatectgaagtgatecte	
	aaagtteataceetetgeaa	
	ggcaagtagctgaacgtaga	
	cteccaatecaaaatetgtt	
	tacgattteeteettttte	
	aagtattaactccggtcgga	
	acttgcaaatttgctcagct	
	gttctgcaacttgttttgga	
	tctccaattgattccacttt	
	tgtcggtaacccagaaacac	
	ggaacettgaagetettaca	
	gcccactattaattccaatt	
	otagatagagagagagaga	
		4
	gtatecceaaataggeaata	
	tttecattactttecattet	
	tgtgcagettetgacatatg	
	tctcctcttgaacttgtttc	
	tgtttccattacaccttttc	
	gattttgtgtcactgtcagt	
	gtgtagaagttggtggtcat	
	ggataagcagtotagccgag	
	tacaacaacaaatacaaat	
	atatagagatagata	1
	argrangaergggrgeegrg	1
	caugicgugagettgtgg	1
	ttcactgtttggagccattg	1
	ctctgttgaacgaggtacgt	
	ttttccagctgatcgagttg	
	gatactgtgtttcgcggaaa	
	gettetettetgtgeacate	
	caaattgattgccttcgcca	
	ttacttgtaccettecatea	
	agatttttaanaanaaaat	
	-taningaaccaaaccyl	1
	gtigtitetateettggete	
ceh-36 setl	gatggactccatccattttt	Fluor Red 610
	gatettgatgaagtgettee	
	cgttgtgtggagaaccattg	l
	gtgatttagtatcaggcttt	
	tgtgcctggtatgtgaattc	1
	cactgtgtgcattgaattcc	
	gagttfgeeteatatttgge	1
	ttacaattaactacaacta	
	ngeagugaeicaagaeig	4
	agteeteeagtteacttttt	
	atttggtatctgcaagtggt	1
	cttgagcctgaggaagaagt	
	agttgcgtaggatgcatatg	
	tagttgtacgggtaaggagc]
	gtttgatgggaagtagctgt	
	tgettecatattgttggtag	1
	aggcagtaatatttggggtg	

7B. Oligonucleotides used for qRT-PCR				
Name	Sequence			
SSRP1 fwd	TTTGCCCAGAATGTGTTGTC			
SSRP1 rev	AGTCAAAGGTCTTGCCATGC			
SUPT16H fwd	GCAGAAGAGAAGCGAAGAGC			
SUPT16H rev	TTTCCCGAATATGTGGTTCC			
TP53 fwd	TCAACAAGATGTTTTGCCAACT G			
TP53 rev	ATGTGCTGTGACTGCTTGTAGA TG			
GAPDH fwd	TGCACCACCAACTGCTTAGC			
GAPDH rev	GGCATGGACTGTGGTCATGAG			
POU5F1 fwd	GAGAACCGAGTGAGAGGCAAC C			
POU5F1 rev	CATAGTCGCTGCTTGATCGCTT G			
SOX2 fwd	GCCGAGTGGAAACTTTTGTCG			
SOX2 rev	GCAGCGTGTACTTATCCTTCTT			
KLF4 fwd	ACCAGGCACTACCGTAAACAC A			
KLF4 rev	GGTCCGACCTGGAAAATGCT			
MYC fwd	CGTCTCCACACATCAGCACAA			
MYC rev	CACTGTCCAACTTGACCCTCTT G			

7C. List of siRNAs and their sequences						
Targeted gene	siRNA pool ID	siRNA Name Sequence				
mock	D-001210-01-05	siGENOME NUAGCGACUAAACACAUCAA				
RLuc	P-002070-01-20	RLuc Duplex AAACAUGCAGAAAAUGCUG				
		D-003329-05 GAGGUUGGCUCUGACUGUA				
TD52	MU 002220 02 0002	D-003329-07 GCACAGAGGAAGAGAAUCU				
1135	MU-003329-03-0002	D-003329-08 GAAGAAACCACUGGAUGGA				
		D-003329-26 GCUUCGAGAUGUUCCGAGA				
	MU-011783-01-0002	D-011783-01 GAUGAGAUCUCCUUUGUCA				
CCDD1		D-011783-03 GACUUAAACUGCUUACAAA				
SSKFI		D-011783-04 GCAAGACCUUUGACUACAA				
		D-011783-17 GAGGGAGGAGUACGGGAAA				
	MU-009517-00-0002	D-009517-01 GAAGAUAUGUGACGUGUAU				
CUDT1/U		D-009517-02 GAACAAAGUCGAAGUAUGA				
SUPTION		D-009517-03 AGACAUGGCUCUUUGGUUA				
		D-009517-04 GAAGAACUUUGAUAUGGUA				

	caaagttctgatcgggttgt	
	atcaggagcttgaacatgta	_
	ceteacagtaacggaagagg	
	gtagagacgaaggcagaagt	-
	cactttgaaatcgattccga	
	tttgtctccacggaacacag	
	ggtatcccagatttgaagtt	
	gatagtaggcggtggtgatg	_
	cagaatgaatcccattgctc	
	actetteattagtgatgtea	
	ttteecatgagtatgtettg	-
	ccaaccaaaacaacttgagc	-
	ttcagagtccatatcacatt	
	ccctatccatagatacaact	
	aagttgatcagcaagttggc	
rab-3_set1	ggctgatgtttcgaagaatt	Fluor Red 610
	cetttacattaatgttetee	
	tetgeostetteteneoset	
	ctgccatcitatcacaaa	
	ttcgagcttctgtccttttg	-
	aattgcattgctgttgagca	
	attgcgtttggaatttggga	
	agagetacgegettttagaa	
	cctagatgttgagagaggga	_
	tttacgatccatatatctgg	_
	taattaaaccaactacgccc	_
	ggggaatatgattgaacgtt	
	gctctgggaattgtttggaa	_
	ggegaetaigattagttaga	
	aatcaatctttcagcgggtg	
	cctcgaaaataatttcctcc	
	taaatccggcatcatcgacg	
	ttcacgttcttctgcagata	
	ccgtgatctgtttgtctaac	
	agatttgacagatcgcgtca	
	caatteegteegcaaatttg	
	cagattgccttatttttgct	
	gattitgactcattggctgt	
	tttoteetttottootttto	-
	aggcgtttgtttcatagttc	
	tettgttgtccatgttgatt	
	attetetetettettettet	
	tctcggaatttccagtgtag	
	ggttgttttggttctgattc	
	ggttcaaatggtcgtcagta	
	tcgaagttgcctatgcaatc	
	cgagtttttatgatcgccat	
	atggtgacaaggacagcgat	
	tooctocagaattttcagtt	
	gtaatgaatgcaccgagett	
	atgtggcattttgcagagac	-1
	ttgcagcgatgctatcatat	-1
une 10 set	gaatacgccgaggatgacat	Eluor Ped 610
unc-10_sell	gatggatatgcagatggcac	Fluor Ked 010
	ggctgattgtgaatgtggta	_
	gatgtcgaacgattgcgtga	_
	gagcaactgagagttgtcga	
	aaaciggcatgagtgtctct	
	togtaatoccagacaottao	
	gtcatttggggcaagatgat	
	tegtegtegteaatgtatte	-1
	atgatcagatgtgtagcctg	
	tgttggatcgtacatatcct	
	tccatcactataatatccct	_
	cattgtagttggcatgctat	_
	aaacttttetttegeteett	_
	cctcagatctagcaaaaccg	
	gtgagccgatctgaagacaa	
	oceaacttotctaaataaac	
	aagcacttgacgaccgacaa	
	cttttacatagggagctgga	-1
	tttggcaatgcattgtttgc	
	ttecatacgacegtaateae	
	tttgcgaaatccccatgaat	
	cagtttataccaccctatta	
	cgatcgattgttgttgttgc	_
	catctgagacgggaaggttg	
l	gttatagcctgttcggttac	

	tgatttttcgcgagaagctc	
	agagetageacateatttgg	
	gcataggaatccttgagtga	
	ttatagacgtttgccgatgg	
	cgaggtcacggatttggaat	
	gcaatttcgaagagcacgtg	
	attetetteegteteatttt	
unc-119_set1	gatateggacatatettgee	Fluor Red 610
	aatgtgtgatcggcacatcg	
	aagtgccgttcaatcattcg	
	gcatttcaataaacgatcct	
	ggcatacagaatccaaattc	
	tgttcacagttgtttctcga	
	gttgttgtgaaagttgtgga	
	attattgatcatgtcgtcca	
	aatagaagctatcggagcgg	
	gtgcattacgagcttattct	
	tgcatcatacgagtagtcgg	

Supplemental Tables:

Table S1. Whole-Genome RNAi screening results, Related to Figure 1 (provided as Excel file)

Table S2. Results of HMG-3 and HMG-4 Co-Immunoprecipitation with subsequent Mass Spectrometry analysis, Related to Figure S2 and Mass Spectrometry Analysis as described in Star Methods (provided as Excel file)

Table S3. ChIP-seq, ATAC-seq and RNA-seq analysis of *hmg-3, hmg-4, and spt-16*, Related to Figures 4, S3 and S4 (provided as Excel file)

Table S4: ChIP-seq for SSRP1 and SUPT16H with RNA-seq analysis of SSRP1 and SUPT16H knockdown, Related to Figures 6 and S6 (provided as Excel file)

Table S5. ATAC-seq analysis of SSRP1 and SUPT16H knockdown, Related to Figures 6 and S6 (provided as Excel file)

Table S6. Summary of FACT depletion effects based on RNA-seq and ATAC-seq in C. elegans and Human Cells, Related to Figures 4, S3, S4, 6, and S6

Table S7. C. elegans strains used in the study, Related to STAR Methods

Table S8. Sequences of smFISH Oligos, PCR primers, and siRNAs, Related to Star

 Methods