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Supplementary Notes 
Supplementary note 1: Ground State calculations within the DFT method. 

Zero-field case. The electronic structure of the monolayer MoSe2 was calculated by static DFT 
calculations, as implemented in the Quantum Espresso package [1], by using the PBE XC ultra 
soft potential while taking into account spin-orbit coupling (SOC) and Van de Walls (VdW) 
corrections and sampling the BZ with 14x14x1 ok k-points mesh. The DFT calculations show that 
the spin-up and spin–down bands are split by 187.3 meV for the valence and 20.7 meV for the 
conduction band and display opposite spin ordering while the one-particle optical band gap EG is 
about 1.45eV (see Supplementary Figure 1). The results for the gap and for the valence band 
splitting are in a rather good agreement with experimental data 1.58 eV and 180 meV, respectively 
[2]. Similarly, the conduction band splitting is also in agreement with experimental estimations 
~10 meV [3]. The band splitting has the opposite spin ordering in K and K’ points. A schematic 
band-ordering in different valleys is shown in Supplementary Figure 2.  Due to the strong spin-
orbit coupling, the effects of magnetic field can be treated safely as a perturbation, at fields up to 
25T, which induces an additional splitting to the zero-field bands.  

 
Supplementary Figure 1. Electronic band structure of 1L MoSe2 with SOC-split valence and 
conduction bands at K-point (at K’-point the order of the split bands is opposite). 
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Supplementary Figure 2. Schematic representation of the K and K’ valley energetics with marked 
excitonic levels in 1L MoSe2 at zero magnetic field.   

Finite field. At used fields, B ≤ 25T, the magnetic length lB = � ℏ
eB

= 25.6
�B(T)

nm is always much 

larger than the zero-field exciton radius in 1L MoSe2, ~1nm. Also, the cyclotron energy ℏωc =
ℏ √2v

lB
~0.01�B(T)eV (v~ at

ℏ
~106 m

s
 - “Fermi velocity”) is much smaller than the exciton binding 

energy, ~0.5eV, and the band splitting. Therefore, the effects of the magnetic field can be regarded 
as a perturbation. In the lowest-order approximation, one can regard the DFT (electron) wave 
functions, as well as exciton and biexciton wave functions and eigenenergies, to be field-
independent. However, as it will be shown below, the magnetic field significantly affects the 
excited charge density, thus one needs to take the Landau level splitting of the electronic and hole 
spectra into account. Here we briefly show how it is done in practice in this work.   
 
Let us begin by considering an effective low-energy four (two-valence and two-conduction) band 
model for 1L MOSe2 at zero field. The corresponding minimal Hamiltonian includes the valence 
|𝜙𝜙𝑣𝑣𝜏𝜏⟩ = 1

√2
�|𝑑𝑑𝑥𝑥2−𝑦𝑦2� + 𝑖𝑖𝑖𝑖|𝑑𝑑𝑥𝑥𝑦𝑦�� (𝑖𝑖 = ±1 is the valley index) and conduction |𝜙𝜙𝑐𝑐⟩ = |𝑑𝑑𝑧𝑧2⟩ bands 

(see, e.g., Ref. [4]) for 1L MoS2), and has the following form:  

𝐻𝐻� = 𝑎𝑎𝑎𝑎�𝑖𝑖𝑘𝑘𝑥𝑥𝜎𝜎�𝑥𝑥 + 𝑘𝑘𝑦𝑦𝜎𝜎�𝑦𝑦� +
∆
2
𝜎𝜎�𝑧𝑧 − 𝜆𝜆𝑣𝑣𝑖𝑖

𝜎𝜎�𝑧𝑧 − 1
2

�̂�𝑠𝑧𝑧 − 𝜆𝜆𝑐𝑐𝑖𝑖
𝜎𝜎�𝑧𝑧 + 1

2
�̂�𝑠𝑧𝑧 ,                                                (𝐴𝐴. 1) 

where  𝜎𝜎�𝑧𝑧 is the Pauli matrix operator acting in the valence and conduction band “space”, �̂�𝑠𝑧𝑧 is the 
spin projection matrix; ∆ is the bandgap, 2𝜆𝜆𝑣𝑣 and 2𝜆𝜆𝑐𝑐 are splittings of the valence and conduction 
band, correspondingly.  

Diagonalization of this Hamiltonian gives 
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𝐸𝐸𝜏𝜏𝑠𝑠𝑧𝑧(𝑘𝑘) = 1
2

(𝜆𝜆𝑣𝑣 − 𝜆𝜆𝑐𝑐)𝑖𝑖𝑠𝑠𝑧𝑧 ± �𝑎𝑎2𝑎𝑎2𝑘𝑘2 + 1
4

(∆ − (𝜆𝜆𝑣𝑣 + 𝜆𝜆𝑐𝑐)𝑖𝑖𝑠𝑠𝑧𝑧)2 ≈

                                               �
∆
2
− 𝜆𝜆𝑐𝑐𝑖𝑖𝑠𝑠𝑧𝑧 + (𝑎𝑎𝑎𝑎𝑎𝑎)2

∆
 (𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐)

−∆
2

+ 𝜆𝜆𝑣𝑣𝑖𝑖𝑠𝑠𝑧𝑧 −
(𝑎𝑎𝑎𝑎𝑎𝑎)2

∆
 (𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑣𝑣)

.                                                    (𝐴𝐴. 2)  

In the first line of this equation, “+” corresponds to conduction and “-” to the valence band. Since  
𝜆𝜆𝑣𝑣~0.09𝑣𝑣𝑒𝑒, 𝜆𝜆𝑐𝑐~0.01𝑣𝑣𝑒𝑒, t~0.94eV, and 𝑎𝑎𝑘𝑘 usually is significantly smaller than π (at not very 
wide pulses, a small part of the BZ is excited), in the first line all quantities are small compared to 
the gap Δ~1.47eV, one can get an approximate spectrum in the second line of the equation. Thus 
the valence band in each valley is split by 2𝜆𝜆𝑣𝑣, but the spin order in K and K’ valley is different 
(for 𝑖𝑖 = 1 or 𝑖𝑖 = −1). Similar conclusion is valid for the conduction band. 

In the case of magnetic field (for 1L MoS2, see. e.g., Ref. 5), one can make in the Hamiltonian 
(A.1) the substitution 𝑘𝑘�⃗ → 𝜋𝜋�⃗ = 𝑘𝑘�⃗ + 𝑒𝑒

𝑐𝑐
𝐴𝐴, where the field satisfies the Landau gauge 𝐴𝐴(𝑟𝑟) =

(0,𝐵𝐵𝐵𝐵), and uses the fact that when the fields are not too strong, 𝜋𝜋𝑥𝑥 + 𝑖𝑖𝜋𝜋𝑦𝑦 coincides with the 
lowering operator. Thus, in the magnetic case square of the kinetic energy  𝑎𝑎2𝑎𝑎2𝑘𝑘2 “transforms” 
into square of the (2D) magnetic energy for given Landau level ℏ2𝜔𝜔𝑐𝑐2𝑐𝑐, where 
ℏωc~0.01�B(T)eV. In other words, parabolic band described by momenta k, transforms into the 
set of Landau levels that “fill out” the parabola. In this case, one gets the Landau spectrum 

𝐸𝐸𝑛𝑛 =
1
2

(𝜆𝜆𝑣𝑣 − 𝜆𝜆𝑐𝑐)𝑖𝑖𝑠𝑠𝑧𝑧 ± �ℏ2𝜔𝜔𝑐𝑐2𝑐𝑐 +
1
4

(∆ − (𝜆𝜆𝑣𝑣 + 𝜆𝜆𝑐𝑐)𝑖𝑖𝑠𝑠𝑧𝑧)2 =

≈

⎩
⎨

⎧∆
2
− 𝜆𝜆𝑐𝑐𝑖𝑖𝑠𝑠𝑧𝑧 +

ℏ2𝜔𝜔𝑐𝑐2𝑐𝑐
∆

 (𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐)

−
∆
2

+ 𝜆𝜆𝑣𝑣𝑖𝑖𝑠𝑠𝑧𝑧 −
ℏ2𝜔𝜔𝑐𝑐2𝑐𝑐
∆

 (𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑣𝑣)
,                                                               (𝐴𝐴. 3) 

where we have used the fact that ℏωc ≪ ∆. 

We use the last line approximation to correct the zero-field DFT spectrum in the case of magnetic 
field. Namely, we use this spectrum to calculate the Slater XC matrix elements that define the 
exciton-exciton and exciton-biexciton interactions (the number of occupied valence states (within 
fixed to the zero-field valence band energy range), and hence of the excited-in-the-field states, 
decreases with the field strength increasing). Notice that, the distance between the Landau levels 
is small compared to the band splitting. For fields at 25T, for instance, the splitting is 
approximately 2meV, whereas the conduction band splitting is 20meV, while it increases linearly 
with respect to the field. The latter affects significantly the number of excited charges (scatterers) 
at given pulse energy width (see Figure 3) something that plays a crucial role in the field-
dependence of the TI-FWM spectrum. 
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Supplementary Figure 3. Schematic illustration of the effect of the magnetic field on the 
electronic and absorption spectra of 1L MoSe2. The increased relaxation times in the finite-field 
case can be explained by reduced screening of the exciton-exciton interaction by free excited 
carriers as shown at the bottom right figure. The number of such carriers is lower at finite B due 
to increased distance between the occupied and unoccupied levels as shown in the top two figures. 
Thus, a pulse of fixed energy width excites less charges as B increases, see bottom left figure. 
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Supplementary note 2: Third-order polarization equations and TI-FWM signal by TD-
DMDFT 

To derive the TD-DMDFT equations for excitons, one can start from the TDDFT Kohn-Sham 
equation 

i
∂Ψ𝐤𝐤v(r, t)

∂t
= �−

∇��⃗ 2

2m
+ VH[n](r, t) + VXC[n](r, t) + er⃗E��⃗ (t)�Ψ𝐤𝐤v(r, t),                                          (B. 1) 

where the terms of the Hamiltonian (inside the brackets) are the kinetic energy operator (first), the 
Hartree (second) and XC (third) potentials, and the last term in our case is an external 
homogeneous-in-space electric pulse field; k is the wave vector, v are the wave vector and the 
valence-band index, correspondingly. Equation (B.1) is solved self-consistently with the equation 
for the electron density 
 
n(𝐫𝐫, t) = � �Ψ𝐤𝐤l (𝐫𝐫, t)�

2

l,|𝐤𝐤|<kF

                                                                                                                    (B. 2) 

(l is the band index).  
To solve Eqs. (B1) and (B2) by using the DM formalism, one expands the KS wave function in 
terms of the basis (DFT) static wave functions 𝜓𝜓𝒌𝒌𝑙𝑙 (𝒓𝒓): 
Ψ𝐤𝐤v(𝐫𝐫, t) = � c𝐤𝐤l (t)ψ𝐤𝐤

l (𝐫𝐫)
l

,                                                                                                                    (B. 3) 

where the time-dependent coefficients ckl (t) completely describe the dynamics of the system. To 
study the system’s response, it is more convenient to consider the bilinear combination of c-
coefficients, the density matrix:  

ρkqlm(t) = ckl (t)cqm∗(t)                                                                                                                              (B. 4) 

that describes the state occupancies (diagonal elements), and the electron and hole transitions, 
including the excitonic effects (non-diagonal elements). 

The density matrix satisfies the Liouville equation 

i
∂ρkqlm(t)
∂t

= [H(t),ρ(t)]kqlm ,                                                                                                                    (B. 5) 

where the matrix elements of the Hamiltionian are 

Hkq
lm(t) = �ψk

l∗(r)H[n](r, t)ψq
m(r)dr.                                                                                               (B. 6) 

In TD-DMDFT in the case of two different types of excitons (A and A or A and B excitons in K 
and K’ (or 1 and 2) valleys with same or opposite spins), the equations for the third-order 
polarization have the following form [6] 
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𝑖𝑖
𝜕𝜕
𝜕𝜕𝑎𝑎
𝑃𝑃1𝒌𝒌(𝑎𝑎)  = �𝜀𝜀𝒌𝒌

𝑐𝑐1 − 𝜀𝜀𝑎𝑎
𝑣𝑣1 −

𝑖𝑖
𝑖𝑖𝑋𝑋1

� 𝑃𝑃1𝒌𝒌(𝑎𝑎) + 2�� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐹𝐹11𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)𝑃𝑃1𝒌𝒌(𝑎𝑎′)

𝑞𝑞

+ 𝒅𝒅𝒌𝒌
 𝑐𝑐1𝑣𝑣1𝑬𝑬(𝑎𝑎)          

+ � 𝑃𝑃1𝑞𝑞∗ (𝑎𝑎)� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐻𝐻11𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)𝑃𝑃1𝒌𝒌(𝑎𝑎′)

𝑞𝑞,𝑝𝑝,𝑄𝑄

𝑃𝑃1𝒌𝒌(𝑎𝑎′)

+ � 𝑃𝑃2𝑞𝑞∗ (𝑎𝑎)� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐻𝐻12𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)𝑃𝑃1𝒌𝒌(𝑎𝑎′)

𝑞𝑞,𝑝𝑝,𝑄𝑄

𝑃𝑃2𝒌𝒌(𝑎𝑎′) 

                        +∑ 𝑃𝑃1𝑞𝑞∗ (𝑎𝑎)∫ 𝑑𝑑𝑎𝑎′𝑎𝑎
−∞ 𝐹𝐹21𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)B𝟏𝟏𝟏𝟏𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎′)𝑞𝑞,𝑝𝑝,𝑄𝑄  

                        +∑ 𝑃𝑃2𝑞𝑞∗ (𝑎𝑎)∫ 𝑑𝑑𝑎𝑎′𝑎𝑎
−∞ 𝐹𝐹22𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)B𝟏𝟏𝟏𝟏𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎′)𝑞𝑞,𝑝𝑝,𝑄𝑄                                           (𝐵𝐵. 7) 

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑎𝑎
𝑃𝑃2𝒌𝒌(𝑎𝑎) = �𝜀𝜀𝒌𝒌

𝑐𝑐2 − 𝜀𝜀𝑎𝑎
𝑣𝑣2 −

𝑖𝑖
𝑖𝑖𝑋𝑋2

� 𝑃𝑃2𝒌𝒌(𝑎𝑎) + 2�� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐹𝐹22𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)𝑃𝑃2𝒌𝒌(𝑎𝑎′)

𝑞𝑞

+ 𝒅𝒅𝒌𝒌
 𝑐𝑐2𝑣𝑣2𝑬𝑬(𝑎𝑎)

+ � 𝑃𝑃2𝑞𝑞∗ (𝑎𝑎)� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐻𝐻22𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)𝑃𝑃2𝒌𝒌(𝑎𝑎′)

𝑞𝑞,𝑝𝑝,𝑄𝑄

𝑃𝑃2𝒌𝒌(𝑎𝑎′)

+ � 𝑃𝑃1𝑞𝑞∗ (𝑎𝑎)� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐻𝐻21𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)𝑃𝑃2𝒌𝒌(𝑎𝑎′)

𝑞𝑞,𝑝𝑝,𝑄𝑄

𝑃𝑃1𝒌𝒌(𝑎𝑎′)

+ � 𝑃𝑃2𝑞𝑞∗ (𝑎𝑎)� 𝑑𝑑𝑎𝑎′
𝑎𝑎

−∞
𝐹𝐹12𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)B𝟏𝟏𝟏𝟏𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎′)

𝑞𝑞,𝑝𝑝,𝑄𝑄

 

                        +∑ 𝑃𝑃1𝑞𝑞∗ (𝑎𝑎)∫ 𝑑𝑑𝑎𝑎′𝑎𝑎
−∞ 𝐹𝐹11𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎, 𝑎𝑎′)B𝟏𝟏𝟏𝟏𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌(𝑎𝑎′)𝑞𝑞,𝑝𝑝,𝑄𝑄 .                                           (𝐵𝐵. 8) 

In the above equations,  

𝐹𝐹ij𝐤𝐤𝐤𝐤𝐤𝐤′𝐤𝐤′(t − t′) = ∫d𝐫𝐫1d𝐫𝐫2ψ𝐤𝐤
i∗(𝐫𝐫1)ψ𝐤𝐤

j (𝐫𝐫1)fXC(𝐫𝐫1, 𝐫𝐫2, t −
t′)ψ𝐤𝐤′

i (𝐫𝐫2)ψ𝐤𝐤′
j∗ (𝑟𝑟2).                                         (B. 9)  

The diagonal elements of Fij express the strength of the electron-hole interaction, while the non-
diagonal components correspond to the exciton-biexciton interaction strength. The proportional to 
Hij nonlinear terms describe effects of exciton-exciton interaction. In generally, the four-particle 
part of the equations should include contributions of pair-pair correlation functions and biexcitons. 
However, when the excitations fields are not too strong, the first quantity can be neglected (see, 
e.g., Ref. [7], text after eq.(13)), and our equations include only the biexciton terms. 

The exciton-exciton interactions are described by matrix elements: 

Hii𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤(t, t′)

=
1

3!
�� drdr′dr′′dr′′′

φ𝐤𝐤
c𝑖𝑖∗(r)φ𝐤𝐤

vi(r)φ𝐤𝐤
𝑐𝑐𝑖𝑖∗(r′)φ𝐤𝐤

vi(r′)h
XC

(r, t; r′, t; r′′, t′; r′′′ , t′)φp
𝑐𝑐𝑖𝑖(r′′)φp

vi∗(r′′)φQ
𝑐𝑐𝑖𝑖(r′′′)φQ

vi∗(r′′′) (B. 10) 



8 
 

and  

Hij𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤(t, t′)

=
1

3!
�� drdr′dr′′dr′′′

φ𝐤𝐤
c𝑖𝑖∗(r)φ𝐤𝐤

vi(r)φ𝐤𝐤
c𝑗𝑗∗(r′)φ𝐤𝐤

vj(r′) h
XC

(r, t; r′, t; r′′, t′; r′′′ , t′) �φp
c𝑖𝑖(r′′)φp

vi∗(r′′)φ
Q

c𝑗𝑗(r′′′)φ
Q

vj∗(r′

′′)

+ φQ
c𝑖𝑖(r′′)φQ

vi∗(r′′)φp
c𝑗𝑗(r′′′)φp

vj∗(r′′′)� .                                                                                                          (B. 11) 

The last lines in Eqs. B7-B8 give the biexciton contribution to the third-order polarization. Like 
excitons, one can expand the wave function in terms of product of two static wave functions 

Ψ𝑎𝑎1𝑎𝑎2
𝑣𝑣 (𝑟𝑟1, 𝑟𝑟2, 𝑎𝑎)  = � 𝐷𝐷𝑎𝑎1𝑎𝑎2

𝑙𝑙𝑙𝑙 (𝑎𝑎)𝜓𝜓𝑎𝑎1
𝑙𝑙 (𝑟𝑟1)𝜓𝜓𝑎𝑎2

𝑙𝑙 (𝑟𝑟2)
𝑙𝑙=𝑣𝑣,𝑐𝑐

,                                                                          (𝐵𝐵. 12) 

and write down the equation of motion for 𝐷𝐷𝑎𝑎1𝑎𝑎2
𝑙𝑙𝑙𝑙 (𝑎𝑎). Next, one can construct the density matrix 

for the two-particle states 

 

Γ𝑎𝑎1𝑎𝑎2𝑎𝑎3𝑎𝑎4
𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑎𝑎)  = 𝐷𝐷𝑎𝑎1𝑎𝑎2

𝑎𝑎𝑎𝑎 (𝑎𝑎)𝐶𝐶𝑎𝑎3
𝑙𝑙∗ (𝑎𝑎)𝐶𝐶𝑎𝑎4

𝑑𝑑∗(𝑎𝑎)                                                                                             (𝐵𝐵. 13) 

and write down the equation of motion for this function, by using the equations for 𝐶𝐶𝑎𝑎𝑙𝑙∗(𝑎𝑎), 

−i ∂Ck
l∗(t)
∂t

= ∑ Ckm∗(t)𝐻𝐻𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙(𝑎𝑎)𝑙𝑙=𝑣𝑣,𝑐𝑐  (see the case of excitons) and 𝐷𝐷𝑎𝑎1𝑎𝑎2
𝑎𝑎𝑎𝑎 (𝑎𝑎). Finally, the equation for 

the component Γ𝑎𝑎1𝑎𝑎2𝑎𝑎3𝑎𝑎4
𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 (𝑎𝑎) ≡ B𝑎𝑎1𝑎𝑎2𝑎𝑎3𝑎𝑎4

𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑎𝑎) satisfying the equations 

𝑖𝑖
𝜕𝜕𝐵𝐵𝑎𝑎1𝑎𝑎2𝑎𝑎1𝑎𝑎2

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)
𝜕𝜕𝑎𝑎

= �εk1
c𝑖𝑖 + εk2

c𝑗𝑗 − εk1
v𝑖𝑖 − εk2

v𝑖𝑖 −
𝑖𝑖

𝑖𝑖𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
�𝐵𝐵𝑎𝑎1𝑎𝑎2𝑎𝑎1𝑎𝑎2

𝑐𝑐1𝑐𝑐2𝑣𝑣1𝑣𝑣2 (𝑎𝑎) + �𝐹𝐹𝑎𝑎1𝑎𝑎1𝑞𝑞𝑞𝑞
  𝐵𝐵𝑞𝑞𝑎𝑎2𝑎𝑎1𝑎𝑎2

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)
q

+ �𝐹𝐹𝑎𝑎1𝑎𝑎2𝑞𝑞𝑞𝑞
  𝐵𝐵𝑞𝑞𝑎𝑎2𝑎𝑎1𝑎𝑎2

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)
q

+ �𝐹𝐹𝑎𝑎2𝑎𝑎1𝑞𝑞𝑞𝑞
  𝐵𝐵𝑎𝑎1𝑞𝑞𝑎𝑎1𝑎𝑎2

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)
q

+ �𝐹𝐹𝑎𝑎2𝑎𝑎2𝑞𝑞𝑞𝑞
    (𝑎𝑎)𝐵𝐵𝑎𝑎1𝑞𝑞𝑎𝑎1𝑎𝑎2

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)
q

+ �𝑤𝑤𝑎𝑎1𝑎𝑎2𝑝𝑝𝑞𝑞
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   𝐵𝐵𝑝𝑝𝑞𝑞𝑎𝑎1𝑎𝑎2

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)
𝑝𝑝,𝑞𝑞

  + �𝑤𝑤𝑎𝑎1𝑎𝑎2𝑝𝑝𝑞𝑞
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

𝑝𝑝,𝑞𝑞

𝐵𝐵𝑎𝑎1𝑎𝑎2𝑎𝑎1𝑎𝑎2
𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗 (𝑎𝑎)  

                        +2𝐹𝐹𝑎𝑎2𝑎𝑎2𝑎𝑎1𝑎𝑎1
  Pi𝐤𝐤1

(t)Pj𝐤𝐤2
(t) + 𝐹𝐹𝑎𝑎1𝑎𝑎1𝑎𝑎2𝑎𝑎2

  Pi𝐤𝐤2
(t)Pj𝐤𝐤2

(t) +
2𝐹𝐹𝑎𝑎2𝑎𝑎2𝑎𝑎2𝑎𝑎2

  (𝑎𝑎)Pi𝐤𝐤2
(t)Pj𝐤𝐤1

(t) +
𝐹𝐹𝑎𝑎2𝑎𝑎2𝑎𝑎1𝑎𝑎1

  (𝑎𝑎)Pi𝐤𝐤1
(t)Pj𝐤𝐤1

(t),                       (𝐵𝐵. 14) 
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where we have dropped the band indices for the F and w matrix elements. The last three lines in 
Eq. (B.14) are the source terms. 

To solve the TD-DMDFT equations, Eqs. B7-B8 and B14, we used the screened Slater XC 

potential with the adiabatic XC kernels fXCSlater(rt; r′t′)   

fXCSlater(rt; r′t′) = −
2�∑ ψk

j (r)ψk
j∗�r′�j,k �

2

ε|r−r′|n0(r)n0(r′)
δ(t − t′),                                                                  (B. 15)  

where ε = 3.6 is the static dielectric function, and n0(r) is the ground-state charge density, 

and   

hXCij(r, t; r′, t′; r′′, t′′; r′′′, t′′′) = δ(r − r′)δ(r′ − r′′)δ(r′ − r′′)δ(t − t′)δ(t′′ − t′′′) 

× δ2fXC
Slater�rt;r′t′�

δn(r′′t′′)δn(r′′′t′′′)
jXCij(t − t′′).                                                   (B. 16)  

In Eq. (B.16), the nonadiabatic part is (in frequency representation): 

jXCij(ω) =
1

ω − EXXij + i
τXXij

,                                                                                                           (B. 17) 

where EXXij and τXXij are the biexciton energy and lifetime correspondingly. The first quantities 
were calculated by solving the (exciton and biexciton) static eigen-problems and τXXij were chosen 
to fit the exp. data (see below).  

In this paper, we apply Eqs. B7-B8 and B14 into a four-band problem to describe the dynamics of 
the two types of excitons formed at the K and K’ valleys of the BZ, and the intra-valley biexciton. 
The first step of the calculation is to solve the eigenvalue equations for the excitons and biexcitons 
which are obtained by keeping the linear-in-charge terms in the r.h.s. of Eqs. B7-B8 and B14 and 
calculate, in this way, the exitonic and biexciton binding energies. The resulting energies,  𝐸𝐸𝑋𝑋1 =
𝐸𝐸𝑋𝑋2 = 0.388 𝑣𝑣𝑒𝑒 and 𝐸𝐸𝑋𝑋𝑋𝑋12 = 𝐸𝐸𝑋𝑋𝑋𝑋21 = 0.029 𝑣𝑣𝑒𝑒 , are in a good agreement with experimental 
estimations (500-550meV for excitons [8-11] and 20meV for biexcitons [12]. Afterwards, the full 
non-linear equations of motion are solved within the excitonic basis. In this way, Eqs. B7-B8 and 
B14 transform to 
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�𝑖𝑖
𝜕𝜕
𝜕𝜕𝑎𝑎
− 𝐸𝐸𝑋𝑋1 +

𝑖𝑖
𝑖𝑖𝑋𝑋1

� 𝑃𝑃1(𝑎𝑎)  

= 𝒅𝒅𝟏𝟏𝑬𝑬(𝑎𝑎) + 3𝑃𝑃1
∗(𝑎𝑎)� 𝑑𝑑𝑎𝑎′

𝑎𝑎

−∞
𝐻𝐻11�𝑎𝑎, 𝑎𝑎′�𝑃𝑃1�𝑎𝑎′�𝑃𝑃1�𝑎𝑎′�

+ 9𝑃𝑃2
∗(𝑎𝑎)� 𝑑𝑑𝑎𝑎′

𝑎𝑎

−∞
𝐻𝐻12�𝑎𝑎, 𝑎𝑎′�𝑃𝑃1�𝑎𝑎′�𝑃𝑃2�𝑎𝑎′�

+ 9�𝐹𝐹21
∗ 𝑃𝑃1

∗(𝑎𝑎) + 𝐹𝐹22
∗ 𝑃𝑃2

∗(𝑎𝑎)�𝐵𝐵12(𝑎𝑎),                                                         (𝐵𝐵. 18)  

�𝑖𝑖
𝜕𝜕
𝜕𝜕𝑎𝑎
− 𝐸𝐸𝑋𝑋2 +

𝑖𝑖
𝑖𝑖𝑋𝑋1

� 𝑃𝑃2(𝑎𝑎)  

= 𝒅𝒅𝟏𝟏𝑬𝑬(𝑎𝑎) + 3𝑃𝑃2
∗(𝑎𝑎)� 𝑑𝑑𝑎𝑎′

𝑎𝑎

−∞
𝐻𝐻22�𝑎𝑎, 𝑎𝑎′�𝑃𝑃2�𝑎𝑎′�𝑃𝑃2�𝑎𝑎′�

+ 9𝑃𝑃1
∗(𝑎𝑎)� 𝑑𝑑𝑎𝑎′

𝑎𝑎

−∞
𝐻𝐻21�𝑎𝑎, 𝑎𝑎′�𝑃𝑃2�𝑎𝑎′�𝑃𝑃1�𝑎𝑎′�

+ 9�𝐹𝐹12
∗ 𝑃𝑃2

∗(𝑎𝑎) + 𝐹𝐹11
∗ 𝑃𝑃1

∗(𝑎𝑎)�𝐵𝐵21(𝑎𝑎),                                                         (𝐵𝐵. 19) 

�𝑖𝑖 𝜕𝜕
𝜕𝜕𝑎𝑎
− E12

XX + 𝑖𝑖
𝑖𝑖𝑋𝑋𝑋𝑋12

�𝐵𝐵12(𝑎𝑎) = 3𝐹𝐹21𝑃𝑃1(𝑎𝑎)𝑃𝑃1(𝑎𝑎) + 6𝐹𝐹11𝑃𝑃1(𝑎𝑎)𝑃𝑃2(𝑎𝑎) + 6𝐹𝐹22𝑃𝑃2(𝑎𝑎)𝑃𝑃1(𝑎𝑎) +

3𝐹𝐹12𝑃𝑃2(𝑎𝑎)𝑃𝑃2(𝑎𝑎).                                                                                                                     (𝐵𝐵. 20)  

�𝑖𝑖 𝜕𝜕
𝜕𝜕𝑎𝑎
− E21

XX + 𝑖𝑖
𝑖𝑖𝑋𝑋𝑋𝑋21

�𝐵𝐵21(𝑎𝑎) = 3𝐹𝐹12𝑃𝑃2(𝑎𝑎)𝑃𝑃2(𝑎𝑎) + 6𝐹𝐹22𝑃𝑃2(𝑎𝑎)𝑃𝑃1(𝑎𝑎) + 6𝐹𝐹11𝑃𝑃1(𝑎𝑎)𝑃𝑃2(𝑎𝑎) +

3𝐹𝐹21𝑃𝑃1(𝑎𝑎)𝑃𝑃1(𝑎𝑎).                                                                                                                     (𝐵𝐵. 21)  

In the last equations 𝐸𝐸𝑋𝑋𝑋𝑋 and 𝐸𝐸𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 are the energy of 𝑖𝑖′s exciton, and of the 𝑖𝑖𝑗𝑗′𝑠𝑠 biexciton, and 𝑖𝑖𝑋𝑋𝑋𝑋  
and 𝑖𝑖𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 are the corresponding lifetimes (𝑖𝑖, 𝑗𝑗 = 1,2). 𝑑𝑑𝑋𝑋 is the dipole moment for the transition in 
𝑖𝑖’s valley, and  

Hij(t, t′) =

1

3
∫ 𝑑𝑑𝑟𝑟 �ψK𝑖𝑖

c𝑖𝑖 (r)ψK𝑖𝑖
vi∗(r)�

2
hXC(r) �ψ

K𝑗𝑗

c𝑗𝑗 (r)ψ
𝐾𝐾𝑗𝑗

vj∗(r)�
2
𝑣𝑣
−𝑖𝑖�𝐸𝐸𝑋𝑋𝑋𝑋𝑖𝑖𝑗𝑗−

i
τXXij

��t−t′�
,                                             (𝐵𝐵. 22)  

where the kernel  

hXC(r) = δ�r − r′�δ�r − r′′�δ�r − r′′′�
δ2fXC

Slater�r; r′�
δn(r′′)δn(r′′′)

 

is obtained by performing functional differentiation of the Slater XC kernel.  

For the excitonic decay times τΧ we chose 170 fs (B=0T, co-circular), 228 fs (B=0T, cross-
circular), 184 fs (B=25 T, co-circular) and 359 fs (B=25 T, cross-circular). To be consistent in the 
choice of the excitonic and biexciton decay times, we have used the biexciton lifetime τXX two 
times smaller than the corresponding excitonic times above. The zero-field excitonic lifetimes are 
in a good agreement with other estimations (~240 fs at zero field in the zero-temperature limit, see 
e.g., [15]) and experimental results [16]. To mimic the effect of the magnetic field that reduces the 
number of the excited carriers, and hence the screening (which results in longer lifetimes), we have 
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used longer lifetimes in the case of magnetic field. Indeed, as it was shown for bulk GaAs, 
decreasing of carrier doping in a presence of a magnetic field can reduce the excitonic rise and 
decay time parameters by several times (see Fig.22 in Ref. [7]). Finally, we have used longer 
biexciton (and hence excitonic) lifetimes in the case of cross-circular pulses, since in this case 
excitons attract stronger. It must be noted that in the zero-field case the difference between the 
used values of the co- and cross- lifetimes is not very large. Indeed, in zero field the screening 
effects are not dominating, thus they should not result in a significant difference in the attraction 
between the exciton for different pulse polarizations.  

The non-linear equations of motion are then solved in the excitonic basis and the TI-FWM 
spectrum is given by  

I(τ, T = 0) = ��P(3)(τ, T = 0)�
2

dt
∞

0

,                                                                                               (𝐵𝐵. 23) 

where 𝑃𝑃(3)(𝑖𝑖,𝑇𝑇 = 0) is the sum of all 𝑃𝑃1(𝑎𝑎) and 𝑃𝑃2(𝑎𝑎) obtained by solving Eqs B19-21 assuming 
the two different polarization sequences used in the TI-FWM experiments. 

  

Non-Markovian memory effects and the biexciton decay 

 

Here we discuss the decay dynamics of the biexciton, where we follow the approach 
introduced in Ref. 17 to describe non-Markovian memory effects in bulk GaAs under magnetic 
fields.   

Let’s consider a formal solution for the biexcitonic matrix element B(t) (Eqs. (B.20-21), 

𝐵𝐵(𝑎𝑎)~∫ 𝑃𝑃2(𝑎𝑎′)𝑣𝑣�𝑋𝑋𝐸𝐸
𝑥𝑥𝑥𝑥− 1

𝜏𝜏𝑋𝑋𝑋𝑋
��𝑎𝑎−𝑎𝑎′�𝑎𝑎

−∞ . As it follows from this expression, in the limit of very long 

times,  𝐵𝐵(𝑎𝑎) is exponentially decaying (the decay is defined by the factor 1
𝜏𝜏𝑋𝑋𝑋𝑋

), and at short times  

𝐵𝐵(𝑎𝑎) grows as square of polarization. In the intermediate case of finite but not short times the 
corresponding “polarization-correction” to the exponential decay of  𝐵𝐵(𝑎𝑎) can be important for a 
rather long time interval causing some quantitative slowing down of the biexciton rate.  

It is the interplay between the polarization square and exponential decay terms, a 
consequence of non-Markovian memory effects, which lead to decay times for the biexciton that 
far exceed τXX. For a more in-depth discussion please refer to Refs. 17-18. 
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Supplementary note 3: Sample and experiment  

 Sample: The atomic monolayer sample was grown using a chemical-vapor-deposition 
(CVD) system, synthesized on Si substrates with a 300 nm SiO2 layer at 800±10 oC directly from 
MoSe2 bulk powder used as a solid precursor and N2+H2O vapor as carrier gas (details are provided 
in Ref. 19). The monolayer MoSe2 samples (5x5mm area) were subsequently wet-transferred using 
PMMA to double side polished quartz-substrate.  

Supplementary Figure 4: The optical 
absorption measurements of monolayer 
MoSe2 grown directly on quartz reveal two 
strong excitonic features near 795 nm, and 705 
nm corresponding to the A, and B excitons 
respectively. The nearly 90 nm (~200 meV) 
splitting of the A and B excitons is consistent 
with earlier reports (Ref. 19-20). In addition, the 
µ-PL spectra of the similar MoSe2 monolayer 
sample on Quartz substrate show exactly a strong 
peak only at 795 nm. This peak position can be 
attributed to the A exciton in MoSe2 monolayer. 
Interestingly, the A exciton peak position 
matches very well in the two experiment.   

 

  

 

 

 

Supplementary Figure 5: The 
figure shows the absorption spectra 
recorded from a mechanically 
exfoliated MoSe2 sample at two 
different temperature; Green 
spectrum at 5K and Red spectrum 
at 300K. These result clearly 
indicates that the A exciton band at 
5K is redshifted by ~35 nm upon 
increasing the temperature to 
300K. 
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Supplementary Figure 6: Optical microscopy image of (a) monolayer MoSe2 directly 
synthesized on 300 nm thick SiO2 layer on Si substrate, and (b) monolayer MoSe2 directly 
synthesized on quartz substrate via chemical vapor deposition process. (c) photoluminescence (PL) 
spectra corresponds to monolayer MoSe2. The µ-PL spectra show a strong peak only around 810 
nm, attributed to the direct excitonic transition energy in monolayer MoSe2. (d) Raman spectrum 
of monolayer MoSe2.The most dominant Raman peak at 240 cm-1 is belongs to A1g mode of 
monolayer MoSe2 [21]. The additional shoulder at 249 cm-1 can be assigned to the E2g

2 shear mode 
of MoSe2 at the M point. The high PL/Raman peak ratio (indicated by dashed box in (c)) indicates 
that the as-grown MoSe2 monolayer are high crystalline in nature.  
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Supplementary Figure 7: (Green line) Absorption spectra of monoatomic MoSe2 at ~10 Kelvin. 
The spectra are normalized to the A exciton. Both A and B excitons can be observed. (Red line) 
The excitation laser spectrum centered ~750 nm.    

Experiment: The three laser beams used to generate the FWM signal are provided by the 
multidimensional optical nonlinear spectrometer (MONSTR) instrument described in Ref. 22. 
Pulses B and C are kept fixed whereas pulse A* is scanned from negative to positive time delays. 
The positive delay signal corresponds to the time ordering of the laser pulses shown in Fig. S8 (c), 
whereas the negative delay signal time ordering shown in Fig. S8 (d). The nonlinear third order 
response of the sample leads to the FWM signal, which propagates in the phase matching direction 
-k1 + k2 + k3 along the missing corner of the box formed by the three excitation laser pulses, as 
shown in Fig. S8 (a), and the coherent time-integrated FWM signal is collected by the detector. 
The monolayer MoSe2 sample is held at 10 Kelvin inside the resistive 25 Tesla split helix magnet. 
The magnetic field and laser excitations are applied perpendicular to the sample surface shown in 
Fig. S5 (b). 
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Supplementary Figure 8: (a) Schematic of the experimental setup: The three laser beams are 
provided by the MONSTR [22]. Three beams labeled as A*, B, and C are used to generate the 
FWM signal, where A* corresponds to the phase conjugate beam. The beams are aligned in the 
three corners of a square. The FWM signal generated at the sample propagates along the missing 
corner (direction -k1 + k2 + k3) and is collected by the detector. The samples are kept at 10 Kelvin 
inside the magneto-optical cryostat. (b) The magnetic fields up to 25 Tesla are applied 
perpendicular to the sample surface in Faraday geometry. (c) Pulse sequence leading to positive 
delay FWM signal. (d) When the phase conjugate pulse A* arrives last, the negative delay signal 
is generated due to multiple exciton correlations. 

The laser pulses with a temporal linewidth ~76.5 fs are plotted in the figures as the instrumental 
response. The spectral linewidth was measured by dispersing the laser pulse using a grating 
spectrometer and corresponded to 39.6 ± 2.3 nm full-width at half maximum. The excitation power 
used was 300 μW average power centered at ~750 nm. Measuring a spot size of ~500 microns, we 
obtain a laser fluence of ~4 x 10-9 J/cm2 and power density of ~9.55 x 10-3 W / cm2. 
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