
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This manuscript presents three visual search experiments in which observers look for targets that 

can vary in appearance from the canonical target image. The manuscript also presents a 

biologically-plausible computational model (Invariance Visual Search Network  

, or IVSN) to help understand how this task might be accomplished. Both humans and IVSN do 

better than a random searcher, or a set of alternative computational models (sliding window, Itti-

Koch salience, random weight, pixel match).  

 

From a technical standpoint, the manuscript is highly accomplished. The experiments are well-

designed, and the three paradigms cover a useful range of search difficulty. The IVSN model is 

very sophisticated. I am also pleased that, while the manuscript is primarily concerned with overt 

eye movements as a measure of performance, the authors acknowledge the potential role of 

covert attentional shifts.  

 

However, I found the paper somewhat frustrating. The authors conclude that "The large 

dissimilarity between how the targets were  

rendered in the search image and their appearance in the target image indicates that  

humans do not merely apply pixel-level template matching to find the target. These  

results suggest that the features guiding visual search must be invariant to target  

object transformations." (p. 16). First, did anybody think that we used pixel-level template 

matching? This ground has been covered decades ago in the object-recognition literature, and 

simple templates have been decisively rejected. This literature would seem to be highly relevant to 

the problem at hand, but is not mentioned at all. Of course, visual search and object recognition 

are not the same process, and it is certainly possible, even likely, that the features used for search 

are different from the features used for (fully attended) recognition, based on previous work (I 

note that Jeremy Wolfe is thanked in the acknowledgements section; he can give you plenty of 

examples). But the manuscript does not address this issue. Indeed, I don't see what we've learned 

about these transformation-invariant features that are used for search. We know that humans can 

successfully perform this kind of search, and so can the model. However, as the authors 

appropriately caution us, I wouldn't want to read too much into that. I'm not sure that the model 

is searching in the same way as the human observers.  

 

A key difference between the model and human observers seems to be inhibition of return. On p.7, 

the authors write that, "The model had infinite  

inhibition-of-return and therefore never revisited the same location, by construction  

thus achieving 100% performance at 6 fixations." They go on to write, in the same paragraph, 

"the IVSN model  

 

performance was similar to human behavior". Yet on p. 6, they note "At 6 fixations, the cumulative 

performance was below 100%  

(97±0.5%), since subjects tended to revisit the same locations, even when they were  

wrong.", and again on p. 9 "humans tended to revisit the same locations over and over again even 

though the  

target was not there". The only real acknowledgement of this in the paper comes on p. 20: "Yet, 

our model implements infinite  

inhibition of return as a simplifying assumption that could also be improved upon  

by including a memory decay function." (I would modestly point to Horowitz, T. S. (2006). 

Revisiting the variable memory model of visual search. Visual Cognition, 14(4), 668–684, as a 

starting point) But if humans and the model are using different sampling strategies, doesn't that 

substantially reduce the usefulness of cumulative performance plots (e.g., figures 3E and 4E) for 

the purposes of this paper? The shape of the plots (and the RT distributions) will be substantially 

shaped, not just by the way humans and IVSN deal with invariance, but by the sampling regimes.  



 

Another difference between humans and the model is that humans perform very poorly on trials 

with more than a few saccades (p. 10: "Humans outperformed the model up to approximately 

fixation number 10,  

 

but the model performed well above humans thereafter"). It seems like this should be telling us 

something important. What is it about the model that lets it outperform humans on these long-tail 

trials? What are the characteristics of the targets that humans fail to find, but the model does?  

 

Finally, a major difficulty in using the IVSN model to gain insight into the way humans implement 

object invariance in search is that the model and the human are set somewhat different tasks, 

despite being given the same images. The IVSN does not actually have to decide whether or not a 

target is present (p. 29: "To isolate the  

search process from the verification process, we bypass the recognition question by  

using an 'oracle' system that decides whether the target is present or not. The oracle  

checks whether the selected fixation falls within the ground truth location, defined  

as the bounding box of the target object."). In other words, the model "found" the target once it 

moved its virtual fixation to the target. Humans, however, had to actually recognize the target. 

Indeed, the authors highlight in Figure 4C the behavior of human observers fixating the target, but 

moving on. Thus, the human visual search tasks did not " isolate the  

search process from the verification process", making the human and IVSN data qualitatively 

different. This is especially important when we consider, again, that the features that allow 

transformation-invariant object recognition and transformation-invariant visual search guidance 

are likely to be different.  

 

On a different topic, I am concerned by the amount of behavioral data. If I read the Methods 

correctly, there were only 5 observers per experiment, contributing only 600 trials apiece. What 

was the rationale for this small sample size?  

 

Todd S. Horowitz  

 

 

Reviewer #2 (Remarks to the Author):  

 

Review of "Finding any Waldo: invariant and efficient visual search" by Dr. Kreiman and 

colleagues, submitted for publication in Nature Communications, April 2018  

 

 

Summary: An interesting study of how humans sequentially search for objects in visual scenes. 

Plus: a model of such search processes based on artificial neural networks (NNs).  

 

Model: At a given time step, 2 parallel convolutional neural networks (CNNs) see: a small target 

image to be found in the scene (CNN1), and a patch of a visual scene which is partitioned into 

numerous such patches of size 224x224 pixels (CNN2).  

 

Once a pre-wired "oracle" decides that the target is present in the current patch, the incremental 

search for the target through sequential saccade generation is stopped. (A variant of the system 

makes such decisions through an NN pre-trained on the ImageNet database.)  

 

To generate candidates for the next fixation point, the target's internal representation in layer 31 

of CNN1 is convolved with the representation of the current image patch in layer 30 of CNN2, to 

generate a 16x16 "attention map."  

 

The most active element in the map corresponding to a location that has not been visited before 

determines the next fixation point.  



 

In limited settings, the experimental results seem compatible with observations of human 

subjects.  

 

Related work:  

 

The authors cite selected, relatively recent, related papers. However, they do not compare at all to 

what's probably the first NN that learned sequential visual attention, and perhaps the most closely 

related one:  

 

The reinforcement learning (RL) NN controller of ref [1] (1990) learns to control a fovea through 

sequences of saccades to find target objects in visual scenes, thus learning sequential attention. 

Like in the present submission, target images are provided through a separate input channel [1, 

Sec. 3.2] while the system shapes its stream of visual inputs through fovea-shifting actions.  

 

[1] J. Schmidhuber and R. Huber. Learning to generate artificial fovea trajectories for target 

detection. International Journal of Neural Systems, 2(1 & 2):135–141, 1991. Based on TR FKI-

128-90, TUM, 1990. More: http://people.idsia.ch/~juergen/attentive.html  

 

In many ways, the RL model of 1990 [1] was actually more general than what the authors 

propose. It learned to compute sequences of fovea shifts or saccades, each saccade defined by a 

direction and magnitude, and sometimes even a rotation. Only at the end of a trajectory made up 

of, say, 20 saccades, the system got a reward in case the final visual input matched the target 

input. From this sparse information, the RL NN had to learn to generate useful intermediate 

saccades. Unlike in the present submission, there was neither a pre-defined attention map at 

every time step, nor a built-in inhibition of return, nor a pre-segmentation of the image into 

patches - the system had to learn everything by itself. (Of course, compute was a million times 

more expensive back then, that is, only toy experiments with black & white images were 

possible.)  

 

It seems clear that the authors should clarify what's different to the early work, and why their 

more specialised approach should be preferred in certain settings.  

 

Additional comments on related work:  

 

line 651: mentions SVM classifier - so cite Vapnik et al's original work, or a survey, e.g.:  

 

Schölkopf, Bernhard; Burges, Christopher J. C.; and Smola, Alexander J. (editors); Advances in 

Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1999. ISBN 0-262-19416-3  

 

line 813 ff: cite the first fast CNNs to win vision contests by Ciresan et al (2011) - the cited 

Alexnet etc was very similar but came later (2012) - see Schmidhuber's overview page: 

http://people.idsia.ch/~juergen/computer-vision-contests-won-by-g pu-cnns.html  

 

line 845: mentions max-pooling - so cite its inventor (Weng et al, 1993) who added this to 

Fukushima's old basic CNN architecture (Neocognitron) of the 1970s:  

 

Weng, J., Ahuja, N., and Huang, T. S. (1993). Learning recognition and segmentation of 3-D 

objects from 2-D images. Proc. 4th Intl. Conf. Computer Vision, Berlin, Germany, pp. 121-128.  

 

Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition unaffected by 

shift in position - Neocognitron. Trans. IECE, J62-A(10):658–665.  

 

 

General comments: I think that the major claims of the paper will be of interest to others in the 



community and the wider field, and might influence thinking in the field. Nevertheless, relations to 

previous work must be clarified. Revise and resubmit. I'd like to see the revised version again.  

 

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

This paper seeks to analyze the fixations humans perform to localize objects in images, and to 

build a computational model of the same.  

 

The three sets of psychophysics experiments that the authors perform to analyze human 

performance are well designed, and the results are interesting and useful. However, I think the 

paper falls short of its stated aims in several ways:  

 

- The authors emphasize the "zero-shot" nature of the problem: that the system has not seen the 

target before. While this is true for the machine vision system, it is not true for the human vision 

system, since all targets used in these experiments correspond to object classes humans have 

seen before. Therefore, it is possible that subjects are simply recognizing the target presented to 

them, and using their knowledge of the target class.  

One possible way to avoid this might be to use fine-grained classes, such as different types of 

birds, since subjects may not know how to distinguish these a priori.  

 

- The proposed computational model is too simplistic and doesn't capture many critical aspects. 

For example, the attention maps are produced just once, and information from subsequent 

fixations aren't used to update the attention map; whereas humans might use contextual 

information from previous fixations to decide where to look next. This might explain the low 

correlation between human fixations and model fixations in the second and third experiments.  

 

- The proposed model is crucially dependent on the underlying network architecture, yet the 

impact of that is not evaluated. Are different architectures equally predictive of human 

performance? Does tapping into other layers of the network change the correlation? Do the many 

other object detection architectures work similarly?  

 



Point-by-point responses to reviewers 
 
General notes 
Numbers in square brackets here denote line numbers in the revised manuscript.  
Reviewers’ questions are copied in red and small font here without editing. Responses are in black. 
We note that we have added 10 more subjects per experiment. The conclusions remain consistent with 
the ones reported in the original submission (but all the psychophysics results figures have changed).  
All the experimental data and open source code are publicly available in the lab’s GitHub repository: 
https://github.com/kreimanlab/VisualSearchZeroShot, and cited in the main text. 
 
Reviewer 1 
This manuscript presents three visual search experiments in which observers look for targets that can vary in appearance from 
the canonical target image. The manuscript also presents a biologically- plausible computational model ﴾Invariance Visual 
Search Network , or IVSN﴿ to help understand how this task might be accomplished. Both humans and IVSN do better than a 
random searcher, or a set of alternative computational models ﴾sliding window, 
Itti- Koch salience, random weight, pixel match﴿. From a technical standpoint, the manuscript is highly accomplished. The 
experiments are well- designed, and the three paradigms cover a useful range of search difficulty. The IVSN model is very 
sophisticated. I am also pleased that, while the manuscript is primarily concerned with overt eye movements as a measure of 
performance, the authors acknowledge the potential role of covert attentional shifts. 
 
R1.4. On a different topic, I am concerned by the amount of behavioral data. If I read the Methods correctly, there were only 5 
observers per experiment, contributing only 600 trials apiece. What was the rationale for this small sample size?  
[We swapped the question order because this question impacts essentially all the figures] 

As suggested by the reviewer, we have now added 10 more subjects per experiment (a total of 
15 subjects per experiment). The conclusions remain consistent with the ones reported in the original 
submission (but all the figures and all the numbers have changed).  

As a historical note of little relevance now, the reviewer correctly understood that we had 5 
subjects per experiment. The rationale for this was based on a simulation that we ran by subsampling 
data from a previous study where we examined 20 subjects (Miconi et al, Cerebral Cortex 2016).   

We also note that all the source code and behavioral data are publicly available from our GitHub 
link and lab web site. 
 
R1.1 However, I found the paper somewhat frustrating. The authors conclude that "The large dissimilarity between how the 
targets were rendered in the search image and their appearance in the target image indicates that humans do not merely 
apply pixel- level template matching to find the target. These results suggest that the features guiding visual search must be 
invariant to target object transformations." ﴾p. 16﴿. First, did anybody think that we used pixel- level template matching? This 
ground has been covered decades ago in the object- recognition literature, and simple templates have been decisively 
rejected. This literature would seem to be highly relevant to the problem at hand, but is not mentioned at all. Of course, visual 
search and object recognition are not the same process, and it is certainly possible, even likely, that the features used for 
search are different from the features used for ﴾fully attended﴿ recognition, based on previous work ﴾I note that Jeremy Wolfe is 
thanked in the acknowledgements section; he can give you plenty of examples﴿. But the manuscript does not address this 
issue. Indeed, I don't see what we've learned about these transformation- invariant features that are used for search. We know 
that humans can successfully perform this kind of search, and so can the model. However, as the authors appropriately 
caution us, I wouldn't want to read too much into that. I'm not sure that the model is searching in the same way as the human 
observers. 
 
The reviewer makes multiple important and correct points here.  
[R1.1.a] Template matching.  

Expanding on what the reviewer pointed out, and writing fast and loose, visual recognition can 
be thought of primarily as a “bottom-up” process and eye movement guidance during visual search as a 
“top-down” process (this is of course a major oversimplification: object recognition also uses top-down 



signals and eye movement guidance during visual search is also heavily influenced by bottom-up 
processes). The fact that template matching is a very bad model for visual recognition does not imply 
that template matching is also a bad model for visual search. We now explicitly point out in the text that 
template matching is a very poor model for visual recognition [217-218].  

Even though template matching cannot address the problem of invariance in visual recognition, 
it continues to be used to solve computer vision problems (e.g.1-5). Given that the problem of invariant 
visual search is related to the problem of object detection in the computer vision literature, we compare 
the results against template matching (as well as many other models, Fig. S4, new Fig. S11, new Fig. 
S13, new Fig. S14). As expected, template matching is not robust to invariant transformations and its 
search efficiency is inferior to humans and to IVSN (Fig. S4) [217-219, 296-300, 585-587, 595-596].  

The reviewer may well consider template matching to be a “straw man hypothesis” and we 
would agree. In fact, we would go further and argue that all the “null” models in Fig. S4 are straw man 
models (random eye movements, random weights, bottom-up saliency, template matching). That is why 
we refer to them as “null” models [157, 191, 207, 221, 257, 259, 281, 292, 346, 359, 363, 586]  

We are certainly not trying to argue that template matching is the standard in the field (in the 
same way that we are not trying to argue that random eye movements are the standard in the field 
either). We do note, however, that many visual search experiments in the literature are based on 
scenarios where the target is exactly identical in the target image and the search image. These search 
tasks might be solved by template matching (but we agree with the reviewer that it seems highly 
unlikely that subjects use a template matching strategy even in those cases). We find it useful and 
instructive to compare results against template matching (and other null models), but we certainly share 
the reviewer’s intuition that these are not good models.  

To directly evaluate visual search under realistic conditions where template matching cannot 
solve the problem, the appearance of the target object in the target image was different from the 
appearance of the target objects in the search image in all the experiments; this is what we refer to as 
the invariance problem in visual search. To the best of our knowledge, (and to the best of Prof. Wolfe’s 
knowledge), invariance in visual search has not been systematically studied.  
 
[R1.1b] Are the features used for visual recognition the same features used for visual search?  

The short answer is that we do not know. There are four indirect arguments of plausibility that 
suggest that visual recognition and visual search may share similar features: 
(i) Directing attention to a particular location depends both on bottom-up and top-down signals. Rapid 
parallel bottom-up signals can be approximately thought of as processes required for visual recognition 
and can have a large impact on attentional allocation6-11. 
(ii) All the brain regions along the ventral visual stream required for object recognition are modulated by 
attentional mechanisms (e.g.12-16). At the physiological level, top-down attentional mechanisms act on 
the same neurons that subserve visual recognition.  
(iii) There is a rich psychophysics literature documenting features that are important for visual search 
(reviewed in9). These features include color17,18, orientation8,19, spatial frequency11,17, curvature and 
depth19. All of these features have also been well studied and proven to be useful for object recognition. 
The IVSN model uses all of these features. 
(iv) Several computational models have suggested a close relationship between object recognition and 
attention. These models leverage on the features at the attended location for improving their object 
recognition performance10,17,19-24. 
 These studies may not convince the reviewer, who is right in raising this interesting question, 
and we emphasize that these are plausibility arguments rather than a mathematical proof that 
recognition and search features are the same. We added a brief sentence in the discussion [643-646] 



to highlight that this is an important and interesting question that will require further investigation. We 
think that it is parsimonious to consider that the answer may be yes (i.e., that object recognition 
features are used in visual search). The proposed IVSN model can search for objects using features 
that were learned for visual recognition (see further discussion in R1.1c). 
 
R1.1c. The reviewer incisively points out: “I'm not sure that the model is searching in the same 
way as the human observers.”  
We completely agree with this statement as well. We have now pasted this statement, almost verbatim, 
in the text [690-692]. The model does not perfectly match human behavior, we note this repeatedly 
throughout the manuscript (e.g., Fig. 4E, 5E, 6) and we devote a whole section in the discussion [698-
741] to highlight several aspects of the proposed model that deserve further scrutiny.  
At the risk of providing an answer that is too philosophical, let us assume for a moment that we had a 
model that can perfectly predict human behavior, not only on average (Fig. 3, 4, 5) but also at the 
image-by-image level (Figs. S7), and can also explain the spatiotemporal sequence of eye movements 
(Fig. 6, S8). As the reviewer correctly points out, even such a model may not be searching in the same 
way as the human observers.  
The IVSN model is (coarsely) based on neuroanatomical and neurophysiological constraints (Fig. 2) 
[86-100, 175-180, 553-554, 961-964, 964-968, 977-978], and we cautiously think that it provides a 
reasonable first order approximation to eye movements during natural visual search [113-114, 742-
743]. Yet, it is very clear that there is a lot of ingredients missing and we are very far from having a 
model that can search the way humans do. There are several important aspects of the model that merit 
improvement and further work [698-741].  
 
R1.2 
A key difference between the model and human observers seems to be inhibition of return. On p.7, the authors write that, "The 
model had infinite inhibition- of- return and therefore never revisited the same location, by construction thus achieving 100% 
performance at 6 fixations." They go on to write, in the same paragraph, "the IVSN model performance was similar to human 
behavior". Yet on p. 6, they note "At 6 fixations, the cumulative performance was below 100% ﴾97±0.5%﴿, since subjects 
tended to revisit the same locations, even when they were 
wrong.", and again on p. 9 "humans tended to revisit the same locations over and over again even though the target was not 
there". The only real acknowledgement of this in the paper comes on p. 20: "Yet, our model implements infinite inhibition of 
return as a simplifying assumption that could also be improved upon by including a memory decay function." ﴾I would modestly 
point to Horowitz, T. S. ﴾2006﴿. Revisiting the variable memory model of visual search. Visual Cognition, 14 point﴿ But if 
humans and the model are using different sampling strategies, doesn't that substantially reduce the usefulness of cumulative 
performance plots ﴾e.g., figures 3E and 4E﴿ for the purposes of this paper? The shape of the plots ﴾and the RT distributions﴿ 
will be substantially shaped, not just by the way humans and IVSN deal with invariance, but by the way humans and IVSN deal 
with invariance, but by the sampling regimes. 

We agree again with the comments made by the reviewer here. In a schematic fashion, the 
decision to move the eyes to a particular location during visual search depends on: (i) the target 
features and the search image features, (ii) memory of previously visited locations, (iii) a decision 
mechanism that recognizes whether the target was found or to continue searching, (iv) other 
constraints such as the eye muscles precluding from making very large saccades. As a simplifying 
working hypothesis, we assume that these processes are independent and we focus our study on item 
(i) by presenting the default IVSN model with infinite inhibiton-of-return (ignoring (ii)), with an oracle that 
determines whether the target was found or not (ignoring (iii)), and with an approximately uniform 
distribution of saccade sizes (ignoring (iv)).  

We further present initial sketches of variations of the model that relax those assumptions: 
IVSNrecognition (new Fig. S11A-C) presents an initial model variation that addresses (iii) by determining 
whether the target is present or not based on a simple object recognition classifier25,26.   



IVSNdistance (new Fig. S11G-L) presents an initial model variation that addresses (iv) where the saccade 
sizes are constrained by the distribution of saccade sizes that humans make 
IVSNfIOR (new Fig. S11D-F) presents an initial model variation that addresses (ii) that shows finite 
inhibition of return based on the work of Horowitz27. 

As the reviewer knows very well, humans tend to revisit the same locations, i.e. they do not 
have infinite inhibition of return. We had pointed this out in a rather vague and anecdotal manner in the 
original submission. Following the suggestion from the reviewer, we implemented a finite inhibition of 
return (fIOR) mechanism inspired by the work suggested by the reviewer27. We note that in 
Experiments 2 and 3, we do not have a list of isolated objects and thus we cannot directly implement a 
memory function that is based on objects. Instead, the memory function was obtained by empirically 
fitting the human behavioral data calculating the probability of revisiting the same place after a number 
of fixations. In the IVSNfIOR model, the attention map gets modulated by this memory function across 
fixations. As the reviewer predicted, the IVSNfIOR is closer to human performance (new Fig. S11D-F).  
 
 The reviewer criticizes the cumulative performance plots but we think that these plots provide 
useful information to compare human performance and different models, and cumulative distributions 
provide richer information than merely reporting average number of fixations. We further note that we 
present a rather extensive set of metrics to compare the model and humans: cumulative performance 
(Figs. 3E, 4E, 5E and multiple supplementary figures), image-by-image comparison of the number of 
fixations (Fig. S7), image-by-image comparisons in the spatiotemporal sequence of fixations (Figures 
6, S8), distribution of saccade sizes (new Fig. S11G-I), overall distribution of fixation locations (Fig. 
S1), target found times (Figures S2B, D, F), reaction times for the first 6 saccades (Figs. 3D, 4D, 5D, 
S2A, C, E), distance to target for the last 6 fixations (new Figs. S2G-L). We also implemented several 
other comparisons including (location of the first fixation, feature similarity between model fixations and 
human fixations, euclidian distance between fixation locations); we opted to omit all these other 
comparisons from the manuscript because of the rather large number of figures and supplementary 
figures. We would certainly welcome suggestions as to other and better metrics for comparing models 
and human behavior. 
 
R1.3 Finally, a major difficulty in using the IVSN model to gain insight into the way humans implement object invariance in 
search is that the model and the human are set somewhat different tasks, despite being given the same images. The IVSN 
does not actually have to decide whether or not a target is present ﴾p. 29: "To isolate the 
search process from the verification process, we bypass the recognition question by using an 'oracle' system that decides 
whether the target is present or not. The oracle checks whether the selected fixation falls within the ground truth location, 
defined as the bounding box of the target object."﴿. In other words, the model "found" the target once it moved its virtual 
fixation to the target. Humans, however, had to actually recognize the target. Indeed, the authors highlight in Fig. 4C the 
behavior of human observers fixating the target, but moving on. Thus, the human visual search tasks did not " isolate the 
search process from the verification process", making the human and IVSN data qualitatively different. This is especially 
important when we consider, again, that the features that allow transformation- invariant object recognition and 
transformation- invariant visual search guidance are likely to be different. 
 

This is a very good point and we realize that we were being unfair to humans. We have now re-
analyzed all the data by using an “oracle” also for human visual search (except for new Fig. S12 where 
we compare human performance with and without oracle recognition). Once subjects fixate on the 
target, the target is considered to be found, therefore implementing the same criterion used for the 
models [1039-1042]. 
 

As we note in the text [474-496, 1103-1125], and the reviewer knows quite well, humans can 
fixate on the target, not realize that they have found the target and continue the search process by 



moving their eyes elsewhere. An example of this behavior is shown in subject 5 in Fig. 4. This 
phenomenon is quantified in new Figures S12A-B and its effect on search performance is shown in 
new Fig. S12C-D. We provide an initial sketch of a model that implements recognition (IVSNrecognition, 
new Fig. S11A-C). To focus on the guidance aspects of eye movements, all the other figures use an 
oracle version both for humans and models, as suggested by the reviewer.  
 
-------------------------------------------------------------------------------------------------------------------------------- 
 
Reviewer 2 
 
Summary: An interesting study of how humans sequentially search for objects in visual scenes. Plus: a model of such search 
processes based on artificial neural networks ﴾NNs﴿. 
Model: At a given time step, 2 parallel convolutional neural networks ﴾CNNs﴿ see: a small target image to be found in the 
scene ﴾CNN1﴿, and a patch of a visual scene which is partitioned into numerous such patches of size 224x224 pixels ﴾CNN2﴿. 
Once a pre- wired "oracle" decides that the target is present in the current patch, the incremental search for the target through 
sequential saccade generation is stopped. ﴾A variant of the system makes such decisions through an NN pre- trained on the 
ImageNet database.﴿ To generate candidates for the next fixation point, the target's internal representation in layer 31 of CNN1 
is convolved with the representation of the current image patch in layer 30 of CNN2, to generate a 16x16 "attention map." The 
most active element in the map corresponding to a location that has not been visited before determines the next fixation point. 
In limited settings, the experimental results seem compatible with observations of human subjects. 
 
R2.1 Related work: 
The authors cite selected, relatively recent, related papers. However, they do not compare at all to what's probably the first NN 
that learned sequential visual attention, and perhaps the most 
closely related one: 
The reinforcement learning ﴾RL﴿ NN controller of ref [1] ﴾1990﴿ learns to control a fovea through sequences of saccades to find 
target objects in visual scenes, thus learning sequential attention. Like in the present submission, target images are provided 
through a separate input channel [1, Sec. 3.2] while the system shapes its stream of visual inputs through fovea- shifting 
actions. 
 
[1] J. Schmidhuber and R. Huber. Learning to generate artificial fovea trajectories for target detection. International Journal of 
Neural Systems, 2﴾1 & 2﴿:135–141, 1991. Based on TR FKI- 128- 90, 
TUM, 1990. More: http://people.idsia.ch/~juergen/attentive.html 
 
In many ways, the RL model of 1990 [1] was actually more general than what the authors propose. It learned to compute 
sequences of fovea shifts or saccades, each saccade defined by a direction and magnitude, and sometimes even a rotation. 
Only at the end of a trajectory made up of, say, 20 saccades, the system got a reward in case the final visual input matched 
the target input. From this sparse information, the RL NN had to learn to generate useful intermediate saccades. Unlike in the 
present submission, there was neither a pre- defined attention map at every 
time step, nor a built- in inhibition of return, nor a pre- segmentation of the image into patches -  the system had to learn 
everything by itself. ﴾Of course, compute was a million times more expensive back then, that is, only toy experiments with 
black & white images were possible.﴿ It seems clear that the authors should clarify what's different to the early work, and why 
their more specialised approach should be preferred in certain settings. 
 
We thank the reviewer for pointing us towards this interesting work, which we have now cited. This is a 
very original effort where the authors propose a computational model which learns the policy of 
generating sequences of fovea shifts via reinforcement learning (reward only at goal).  
 
There are several important differences with the work that we present here: (1) In the current work, we 
directly and systematically compared human invariant visual search eye movement behavior with the 
proposed model as well as multiple variations of the proposed model. (2) As pointed out by the 
reviewer, it is not clear whether the 1991 model of Schmidhuber and Huber can generalize to perform 



invariant visual search with zero-shot training in complex natural scenes. In our study, we demonstrate 
that IVSN could generalize across many natural visual search tasks, show invariance to shape 
transformation, without extensive training for specific object classes. Of course, as the reviewer points 
out, this is not a fair comparison because we are writing the paper 27 years afterwards, with much 
heavier computational power at our disposal. (3) We are interested in studying zero-shot visual search 
problems which humans solve in daily life. Given a novel target exemplar, humans could search for 
novel objects with zero training on this novel object search task. In the main text, IVSN could generalize 
to search for novel objects with zero training. It is not clear to us whether the 1991 model could  
achieve this. (4) As the reviewer points out, a particularly interesting and impressive aspect of the 1991 
model is that it can learn to execute eye movements purely via reinforcement learning signals with a 
delayed reward policy. Our model for the attention map generation is end-to-end trainable. In this study, 
we provided a demonstration of top-down feature biasing by taking the maximum on the attention map 
resulting in a sequence of fixations; in the future work, IVSN can be improved by training or fine-tuning 
via reinforcement learning as proposed in the 1991 study for various search tasks depending on the 
applications. We mention this now in the text in [722-727]. 
 
R2.2 Additional comments on related work: 
line 651: mentions SVM classifier -  so cite Vapnik et al's original work, or a survey, e.g.: 
Schölkopf, Bernhard; Burges, Christopher J. C.; and Smola, Alexander J. ﴾editors﴿; Advances in Kernel Methods: Support 
Vector Learning, MIT Press, Cambridge, MA, 1999. ISBN 0- 262- 19416- 3 
 
We cited this work as suggested [881] 
 
R2.3  
line 813 ff: cite the first fast CNNs to win vision contests by Ciresan et al ﴾2011﴿ -  the cited Alexnet etc was very similar but 
came later ﴾2012﴿ -  see Schmidhuber's overview page: 
http://people.idsia.ch/~juergen/computer- vision- contests- won- by- gpu- cnns.html 
 
We cited this work as suggested [52, 977] 
 
R2.4 line 845: mentions max- pooling -  so cite its inventor ﴾Weng et al, 1993﴿ who added this to Fukushima's old basic CNN 
architecture ﴾Neocognitron﴿ of the 1970s: 
Weng, J., Ahuja, N., and Huang, T. S. ﴾1993﴿. Learning recognition and segmentation of 3- D objects from 2- D images. Proc. 
4th Intl. Conf. Computer Vision, Berlin, Germany, pp. 121- 128. 
Fukushima, K. ﴾1979﴿. Neural network model for a mechanism of pattern recognition unaffected by shift in position -  
Neocognitron. Trans. IECE, J62- A﴾10﴿:658–665. 
 
We cited these papers as suggested [52, 977] 
 
General comments: I think that the major claims of the paper will be of interest to others in the community and the wider field, 
and might influence thinking in the field. Nevertheless, relations to previous work must be clarified. Revise and resubmit. I'd 
like to see the revised version again. 
 
---------------------------------------------------------------------------------------------------------------- 
 
  



Reviewer 3 
 
This paper seeks to analyze the fixations humans perform to localize objects in images, and to build a computational model of 
the same. The three sets of psychophysics experiments that the authors perform to analyze human performance are well 
designed, and the results are interesting and useful. However, I think the paper 
falls short of its stated aims in several ways: 
 
R3.1 The authors emphasize the "zero- shot" nature of the problem: that the system has not seen the target before. While this 
is true for the machine vision system, it is not true for the human vision system, since all targets used in these experiments 
correspond to object classes humans have seen before. Therefore, it is possible that subjects are simply recognizing the 
target presented to them, and using their knowledge of the target class. One possible way to avoid this might be to use fine-
grained classes, such as different types of birds, since subjects may not know how to distinguish these a priori. 
 
This is an excellent point and we have conducted a new experiment to address it (new Fig. S10) [367-
391, 931-955]. For this new experiment, we used a set of novel objects that subjects had never seen 
before (examples of these novel objects are shown in new Fig. S10A). These types of objects have 
been used in many other psychophysical experiments to evaluate the role of experience in recognition 
(e.g.28-31). A critical consideration in visual search experiments is the degree of similarity between the 
target and distractors (e.g., visual search can be extremely challenging if the target differs from the 
distractors in only one pixel whereas visual search can be extremely easy if the task involves searching 
for a colorful Waldo among a set of black squares as distractors). Importantly, we matched the similarity 
between targets and distractors for known objects and the novel objects (new Fig. S10C). The results 
show that humans are able to perform visual search for this set of novel objects (“zero shot search”) 
despite changes in the object appearance between the target image and search image (“invariance”), 
as shown in new Fig. S10.  
 
While we liked the suggestion of using different types of birds, and we may do this in future 
experiments, we were concerned that it would be more challenging to carefully match the level of 
target/distractor similarity with different types of birds and we were also concerned that subjects might 
have different levels of expertise with birds.  
 
R3.2 The proposed computational model is too simplistic and doesn't capture many critical aspects. For example, the attention 
maps are produced just once, and information from subsequent fixations aren't used to update the attention map; whereas 
humans might use contextual information from previous fixations to decide where to look next. This might explain the low 
correlation between human fixations and model fixations in the second and third experiments. 
 
Indeed, the reviewer correctly points out that there are many simplifying assumptions in our model. We 
explicitly mention these assumptions in the text [193-194, 284, 474-475, 498-499, 520-521, 535-
537,553-554, 958-975] and we emphasize several simplifications in the discussion as well [689-738]. 
One simplification is that the IVSN model essentially does not use prior fixations to update the attention 
map (“essentially” because inhibition of return does use the prior saccade information by inhibiting it). 
We have introduced two variations of the model that incorporate information from previous fixations:  
IVSNsize constrains the size of the model saccades to approximate the distribution of human saccade 
sizes. The attentional map is weighted by the prior fixation in such a way that very large saccades are 
less likely (new Fig. S11G-L).  
IVSNfIOR implements a finite inhibition-of-return mechanism whereas the model remembers previous 
fixations and weighs that information into the attentional map (new Fig. S11D-F). 
When the reviewer mentions “contextual information”, he/she may be referring to high-level 
understanding of the visual scene, which is certainly important and quite fascinating. For example, 
when searching for the car keys, humans know that it is highly unlikely that the keys are glued to the 



ceiling and that it is far more likely that they might be resting on a desk. The IVSN model does not have 
this type of knowledge. In its most general form, this type of contextual information is a rather big and 
fascinating topic, which we hope to address in future work. We now explicitly mention this point in the 
text that [728-738] 
 
In terms of the correlation between models and humans, we note that an upper bound to how well a 
model can explain human eye movement behavior in single trials is given by the between-subject and 
within-subject correlations. We note that these correlations are also relatively low, in other words, given 
the same target image and the same search image in two different trials, the same subject may use a 
different eye movement path to locate the target in a different trial (within subject comparisons) and 
another subject may also use a different path (between subject comparison). We also note that we 
have updated Fig. 6 while moving the previous version to Fig. S8. The original version compared the 
entire fixation sequences, including cases where the two sequence lengths were very different. It is not 
very clear what the comparison between spatiotemporal sequences represents when the lengths 
difference is very large (e.g., in what sense is a sequence of length 2 similar or not to a sequence of 
length 40?). Instead, the new version of Fig. 6 directly compares the first x fixations, therefore 
evaluating the spatiotemporal patterns for sequences of the same length. Irrespective of which 
comparison metric we use (number of fixations, different spatiotemporal sequence metrics), the within-
subject sequence similarity is higher than the between-subject one, which is in turn higher that the 
IVSN-human similarity (Fig. 6, S7, S8) [403-434, 451-456]. 
 
R3.3 The proposed model is crucially dependent on the underlying network architecture, yet the impact of that is not 
evaluated. Are different architectures equally predictive of human performance? Does tapping into other layers of the network 
change the correlation? Do the many other object detection architectures work similarly? 
 
This is also a very interesting question. We answer the different parts separately.   
R3.3a. “Does tapping into other layers of the network change the correlation?”  
We have now added a series of alternative models where top-down modulation is applied at different 
layers of the network as suggested (new Fig. S13). Essentially, all of these model variations performed 
well above chance. In general, higher-layer features provide better performance and a better 
approximation to human behavior [535-551]. However, the relationship between performance and layer 
number is not monotonic: in some cases, intermediate layer features showed the highest performance 
(e.g., new Fig. S13A). We note that we did not try to fine tune the model or choose specific layers to 
optimize performance or match human behavior; there is certainly ample room to improve the model via 
training using a loss function based on performance and/or human behavior [725-727]. 
 
R3.3b. “Are different architectures equally predictive of human performance?”  
This question is certainly very important but somewhat ill-defined and open-ended without specifying 
which other architectures the reviewer is referring to (see also R3.3.c below).  
Although the reviewer probably does not consider the following models to represent “different 
architectures”, we evaluated multiple alternative “null” models: a random eye movement model (Figs. 3, 
4 and 5), a sliding window model (Fig. S4), a random weights model (Fig. S4), a bottom-up saliency 
model (Fig. S4), and a template matching model (Fig. S4).  
The reviewer may or may not consider the following models to represent “different architectures”. We 
evaluated four important extensions to the model: (i) IVSN-like models with top-down modulation 
applied to different layers (R3.3a, new Fig. S13); (ii) the IVSNrecog model, which includes a recognition 
component (new Fig. S11A-C); (iii) the IVSNfIOR model, with finite inhibition of return (new Fig. S11D-
F); (iv) the IVSNsize model constrained by the distribution of saccade sizes (new Fig. S11G-L). 



In addition, we have introduced variations of the model using different “ventral visual cortex” modules 
(new Fig. S14). Specifically, we replaced the “ventral visual cortex” module in Fig. 2 (which was based 
on VGG1625) by several other plausible “ventral visual cortex” architectures: AlexNet32, ResNet33, and 
FastRCNN34.  
This is admittedly not an exhaustive list of possible architectures and we would welcome specific 
suggestions of other architectures and other models that should be compared here.  
 
R3.3c. “Do the many other object detection architectures work similarly?”  
Again, this question is also certainly very important and somewhat ill-defined without specifying which 
object detection architectures the reviewer is referring to.  
In R3.3b, we refer to the results obtained using different possible ventral visual cortex architectures. 
The reviewer might be referring to object detection architectures that aim to localize an object category 
in an image (e.g.34-38). We note that those object detection architectures depend heavily on extensive 
training with the chosen categories. Taking the popular and successful YOLO architecture as an 
example, YOLO thrives in setting a bounding box around a bicycle after being trained with a large 
number of bicycles. To the best of our knowledge, YOLO (without any modifications or training) cannot 
find Waldo. IVSN is based on “transfer learning” whereby we use a network that was trained for object 
categorization with a limited set of categories (VGG16) and we incorporate it into our model to measure 
performance in visual search with never-seen-before categories without any additional training. We 
expect that an object detection architecture (extensively trained with the categories of objects that the 
model has to search for) will perform quite well (as demonstrated in the references above). However, 
we cannot take an object detection architecture that was trained on ImageNet categories (e.g. trained 
to localize cars, kites and trees among other categories) and evaluate (without re-training) whether that 
architecture is or is not able to search for categories that it was not trained on (e.g. non ImageNet 
categories in Experiment 2, Waldo in Experiment 3, or the novel objects in Fig. S10). 
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REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have done an impressively thorough job of responding to my critique. including 

tripling the sample size and adding a new version of the model with finite IOR. I had prepared a 

longer response, but most of the comments were variations on "That's great!" or "Fair point". I am 

quite satisfied with the revisions and find the ms appropriate for publication in Nature 

Communications. I have one remaining quibble: It's great that the authors have added ten more 

human observers. However, the rationale for choosing this sample size should be in the method 

section, so that the reader can judge for themselves.  

 

 

Reviewer #2 (Remarks to the Author):  

 

I think the changes are acceptable.  

 

 

Reviewer #3 (Remarks to the Author):  

 

This review should be seen as updates to my previous review.  

1. Zero-shot search: In my previous review I had commented that the claim that this was zero-

shot recognition did not hold watersince humans may have seen the objects before. The authors 

have responded by conducting a new experiment with unseen objects. I appreciate this new 

experiment and I think this issue has been addressed appropriately.  

 

2. Simplistic architectures: I had suggested that the architecture of IVSN presented is too 

simplistic. This comment has not been addressed appropriately. I want to reiterate: when making 

saccades, presumably each saccade reveals new information to the system (above and beyond 

just the presence of the object at the saccade location), which should help the system decide upon 

the next saccade. To ignore this new information is to discard quite a lot, and I don't see a cogent 

argument that the human visual system is discarding vital information in this way. Perhaps the big 

difference between the human performance and computational models in Figure 6 might be 

because of this.  

I am willing to accept the paper even if the proposed computational model does not include or 

evaluate this, but I do think not having this feature or evaluating its contribution dramatically 

reduces the impact of the paper.  

 

3. Impact of model architecture: I appreciate the fact that the authors have also tried using the 

VGG, ResNet and AlexNet architectures. That is exactly what I wanted. Please include all 

architectures (and indeed all IVSN variants including those in the supplementary) in Figure 6.  

 

Final recommendation: Accept with minor changes (see 3. above)  



Response to Reviewer’s comments 
 
Reviewer #1 (Remarks to the Author): 
The authors have done an impressively thorough job of responding to my critique. including tripling the 
sample size and adding a new version of the model with finite IOR. I had prepared a longer response, but 
most of the comments were variations on "That's great!" or "Fair point". I am quite satisfied with the revisions 
and find the ms appropriate for publication in Nature Communications. I have one remaining quibble: It's 
great that the authors have added ten more human observers. However, the rationale for choosing this 
sample size should be in the method section, so that the reader can judge for themselves. 
We have added this rationale to the Methods section as suggested. 
 
Reviewer #2 (Remarks to the Author): 
I think the changes are acceptable. 
 
Reviewer #3 (Remarks to the Author): 
 
This review should be seen as updates to my previous review. 
1. Zero-shot search: In my previous review I had commented that the claim that this was zero-shot 
recognition did not hold watersince humans may have seen the objects before. The authors have responded 
by conducting a new experiment with unseen objects. I appreciate this new experiment and I think this issue 
has been addressed appropriately. 
 
2. Simplistic architectures: I had suggested that the architecture of IVSN presented is too simplistic. This 
comment has not been addressed appropriately. I want to reiterate: when making saccades, presumably 
each saccade reveals new information to the system (above and beyond just the presence of the object at 
the saccade location), which should help the system decide upon the next saccade. To ignore this new 
information is to discard quite a lot, and I don't see a cogent argument that the human visual system is 
discarding vital information in this way. Perhaps the big difference between the human performance and 
computational models in Figure 6 might be because of this. 
I am willing to accept the paper even if the proposed computational model does not include or evaluate this, 
but I do think not having this feature or evaluating its contribution dramatically reduces the impact of the 
paper. 
We agree with the general theme in this comment, even though the reviewer does not 
explicitly state what type of information is shared across saccades. The current version 
of the model does incorporate information about previous saccades (e.g. inhibition of 
return and distance constraints). However, the reviewer is probably referring to additional 
visual information that could be carried from previous fixations and could well help plan 
the next saccade. We now make this point explicitly in the Discussion. 
 
3. Impact of model architecture: I appreciate the fact that the authors have also tried using the VGG, ResNet 
and AlexNet architectures. That is exactly what I wanted. Please include all architectures (and indeed all 
IVSN variants including those in the supplementary) in Figure 6. 
We have incorporated all models into Figure 6 as suggested. 
	
	


