ISCI, Volume ³

Supplemental Information

Mesoporous TiO₂/TiC@C Composite

Membranes with Stable TiO₂-C

Interface for Robust Lithium Storage

Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili He, Kun Lan, Yang Liu, Jinhu Yang, and Dongyuan Zhao

Supplemental Data Items

Figure S1. Structure and composition characterizations of the mesoporous TiO2@C membranes, related to Figure 2.

Top-view SEM image (a), cross-section SEM image (b), low-magnification TEM image (c), GISAXS image (d), high-resolution TEM (HRTEM) image (e), XRD pattern (f), BET analysis (g), and Raman spectrum (h) of the mesoporous $TiO₂(a)C$ membranes. The inset in (f) shows the molecule structure of $TiO₂$. The inset in (g) is pore size distribution.

Figure S2. Small angel X-ray diffraction (SAXS), related to Figure 2 SAXS patterns of the mesoporous $TiO₂@C$ (a) and $TiO₂/TiC@C$ (b) membranes.

Figure S3. X-ray photoelectron spectroscopy (XPS), related to Figure 2. XPS spectra of the mesoporous $TiO₂@C$ (a) and $TiO₂/TiC@C$ (b) membranes.

Figure S5. High-resolution XPS spectra, related to Figure 2. High-resolution XPS spectra of C1s core level for the TiO₂@C (a) and TiO₂/TiC@C (b) membranes.

Figure S6. High-resolution XPS spectra, related to Figure 2. The high-resolution XPS spectrums of Ti 2p core level for the mesoporous TiO2/TiC@C membranes. The HRXPS contained six components at 456.8, 457.7, 458.5, 462.2, 463.1 and 464.2 eV are consistent with O-Ti-C, Ti^{3+} , Ti^{4+} , O-Ti-C, Ti^{3+} , and Ti^{4+} , respectively.

Figure S7. X-ray absorption fine structure spectroscopy (XAFS), related to Figure 2.

The Ti K-edge pre-edge XAFS of the mesoporous $TiO₂(Q)$ (a) and $TiO₂/TiC(Q)$ (b) membranes.

Figure S8. Elemental mapping, related to Figure 2.

The elemental mapping of the mesoporous $TiO₂@C$ membranes. HAADF-STEM (a) image and energy-dispersive X-ray element mapping of C (b), O (c), and Ti (d) elements.

Figure S9. Elemental mapping, related to Figure 2.

The elemental mapping of the mesoporous TiO₂/TiC@C membranes. HAADF-STEM (a) image and energy-dispersive X-ray element mapping of C (b), O (c), and Ti (d) elements.

The thermogravimetric analysis curves of the mesoporous $TiO_2/TiC@C$ membranes before (a) and after (b) the removal of $TiO₂$ nanocrystals by concentrated sulfuric acid.

Figure S11. **Transferability, flexibility, tailorability of the mesoporous membranes, related to Figure 2.**

Photographs of the mesoporous $TiO₂/TiC@C$ membranes formed on silicon wafer (a), floating on water (b), transferred onto glass substrate (c), transferred onto a cylindrical substrate (d), bent without cracks (e, d), and tailored to different shapes (g, h, i).

Photograph of the mesoporous TiO₂/TiC@C membranes formed on a large Ti foil of 144 $cm²$.

SEM images of mesoporous TiO₂/TiC@C membranes formed on different substrates. (a,b) W wires, (c,d) Ti foils and (e,f) Cu foams.

Figure S14. Extension of the synthetic strategy, **related to Figure 2.** SAXS (a), XRD (b), TEM (c) and HRTEM (d) images of mesoporous MoO2.80/Mo2C@C composites.

Figure S15. Electrochemical performance of the mesoporous TiO2@C membranes, related to Figure 3.

Cyclic voltammograms of the mesoporous $TiO₂(ω)C$ membranes electrodes in a voltage range of 0.01–3 V at a scanning rate of 1 mV \cdot s⁻¹.

Figure S16. **Electrochemical performance of the mesoporous TiO2@C membranes, related to Figure 3.**

Cycling performances of the mesoporous TiO2@C membranes at a current density of $0.4 A·g^{-1}.$

Figure S17. **Structure characterizations of the mesoporous carbon, related to Figure 3.**

 N_2 adsorption-desorption isotherms (a) and the corresponding pore size distribution (b) of the mesoporous carbon annealed at 900 °C.

Figure S18. Electrochemical performances of the mesoporous carbon, related to Figure 3.

(a) Rate performance of mesoporous carbon annealed at $900 °C$. (b) Cycling performance of mesoporous carbon annealed at 900 °C.

Figure S19. Structure characterizations of the thicker mesoporous TiO2/TiC@C membrane, related to Figure 3.

Cross-section SEM image of the mesoporous $TiO_2/TiC@C$ membranes with a thickness of \sim 30 μ m synthesized at 100 rpm for 5 s.

Figure S20. Electrochemical performances of the thicker mesoprous TiO2/TiC@C membranes, related to Figure 3.

Cycling performance of the mesoporous TiO2/TiC@C membranes with a thickness of \sim 30 µm at current densities of 0.4 (a) and 1.5 A·g⁻¹ (b), respectively.

Figure S21. **Sheet resistances, related to Figure 3.** The sheet resistances of the mesoporous $TiO₂/QC (A)$ and $TiO₂/TiC@C (B)$ membranes.

Figure S22. **Sheet resistances, related to Figure 3.** The sheet resistances of the mesoporous carbon membranes calcination at 700 (A) and 900 °C (B), respectively.

Figure S23. Electrochemical performance of the mesoporous TiO2/TiC@C membrane after prelithiation, related to Figure 3.

Cycling performance of the mesoporous TiO2/TiC@C membranes electrodes at current densities of $0.4 \text{ A} \cdot \text{g}^{-1}$ after prelithiation. The initial coulomb efficiency is increasing from 35.3 to 49.6% after prelithiation.

Figure S24. **Flexible full battery, related to Figure 3.** Photograph of the flexible full battery assembled by using the $TiO_2/TiC@C$ membranes as the anode (Cu foil as the current collector) and commercial $LiCoO₂$ loaded on Al foil as the cathode.

Figure S25. Electrochemical performance of the flexible full battery, related to Figure 3.

(a) Photographs of the flexible full battery with different bent angels and a LED can be stably lit. The bent angle is measured to be 0 (i), 30 (ii), 60 (iii), 90 (iv), 120 (v) and

 150° (vi), respectively. (b) Charge/discharge curves of the flexible full battery with

different bent.

Figure S26. Electrochemical kinetics analysis of the mesoporous carbon, related to Figure 4.

(a) CV curves at various scan rates from 2 to 200 mV s^{-1} of the mesoporous carbon membranes. (b) Log(*i*) vs. log (*v*) plots of the cathodic current response at \sim 2.05 V of the mesoporous carbon membrane electrodes. (c). I/scan rate^{1/2} versus scan rate^{1/2}. (d) Separation of the capacitive and diffusion currents in the mesoporous carbon membrane electrodes at a scan rate of 10 mV s^{-1} .

Figure S27. Electrochemical kinetics analysis of the mesoporous carbon and TiO2/TiC@C c membranes, related to Figure 4.

CV curves of (a) mesoporous carbon, (b) $TiO₂/TiC@C$ membranes at different scan rates, and corresponding plots of $v^{1/2}$ vs. $i/v^{1/2}$ used for calculating constants k_1 and k_2 at different potentials.

Figure S28. **Structural evolution of the mesoporous carbon, related to Figure 5.** TEM images of the mesoporous carbon before (a) and after (b) 1000 cycles at the current density of $0.4 \text{ A} \cdot \text{g}^{-1}$.

Figure S29. Structural evolution of the mesoporous TiO2/TiC@C membranes, related to Figure 5.

HRTEM image of the mesoporous $TiO_2/TiC@C$ membranes after 1,600 cycles at the current density of 0.4 $A \cdot g^{-1}$.

		$S_{BET}(m^2/g)$ $S_{Micro}(m^2/g)$ $V(cm^3/g)$ $Dp(nm)$		
TiO_2/C	501	147	0.38	4.02
$TiO_2/TiC(QC)$	674	276	0.42	3.78

Table S1. Structural and textural properties of the mesoporous TiO2@C and TiO2/TiC@C membranes, related to Figure 2.

Table S2. A summary for the cycling performance of the ordered mesoporous TiO2/C and TiO2@TiC/C membranes, related Figure 3.

*The results summarized from Figure 3c in the manuscript and Figure S16 in the supporting information. The capacities are calculated by active materials.

Current density (A g^{-1}	Capacity (mAg^{-1})		Capacity ratio
	TiO2/TiC@C (TTC)	mesoporous carbon (MC)	MC/TTC
0.33	278	163	0.58
0.66	250	107	0.43
$\mathbbm{1}$	179	71	0.4
$\overline{2}$	138	40	0.29
$\overline{4}$	105	28	0.27
6	80	17	0.21
8	60	16	0.27
10	56	13	0.24
0.33	280	170	0.61

Table S3. Rate performance comparison between the TiO2/TiC@C composite and mesoporous carbon,related Figure 3.

*The result summarized from Figure 3b in the manuscript and Figure S19 in the supporting information.

Transparent Methods Materials Synthesis

Preparation of resol precursors: The phenolic resol precursors were prepared according to the previous report (Zhao et al., 2005). In a typical synthesis, 8.0 g of phenol was melted in a flask at 45 \degree C and then mixed with 1.68 g of NaOH solution (20 wt %) under stirring. After 10 min, 13.76 g of formalin (37 wt % formaldehyde) was added dropwise. Upon further stirring for 1 h at 70 \degree C, the mixture was cooled down to room temperature. The pH value was adjusted to \sim 7.0 by using 2.0 M HCl solution. Then the water was removed under vacuum at 49 $^{\circ}$ C. Finally, ethanol was added to precipitate NaCl and dissolve the resol to obtain a 20 wt % solution.

Preparation of titanium citrate complex: The preparation procedure for titanium citrate complex was similar to the previous report (Waterland et al., 2004). For a typical preparation, 28.4 g (100 mmol) of titanium isopropoxiede was dissolved in 50 mL of ethanol (solution A) and 21.0 g (100 mmol) of citric acid was dissolved in 100 mL of ethanol (solution B). Solution B was dropped into the solution A under stirring at 40 $^{\circ}$ C for 2 h. Ethanol was then removed by rotary evaporation at 40 \degree C then white powders were obtained. Water was added to dissolve the white powders to obtain 1.0 M homogeneous solution.

The mesoporous $TiO₂@C$ and $TiO₂/TiC@C$ composite membranes were synthesized *via* a universal strategy by using the phenolic resol (see Supplemental Experimental Procedures for details), pluronic F127 and the titanium citrate complex (see Supplemental Experimental Procedures for details) as a carbon precursor, template and titanium precursor, respectively. The silicon wafers were first treated with piranha solution (98% sulfuric acid:30% hydrogen peroxide = 2:1 v/v) at 90 °C for 30 min to form a thin silica oxide layer on the surface as substrates. In a typical synthesis, 1.5 g of F127, 2.5 g of the resol and 3.0 g of the titanium citrate solution were dissolved in 16 mL of water/ethanol mixture (1:1 v/v). After stirring for 30 min at room temperature, the solution was coated onto the pretreated silicon wafer (2 cm \times 2 cm) at 600 rpm for 10 s to form a thin film. The film was dried at 40 \degree C for 3–5 h, followed by aging at 100 °C for another 24 h. The mesoporous $TiO₂@C$ and $TiO₂/TiC@C$ composite membranes on the silicon wafer were obtained after pyrolyzing at 700 and 900 \degree C for 2 h in nitrogen, respectively. The ramping rate was 1° C min⁻¹ below 600 $^{\circ}$ C, and 5 $^{\circ}$ C min⁻¹ above 600 °C. To obtain free standing membranes, a polymethyl methactylate (PMMA) solution was spin-coated onto the composite membranes to increase the toughness. Afterward, the obtained membranes supported by PMMA thin films were immersed into a potassium hydroxide solution (10 wt %) at room temperature for 8–10 h to etch the silica layer on the surface of silicon wafer. After the PMMA film was dissolved by anisole, the free-standing membranes with a size of 2 cm \times 2 cm were obtained.

Electrochemical Measurements

The electrochemical performances of the membrane electrodes were evaluated in 2016 type coin cells. The cells were set up by using the mesoporous $TiO₂/TiC@C$ composite membranes standing on copper foils as work electrodes and commercial lithium disks as the counter electrodes, respectively. A non-aqueous solution of 1.0 M LiPF₆ in a 1:1:1 of ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) was used as the electrolyte. For a flexible full cell, the commercial $LiCoO₂$ coating on aluminum foil was used as the counter electrode. The electrode was dried at 80 $^{\circ}$ C over night at a vacuum oven before assembly. All the cells were assembled in a glove box with $[O_2]$, $[H_2O] \le 1$ ppm. Specific capacities were calculated based on the weight of membranes (\sim 5 μ m, \sim 0.5 mg). The galvanostatic charge/discharge test was conducted on LAND cycler (Wuhan LAND electronics Co., China) under ambient temperature. Cyclic voltammetry measurements were carried out at a scan rate of $1 \text{ mV} \cdot \text{s}^{-1}$ under the voltage range of $0.01 \sim 3$ V by using a CHI 660e electrochemical workstation (Chen-Hua Instruments Co., China). Electrochemical impedance spectra were recorded using the Solatron 1260/1287 Electrochemical Interface (Solatron Metrology, UK) with oscillation amplitude of 5 mV at the frequency range from 100 mHz to 100 kHz.

Full Battery Assembly

To assemble a flexible full battery, a 30×30 mm² TiO₂/TiC@C anode was coupled with a $LiCoO₂$ cathode, which was prepared by coating conventional $LiCoO₂$ nanoparticle slurry on an Al foil (mass loading: \sim 3.0 mg cm⁻²). Prior to the assembly, the $TiO_2/TiC@C$ anode was prelithiated by placing it in direct contact with a wet Li foil and the electrolyte for 12 h to compensate its large initial irreversible capacity. The mass ratio of the $TiO_2/TiC(\partial C)$ and $LiCoO_2$ in the full battery was adopted as 1:2, considering the difference in specific capacity of the two electrodes. The specific capacity is calculated based on the LiCoO² mass because the battery is cathode-limited. The battery was packaged with a flexible polyethylene foil bag by edge bonding machine, and the same electrolyte as used in the coin cells was injected when placed inside an argon-filled glovebox. The full batteries were cycled in the range of $2.8 - 4.2$ V on LAND galvanostatic charge/discharge instruments.

Material Characterization

X-ray diffraction (XRD) patterns were collected by a Bruker D8 powder X-ray diffractometer (Germany) with Cu K α radiation (40 kV, 40 mA). Small-angle X-ray scattering (SAXS) patterns were recorded by a Nanostar U small-angle scattering system (Bruker, Germany) with Cu Kα radiation (40 kV, 35 mA). GISAXS measurements were carried out at beamline BL16B1 of Shanghai Synchrotron Radiation Facility (SSRF). The incident X-ray photon energy was 10 keV and a MAR165 area detector was used to record the scattering intensity. The *d*-spacing values were calculated using the formula $d = 2\pi/q$, where $q=4\pi$ ($\sin \theta$)/λ. Field emission scanning electron microscopy (FESEM) images were obtained on a Hitachi S4800 field-emission SEM (Japan) operated at 1 kV and 10 µA. Transmission electron microscope (TEM) measurements were conducted on a JEOL 2100F microscope (Japan) at 200 kV. For TEM measurements, the samples were prepared by sonication in ethanol and suspended on holey carbon grids. N_2 adsorption-desorption isotherms were measured with a Micromeritics Tristar 2420 analyzer at 77 K. Before measurements, the samples were degassed at 180° C for more than 5 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas. The pore size distributions were derived from the desorption branches of the isotherms based on Barrett-Joyner-Halenda (BJH) model. The total pore volumes were estimated from the

amount adsorbed at a relative pressure (P/P_0) of 0.995. Thermogravimetric analysis (TGA) curves were carried out using a Mettler Toledo TGA-SDTA851 analyzer (Switzerland) from 30 to 800 °C in an air flow of 80 mL min⁻¹ at a heating rate of 10 $\rm ^{\circ}C$ min⁻¹.

Supplemental References:

 Meng, Y., Gu, D., Zhang, F., Shi, Y., Yang, H., Li, Z., and Zhao, D. (2005). Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053-7059.

Kemmitt, T., Al-Salim, N.I., Gainsford, G.J., Bubendorfer, A. and Waterland, M. (2004). Unprecedented oxo-titanium citrate complex precipitated from aqueous citrate solutions, exhibiting a novel bilayered Ti_8O_{10} structural core. Inorg. Chem*.* 43, 6300-6306.