Electronic Supporting Information

to

Facile and Systematic Access to the Least-coordinating WCA $[(R^FO)_3AI-F-AI(OR^F)_3]^-$ and Its Lewis Basic Brother $[F-AI(OR^F)_3]^ (R^F = C(CF_3)_3)$

Arthur Martens, Philippe Weis, Michael Krummer, Marvin Kreuzer, Andreas Meierhöfer, Stefan C. Meier, Jan Bohnenberger, Harald Scherer, Ian Riddlestone, Ingo Krossing*

M.Sc. A. Martens, M.Sc. P. Weis, B.Sc. M. Krummer, B.Sc. M. Kreuzer, B.Sc. A. Meierhöfer, M.Sc. S. C. Meier, M.Sc. J. Bohnenberger, Dr. H. Scherer, Dr. Ian Riddlestone, Prof. Dr. I. Krossing, Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany. * Correspondence to krossing@uni-freiburg.de.

contents.	
General Considerations	2
Experimental Details	4
Synthesis of Me ₃ SiF	4
Synthesis of Me ₃ Si–F–Al(OR ^F) ₃	4
Synthesis of [Li(NCCCl ₃)][<i>f</i> - <i>al</i>]	6
Reaction of $Me_3Si-F-Al(OR^F)_3$ with DMC	8
Large scale synthesis of $DMC-AI(OR^{F})_3$	
Synthesis of [Li(DMC) ₂][<i>f</i> - <i>al</i>]	
Synthesis of K[<i>f–al</i>]	
Synthesis of K[<i>al-f-al</i>]	
Synthesis of Ag[<i>f–al</i>]	
Synthesis of Ag[<i>al-f-al</i>]	
Synthesis of [NO][<i>f–al</i>]	
Synthesis of [NO][<i>al–f–al</i>]	21
Synthesis of [Ph ₃ C][<i>f–al</i>]	22
Synthesis of [Ph ₃ C][<i>al–f–al</i>]	22
Investigations on the AI(OR ^F) ₃ exchange reactions of $[al-f-al]^-$ and $[f-al]^-$	22
Reactions of $Me_3Si-F-AI(OR^F)_3$ with [Cat][BF ₄]	24
Reaction of Ag[<i>al–f–al</i>] with R ₃ SiX	25
Reaction of $Ag[f-al]$ with PCl_3	
Crystal Structure Data	
Crystal Structures of [SeCl ₃][WCA]	
Crystal Structure of [Li(NCCCl ₃)][f−al]	
Crystal Structure of DMC-AI(OR ^F) ₃	
Crystal Structure of [Li(DMC) ₃][<i>f</i> - <i>al</i>]	
Crystal Structure of [Ag(o–DFB)₃][f–al]	

Contents:

Crystal Structure of [Ag(o−DFB) ₃][al−f−al]	
Crystal Structure of [Ag(o-DFB) ₂][al-f-al]	
Crystal Structure of [Ag(o-DFB) ₂][Al(OR ^F) ₄]	40
Crystal Structure of [NO][<i>al–f–al</i>]	41
Crystal Structure of [Ag(PhF) ₂][F ₂ B(OR ^F) ₂]	43
Crystal Structure of [Ag(tBu ₃ SiBr) ₂ (CH ₂ Cl ₂) ₂][al-f-al]	44
Quantum Chemical Calculations	47
Optimized coordinates and energies of the calculated compounds:	48
BP86/def-SV(P)	48
BP86-D3(BJ)/def-SV(P)	49
COSMO (ε = 8.93)/BP86-D3(BJ)/def-SV(P)	56
COSMO (ε = 16.3)/BP86-D3(BJ)/def-SV(P)	60

General Considerations

All reactions were carried out in an inert gas atmosphere of argon, using standard vacuum and Schlenk techniques or a glove box to exclude air and moisture. All solvents and reagents were dried using standard drying agents (CaH₂, P₄O₁₀) and were subsequently distilled into airtight vessels. Solution NMR spectra were recorded on a Bruker Avance II WB 400 MHz, Bruker Avance III HD 300 MHz and a Bruker Avance DPX 200 MHz NMR spectrometer using the software package Bruker Topspin 3.2 for analysis. Samples were prepared in 5 mm NMR tubes and then flame-sealed in vacuo. Resonances are given in ppm and referenced to SiMe₄ for the ¹H, ¹³C and ²⁹Si NMR spectra, to CFCl₃ for the ¹⁹F NMR spectra and to a 1.1 M solution of Al(NO₃)₃ in D₂O for the ²⁷Al NMR spectra. Raman spectra were measured on a Bruker Vertex 70 with a Bruker RAM II module in a range of 50 – 4000 cm⁻¹ and analyzed with the OPUS software package. IR spectra were measured on a Bruker Alpha Fourier transform IR spectrometer in a range of 400 – 4000 cm⁻¹ using a diamond ATR unit and analyzed with the OPUS software package.

[NMR 1] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Pure Appl. Chem.* **2001**, *73*, 1795.

Single Crystal Diffraction: Obtained single crystals were coated with perfluoroether oil and mounted on 0.1 mm micromounts at the respective crystallization temperature. The crystal structure data were collected from the shock-cooled crystals at 100 K, on a Bruker SMART APEXII QUAZAR CCD area detector diffractometer using Mo-K_a radiation. Data reduction was done with SAINT^[1] and scaling of the data and absorption correction was performed by SADABS^[2]. The structures were solved by intrinsic phasing using SHELXT^[3] and were refined by full matrix least squares minimization on F^2 using all reflections with SHELXL^[4] in the ShelXle^[5] GUI. In addition, a riding model was used to attribute idealized positions to all hydrogen atoms. The disorder of the OR^F groups in the compounds was treated using DSR.^[6] The graphical representations were prepared using the software Mercury 3.6.^[7]

- [1] SAINT, BRUKER-AXS, Madison, Wisconsin, USA, 2013.
- [2] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3–10.
- [3] G. M. Sheldrick, Acta Cryst. A 2015, 71, 3–8.
- [4] G. M. Sheldrick, Acta Cryst. C 2015, 71, 3–8.
- [5] C. B. Hubschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284.
- [6] D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Cryst. 2015, 48, 933–938. www.xs3.uni-freiburg.de/research/dsr
- [7] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, *J. Appl. Cryst.* **2006**, *39*, 453–457.

Experimental Details

Synthesis of Me₃SiF

A two-necked flask was equipped with a reflux condenser (-30° C), followed by a cooling trap (-78° C). (NH₄)₂SiF₆ (20.0 g, 0.11 mmol) was weighed into the flask and suspended in glyme (60 ml). After addition of Me₃SiCl (18.5 ml, 0.14 mmol, 1.3 eq.) the reaction mixture was refluxed for 1 h. Then the reflux condenser was allowed to reach 20°C and the Me₃SiF was distilled into the cooling trap. Then the Me₃SiF was distilled into an airtight vessel (8.1 g, 80 %). In order to remove residual SiF₄, the Me₃SiF was cooled to -40° C. The SiF₄ was then removed in vacuo.

¹H-NMR (400.17 MHz, 298 K, CD₂Cl₂): δ = 0.27 (d, ³J_{H-F} = 7.4 Hz, (CH₃)₃SiF) ppm. ¹⁹F-NMR (376.49 MHz, 298 K, CD₂Cl₂): δ = -158 (dec, Me₃SiF) ppm. ²⁹Si-NMR (79.50 MHz, 298 K, CD₂Cl₂): δ = 33.3 (d, ¹J_{Si-F} = 290 Hz, Me₃SiF) ppm.

Synthesis of Me₃Si-F-Al(OR^F)₃

AlEt₃ (15 ml, 109 mmol) was dissolved in heptane (120 ml) and cooled to -40° C. Under vigorous stirring with a large (!) stirring bar, HOR^F (30 ml, 215 mmol, 2.0 eq.) was added dropwise (!) to the reaction mixture, while keeping the cooling bath between -40 and -20° C. During the addition of HOR^F, gas evolution (C₂H₆) could be observed and the viscosity of the solution increased and also small amounts of precipitate formed. After complete addition of HOR^F, Me₃SiF (12.5 g, 136 mmol, 1.2 eq.) was condensed onto the reaction mixture at -40° C. The solution was stirred for 5 min. and then more HOR^F (20 ml, 108 mmol, 1.0 eq.) was added slowly. The cooling bath was removed and the reaction mixture was allowed to reach r.t., which led to the dissolving of the precipitate. After 30 min more HOR^F (5.0 ml, 36 mmol, 0.3 eq.) was added and the solution was stirred overnight. From the solution, a white powder crystallized and the solvent was removed in vacuo. The product was obtained as a white crystalline powder (85.4 g, 103 mmol, 94 %).

¹H-NMR (300.18 MHz, 298 K, $CD_2Cl_2/o-DFB$): $\delta = 0.78$ (d, ${}^{3}J_{H-F} = 12.6$ Hz, $(CH_3)_3Si-F-Al(OR^F)_3)$ ppm.

¹⁹**F-NMR (282.45 MHz, 298 K, CD₂Cl₂/***o***–DFB):** δ = –75.8 (s, 27 F, Me₃Si–F–Al(OR^F)₃), –156.2 (dec, ${}^{3}J_{H-F}$ = 12.6 Hz, 1 F, Me₃Si–F–Al(OR^F)₃), ppm.

=

²⁷Al-NMR (78.22 MHz, 298 K, CD₂Cl₂/*o*-DFB): δ = 37 (s, br, Me₃Si-F-Al(OR^F)₃) ppm. ²⁹Si-NMR (59.64 MHz, 298 K, CD₂Cl₂/*o*-DFB): δ = 83.7 (d, ${}^{1}J_{Si-F}$

285 Hz,Me₃Si-F-Al(OR^F)₃) ppm.

Synthesis of [Li(NCCCl₃)][*f*-*al*]

 $Me_3Si-F-Al(OR^F)_3$ (998 mg, 1.21 mmol) and $LiPF_6$ (183 mg, 1.20 mmol, 1.00 eq.) were suspended in o-DFB (3 ml) and Cl_3CCN (1 ml) and heated to 60°C. The evolving gas was allowed to evaporate from the solution. After 4 h the solvent was removed in vacuo and the residue was dissolved in o-DFB (1 ml). The product was then precipitated by addition of CH_2Cl_2 (5 ml). After removal of the solvent in vacuo the product was obtained as colorless powder (912 mg, 1.01 mmol, 84 %).

In order to obtain single crystals of the product, the CH_2Cl_2 in the reaction solution was removed under reduced pressure until the product was dissolved again (~2 ml). The solution was stored at -40°C and yielded single crystals of [Li(NCCCl₃)][*f*-*al*].

⁷Li-NMR (116.66 MHz, 298 K, CD₃CN/*o*−DFB): δ = −2.5 (s, Li⁺) ppm.

¹⁹**F-NMR (282.45 MHz, 298 K, CD₃CN/***o***–DFB):** δ = -76.1 (d, 27 F, ⁵*J*_{F-F} = 2 Hz, [F–Al(OR^F)₃]⁻), – 186.2 (m, 1 F, [**F**–Al(OR^F)₃]⁻) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, CD₃CN/*o*-DFB): δ = 41.1 (d, ${}^{1}J_{Al-F}$ = 30 Hz, [F-Al(OR^F)₃]⁻) ppm. ATR-IR (diamond): \tilde{v} = 1354 (w), 1298 (w), 1254 (vs), 1240 (vs), 1217 (vs), 1179 (s), 1033 (vw), 970 (vs), 871 (w), 843 (w), 795 (m), 758 (w), 725 (vs), 663 (w), 567 (w), 536 (w), 507 (w), 451 (w), 388 (m) cm⁻¹.

FT–Raman: $\tilde{v} = 2939 (17), 2923 (17), 2909 (17), 2758 (17), 2286 (100), 800 (50), 758 (33), 749 (33), 725 (0), 704 (0), 570 (33), 538 (33), 501 (67), 330 (50), 297 (17), 266 (83), 180 (83) cm⁻¹.$

Figure S- 5: ¹⁹F-NMR spectrum (282.45 MHz, 298 K, CD₃CN/o-DFB/Cl₃CCN) of [Li(NCCCl₃)][f-al].

The doublet at $\delta^{19}F = -73$ ppm results from small residues of $[PF_6]^-$.

Figure S- 7: ⁷Li-NMR spectrum (116.66 MHz, 298 K, CD₃CN/o-DFB/Cl₃CCN) of [Li(NCCCl₃)][f-al].

Figure S- 8: ATR-IR (top) and Raman (bottom) spectra of $[Li(NCCCl_3][f-a/]]$. The vibrational bands at ~3000 cm⁻¹ are caused by fingerprints inside the Raman spectrometer.

Reaction of Me₃Si-F-Al(OR^F)₃ with DMC

 $Me_3Si-F-Al(OR^F)_3$ was filled in an NMR tube and dissolved in dimethyl carbonate (DMC). Immediately, a slight gas evolution was visible. The sample was then analyzed in the NMR spectrometer.

In the ¹H and ¹³C NMR spectra no signal of DMC–Al(OR^{F})₃ is not visible due to dynamic exchange. The sample contained small amounts of Me₃Si–O–SiMe₃ impurities.

¹H-NMR (300.18 MHz, 298 K, DMC): δ = 3.79 (s, (CH₃O)₂CO), 0.25 (d, ³J_{H-F} = 7.4 Hz, (CH₃)₃SiF) ppm.

¹³C-NMR (75.48 MHz, 298 K, DMC): δ = 53.9 (s, (CH₃O)₂CO), 156.3 (s, (CH₃O)₂CO) ppm.

¹⁹**F-NMR (282.45 MHz, 298 K, DMC):** $\delta = -76.5$ (s, DMC-Al(OR^F)₃), -158.8 (dec, ³J_{H-F} = 7.4 Hz, (CH₃)₃Si**F**) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, DMC): δ = 37 (s, br, DMC–Al(OR^F)₃) ppm.

Figure S- 9: ¹H-NMR spectrum (300.18 MHz, 298 K, DMC) of the reaction of Me₃Si–F–Al(OR^F)₃ with DMC.

Figure S- 10: ¹H,²⁹Si HMBC NMR spectrum (298 K, DMC) of the reaction of Me₃Si–F–Al(OR^F)₃ with DMC.

Figure S- 11: ¹⁹F-NMR spectrum (282.45 MHz, 298 K, DMC) of the reaction of Me₃Si–F–Al(OR^F)₃ with DMC.

Figure S- 12: ²⁷Al-NMR spectrum (78.22 MHz, 298 K, DMC) of the reaction of Me₃Si–F–Al(OR^F)₃ with DMC.

Large scale synthesis of DMC-Al(OR^F)₃

In order to prevent loss of the synthesized Me₃SiF, a large scale synthesis of DMC–Al(OR^F)₃ starting from AlEt₃ and HOR^F was established. This allows for the synthesis of larger amounts of $[Li(DMC)_2][f-al]$.

AlEt₃ (5.0 ml, 36 mmol) was dissolved in hexane (50 ml) and cooled to -40° C. Under vigorous stirring, HOR^F (10 ml, 72 mmol, 2.0 eq.) was added within 10 min to the reaction mixture, while keeping the cooling bath between -40 and -20° C. During the addition of HOR^F, gas evolution (C₂H₆) could be observed and the viscosity of the solution increased and also small amounts of precipitate formed. After complete addition of HOR^F, (MeO)₂CO (DMC, 5.0 ml, 59 mmol, 1.6 eq.) was added to the reaction mixture at -40° C. The solution was allowed to reach r.t. for 5 min, then cooled to -20° C. Then HOR^F (8.0 ml, 43 mmol, 1.2 eq.) was added slowly. The cooling bath was removed and the reaction mixture was allowed to reach r.t., which led to the dissolving of the precipitate. When no more gas evolution was visible, the solvent was removed in vacuo. The product was obtained as colorless powder (27.4 g, 33 mmol, 93 %). Single crystals of DMC-Al(OR^F)₃ could be obtained by storing the reaction mixture at 2°C.

¹H-NMR (300.18 MHz, 298 K, CD₂Cl₂): $\delta = 4.21$ (s, (CH₃O)₂CO-Al(OR^F)₃) ppm. ¹³C-NMR (75.48 MHz, 298 K, CD₂Cl₂): $\delta = 60.8$ (s, (CH₃O)₂CO-Al(OR^F)₃), 160.0 (s,

 $(CH_3O)_2$ **C**O-Al $(OR^F)_3$) ppm.

¹⁹**F-NMR (282.45 MHz, 298 K, CD₂Cl₂):** δ = -76.0 (s, DMC-Al(OR^F)₃) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, CD₂Cl₂): δ = 37 (s, br, DMC-Al(OR^F)₃) ppm.

ATR-IR (diamond): $\tilde{v} = 1641$ (s), 1534 (s), 1458 (vs), 1436 (vs), 1383 (s), 1356 (vs), 1299 (s), 1240 (w), 1213 (w), 1175 (m), 1118 (vs), 968 (w), 889 (s), 862 (s), 813 (vs), 795 (vs), 725 (w), 669 (vs), 592 (s), 568 (vs), 536 (s), 482 (s), 446 (m).

The signal at $\delta^1 H = 0.10$ ppm results from small amounts of grease in the sample.

Synthesis of [Li(DMC)₂][f-al]

 $Me_3Si-F-Al(OR^F)_3$ (985 mg, 1.20 mmol) and $LiPF_6$ (178 mg, 1.17 mmol, 1.0 eq.) were dissolved in DMC (2 ml) and heated to 60°C. After 6 h the solvent was slowly removed in vacuo at 60°C. The product was obtained as colorless powder (951 mg, 1.01 mmol, 86 %). The composition of the cation was determined by addition of *o*-DFB to the NMR as internal

standard for integration. Single crystals of $[Li(DMC)_3][f-al]$ could be obtained by addition of CH_2Cl_2 to the reaction solution, followed by storage at $-30^{\circ}C$.

¹H-NMR (300.18 MHz, 298 K, CD₃CN/*o*-DFB): δ = 3.75 (s, [Li(DMC)₂]⁺ ppm. ⁷Li-NMR (116.66 MHz, 298 K, CD₃CN/*o*-DFB): δ = -2.6 (s, Li⁺) ppm. ¹⁹F-NMR (282.45 MHz, 298 K, CD₃CN/*o*-DFB): δ = -76.1 (d, 27 F, ⁵J_{F-F} = 2 Hz, [F-Al(OR^F)₃]⁻), -186.2 (m, 1 F, [F-Al(OR^F)₃]⁻) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, CD₃CN/*o*-DFB): δ = 41.1 (d, ¹J_{Al-F} = 32 Hz, [F-AI(OR^F)₃]⁻) ppm.

The doublet at $\delta^{19}F = -73$ ppm results from small residues of $[PF_6]^-$.

The signal at $\delta^{27}AI = 34.2$ ppm results from an unidentified impurity.

Synthesis of K[f-al]

 $Me_3Si-F-Al(OR^F)_3$ (995 mg, 1.21 mmol) and KPF_6 (462 mg, 2.51 mmol, 2.1 eq.) were weighed into a Schlenk vessel equipped with a bubbler and dissolved in o-DFB (5 ml). The mixture was heated to 60°C, which led to gas evolution. After 9 h solvent was slowly removed in vacuo at 60°C. The remaining colorless powder (779 mg raw yield) contained residual KPF_6 . Further purification was achieved by extraction of the solid with o-DFB (4 x 2 ml). After removal of the solvent the product was obtained as a colorless powder (223 mg, 0.28 mmol, 23% raw yield). The K[f-al] obtained this way had a purity of about 80 % and was suitable for IR- and Raman spectroscopy.

NMR spectra were taken in Et_2O/CD_2Cl_2 in order to dissolve all solids. The basicity of Et_2O led to dissociation of $[al-f-al]^-$ into $Et_2O-Al(OR^F)_3$ and $[f-al]^-$. The ratios of the compounds in solution was calculated accordingly.

¹⁹F-NMR (282.45 MHz, 298 K, CD₂Cl₂/Et₂O): δ = -74.9 (s, KOC(CF₃)₃, 6%), -75.9 (s, Et₂O-Al(OR^F)₃, 4%), -76.0 (s, unknown impurity), -76.2 (d, ${}^{5}J_{F-F} = 1.8$ Hz, [F-Al(OR^F)₃]⁻, 78%), -76.4 (t, ${}^{5}J_{F-F} = 1.0$ Hz, [F₂Al(OR^F)₂]⁻, 12%) -184.5 (sext, ${}^{1}J_{Al-F} = 48$ Hz, [F-Al(OR^F)₃]⁻) ppm. ²⁷Al-NMR (78.22 MHz, 298 K, CD₂Cl₂/Et₂O): δ = 40 (d, ${}^{1}J_{Al-F} = 48$ Hz, [F-Al(OR^F)₃]⁻) ppm. ATR-IR (diamond): $\tilde{v} = 1357$ (vs), 1298 (s), 1243 (w), 1194 (w), 1009 (vs), 967 (w), 817 (vs), 771 (vs), 756 (vs), 725 (w), 563 (vs), 536 (s), 443 (s), 391 (s). FT-Raman: $\tilde{v} = 2937$ (13), 2909 (13), 2757 (13), 1338 (13), 1311 (13), 1273 (25), 1251 (25), 1230 (13), 817 (38), 771 (100), 753 (50), 735 (38), 572 (25), 539 (63), 429 (13), 367 (25), 327 (100), 298 (25), 258 (13), 227 (13).

Figure S- 22: ¹⁹F-NMR spectrum (282.45 MHz, 298 K, CD₂Cl₂/Et₂O) of K[*f*-*al*].

Figure S- 23: ATR-IR (top) and Raman (bottom) spectra of $K[f-\alpha I]$. The vibrational bands at ~3000 cm⁻¹ are caused by fingerprints inside the Raman spectrometer.

Synthesis of K[*al*-*f*-*al*]

 $Me_3Si-F-Al(OR^F)_3$ (2.17 g, 2.6 mmol) and KPF_6 (241 mg, 1.3 mmol, 0.5 eq.) were weighed into a Schlenk vessel equipped with a bubbler and dissolved in *o*-DFB (5 ml). The mixture was heated to 60°C, which led to gas evolution. After 3 h the gas evolution had stopped and the solvent was slowly removed in vacuo at 60°C. The product was obtained as a colorless powder (1.78 g, 1.2 mmol, 90 %). ¹⁹**F-NMR (376.54 MHz, 298 K, CD₂Cl₂/***o***-DFB):** δ = -75.5 (d, 54 F, [F{Al(OR^F)₃}₂]⁻), -184.5 (s, 1 F, [F{Al(OR^F)₃}₂]⁻) ppm.

²⁷Al-NMR (104.27 MHz, 298 K, CD₂Cl₂/*o*-DFB): δ = 35 (s, br, [F{Al(OR^F)₃}₂]⁻) ppm.

The sharp signal at $\delta^{27}AI = 42$ ppm was generated by small amounts of $[f-aI]^-$.

Synthesis of Ag[*f*-*al*]

a) in CH₂Cl₂

In a double bulb vessel connected by a G4 frit plate, $AgPF_6$ (320 mg, 1.27 mmol) and $Me_3Si-F-Al(OR^F)_3$ (1.04 g, 1.27 mmol, 1.0 eq.) were weighed in one bulb of the vessel and CH_2Cl_2 was condensed onto the solids at 77 K. Then the vessel was equipped with a bubbler in order to allow for evaporation of the evolving PF_5 . The reaction mixture was thawed under stirring, which led to evolution of gaseous PF_5 . After stirring for 1 h at room temperature the mixture was allowed to sediment for 5 h during which little dark precipitate formed. The colorless solution was filtered and the solvent was removed in vacuo. The product was obtained as an off-white powder (1.06 g, 1.24 mmol, 98 %). By integration of NMR spectra taken in *o*-DFB, the cation was identified as [Ag(CH_2Cl_2)]⁺.

¹⁹F-NMR (282.45 MHz, CD₂Cl₂, 298 K): $\delta = -75.8$ (s, 27 F, [F-Al(OR^F)₃]⁻), -189.9 (m, 1 F, [F-Al(OR^F)₃]) ppm.

²⁷Al-NMR (104.27 MHz, CD₂Cl₂, 298 K): δ = 39.8 (d, ¹J_{F-Al} = 43 Hz, 1 Al, [F-Al(OR^F)₃]⁻) ppm.

b) in o-DFB

Ag[PF₆] (298 mg, 1.2 mmol) and Me₃Si-F-Al(OR^F)₃ (990 mg, 1.2 mmol, 1.0 eq.) were dissolved in C₆H₄F₂ (ca. 5 mL) and cooled to -20° C. The mixture was allowed to warm up to r.t. while stirring, concomitant by an evolution of gas (PF₅ and Me₃SiF). After a few minutes, a slightly yellow solution was obtained. All volatiles were removed in vacuo to afford a colorless powder (798 mg, 1.0 mmol, 84 %, x = 0.2). The composition of this compound is [Ag(o-DFB)_x][f-al] with x = 0 – 2, depending on the drying time.

¹H-NMR (200.13 MHz, CD₂Cl₂, 298 K): δ = 7.27-7.07 (m, 4 H, [Ag(o-C₆H₄F₂)_x]⁺) ppm ¹⁹F-NMR (188.31 MHz, CD₂Cl₂, 298 K): δ = -75.8 (d, 27 F, ⁵J_{F,F} = 2 Hz, [FAl(OR^F)₃]⁻), -139.4 (m, 2 F, [Ag(o-C₆H₄F₂)_x]⁺), -199.0 (m, 1 F, [FAl(OR^F)₃]⁻) ppm ²⁷Al-NMR (78.22 MHz, CD₂Cl₂, 298 K): δ = 39.7 (d, ¹J_{Al-F} = 45 Hz, [FAl(OR^F)₃]⁻).

c) in SO_2

 $Me_3Si-F-Al(OR^F)_3$ (863 mg, 1.05 mmol) and $AgPF_6$ (270 mg, 1.07 mmol, 1.02 eq.) were weighed into a Schlenk vessel. Then SO_2 (~2 ml) was condensed onto this mixture at -78°C. The Schlenk vessel was equipped with a bubbler in order to remove the evolving PF_5 and the reaction solution was stirred at -20°C. The reaction solution was allowed to reach -5°C within 1.5 h, then the solvent was removed in vacuo. The product was obtained as colorless powder (888 mg, 1.03 mmol, 98 %).

¹⁹F-NMR (282.45 MHz, CD₂Cl₂, 298 K): $\delta = -75.8$ (s, 27 F, [F-Al(OR^F)₃]⁻), -189.9 (m, 1 F, [F-Al(OR^F)₃]) ppm.

²⁷Al-NMR (104.27 MHz, CD₂Cl₂, 298 K): δ = 39.8 (d, ¹*J*_{F-Al} = 43 Hz, 1 Al, [F-Al(OR^F)₃]⁻) ppm. ATR-IR (diamond): \tilde{v} = 1359 (vs), 1300 (vs), 1244 (w), 1209 (m), 1173 (m), 1133 (vs), 1074 (vs), 973 (w), 968 (w), 857 (vs), 807 (vs), 761 (s), 726 (w), 577 (vs), 565 (vs), 556 (vs), 537 (s), 473 (vs), 434 (vs), 415 (vs), 394 (s).

FT–Raman: \tilde{v} = 1331 (20), 1267 (40), 812 (40), 762 (100), 723 (20), 573 (20), 540 (60), 367 (20), 328 (80), 300 (20), 231 (20).

Figure S- 26: ATR-IR (top) and Raman (bottom) spectra of Ag[f-al]. The vibrational bands at ~3000 cm⁻¹ are caused by fingerprints inside the Raman spectrometer.

Synthesis of Ag[al-f-al]

a) in CH_2Cl_2

In a double bulb vessel connected by a G4 frit plate, $AgPF_6$ (318 mg. 1.26 mmol) and $Me_3Si-F-Al(OR^F)_3$ (2.07 g, 2.51 mmol, 2.0 eq.) were weighed in one bulb of the vessel and CH_2Cl_2 was condensed onto the solids at 77 K. Then the vessel was equipped with a bubbler in order to allow for evaporation of the evolving PF_5 . The reaction mixture was thawed under stirring, which led to evolution of gaseous PF_5 . After stirring for 1 h at room temperature the mixture was allowed to sediment for 5 h during which little dark precipitate formed. The colorless solution was filtered and the solvent was removed in vacuo. The product was obtained as a fine white powder (1.95 g, 1.22 mmol, 97 %). By integration of NMR spectra taken in *o*-DFB, the cation was identified as [Ag(CH_2Cl_2)_3]⁺.

¹⁹F-NMR (282.45 MHz, CD₂Cl₂, 298 K): δ = -75.8 (s, 54 F, [F{Al(OR^F)₃}₂]⁻), -184.8 (s, br, 1 F, [F{Al(OR^F)₃}₂]⁻) ppm. ²⁷Al-NMR (104.27 MHz, CD₂Cl₂, 298 K): δ = ca. 37.1 (s, br, 2 Al, [F{Al(OR^F)₃}₂]⁻) ppm.

b) in o-DFB

Ag[PF₆] (637 mg, 2.5 mmol) and Me₃Si-F-Al(OR^F)₃ (4.33 g, 5.2 mmol, 2.1 eq.) were dissolved in C₆H₄F₂ (ca. 5 mL) and cooled to -20° C. The mixture was allowed to warm up to r.t. while stirring, concomitant by an evolution of gas (PF₅ and Me₃SiF). After a few minutes, a colorless solution was obtained. All volatiles were removed in vacuo to afford a colorless powder ([Ag(o-DFB)₂][al-f-al], 4.32 g, 2.4 mmol, 96 %). Alternatively, the concentrated solution can be crystallized from layering with *n*-pentane to give colorless crystals of [Ag(o-DFB)₃][al-f-al].

¹H-NMR (300.18 MHz, CD₂Cl₂, 298 K): $\delta = 7.26-7.08$ (m, 8 H, $[Ag(o-C_6H_4F_2)_2]^+$) ppm ¹⁹F-NMR (282.45 MHz, CD₂Cl₂, 298 K): $\delta = -75.8$ (s, 54 F, $[F{Al(OR^F)_3}_2]^-$), -139.4 (m, 4 F, $[Ag(o-C_6H_4F_2)_2]^+$), -184.9 (s, br, 1 F, $[F{Al(OR^F)_3}_2]^-$) ppm. ²⁷Al-NMR (104.27 MHz, CD₂Cl₂, 298 K): $\delta = ca. 37.1$ (s, br, 2 Al, $[F{Al(OR^F)_3}_2]^-$) ppm.

c) in SO_2

In a double bulb vessel connected by a G4 frit plate and equipped with a bubbler, $AgPF_6$ (231 mg, 0.91 mmol) and $Me_3Si-F-Al(OR^F)_3$ (1.51 g, 1.83 mmol, 2.0 eq.) were weighed in one bulb of the vessel. SO_2 was condensed onto the solids at $-78^{\circ}C$. The turbid solution was then stirred for 2 h at $-20^{\circ}C$, then for 10 min at 0°C. During this time, the evolution of PF_5 was observed. The solution was filtered and the residue was extracted two more times with SO_2 . After removal of the solvent in vacuo the product was obtained as a solvent-free colorless powder (1.37 g, 0.86 mmol, 95 %).

¹⁹**F-NMR (376.54 MHz, 298 K, CD₂Cl₂):** $\delta = -75.8$ (s, 54 F, [F{Al(OR^F)₃}₂]⁻), -184.9 (s, 1F, [F{Al(OR^F)₃}₂]⁻) ppm.

²⁷Al-NMR (104.27 MHz, 298 K, CD₂Cl₂): δ = 35.0 (s, br, [F{Al(OR^F)₃}₂]⁻) ppm.

ATR-IR (diamond): \tilde{v} = 1353 (vs), 1300 (vs), 1243 (m), 1211 (m), 1176 (s), 970 (m), 862 (vs), 760 (vs), 726 (m), 695 (vs), 638 (vs), 569 (vs), 537 (s), 473 (vs), 450 (s), 382 (vs).

FT–Raman: \tilde{v} = 1305 (5), 1279 (10), 816 (30), 753 (100), 696 (25), 572 (20), 539 (30), 367 (15), 325 (45), 307 (40), 292 (15), 233 (10).

Figure S- 27: ATR-IR (top) and Raman (bottom) spectra of Ag[al-f-al] containing small amounts of *o*DFB. The vibrational bands at ~3000 cm⁻¹ are caused by fingerprints inside the Raman spectrometer.

Synthesis of [NO][f-al]

[NO][PF₆] (106 mg, 0.61 mmol) and Me₃Si–F–Al(OR^F)₃ (500 mg, 0.61 mmol, 1.0 eq.) were weighed in a Schlenk vessel and SO₂ was condensed onto the solids at –78°C. The Schlenk vessel was equipped with a bubbler in order to remove the evolving PF₅ and the reaction solution was stirred at –20°C. The reaction solution was allowed to reach –5°C within 1 h, then the solvent was removed in vacuo. The product was obtained as colorless powder (447 mg, 0.57 mmol, 94 %).

¹⁹**F-NMR (376.54 MHz, SO₂, 298 K):** $\delta = -75.8$ (s, 27 F, [F-Al(OR^F)₃]⁻), -142.0 (sext, 1 F, [F-Al(OR^F)₃]⁻) ppm.

²⁷Al-NMR (104.27 MHz, SO₂, 298 K): δ = 41.1 (d, ¹J_{F-Al} = 44 Hz, 1 Al, [F-Al(OR^F)₃]⁻) ppm.

ATR-IR (diamond): $\tilde{v} = 1355$ (vs), 1300 (s), 1243 (w), 1205 (w), 1183 (w), 968 (w), 821 (vs), 766 (vs), 725 (w), 646 (vs), 573 (vs), 561 (vs), 536 (s), 445 (s), 387 (s).

FT–Raman: \tilde{v} = 2313 (86), 1313 (14), 1266 (29), 816 (29), 768 (71), 753 (57), 731 (29), 573 (29), 539 (57), 446 (14), 367 (29), 326 (100), 298 (14), 231 (14), 169 (14).

Figure S- 28: ATR-IR (top) and Raman (bottom) spectra of [NO][$f-\alpha$]. The vibrational bands at ~3000 cm⁻¹ are caused by fingerprints inside the Raman spectrometer.

Synthesis of [NO][*al*-*f*-*al*]

A double-Schlenk flask was equipped inside the glove box with $Me_3Si-F-Al(OR^F)_3$ (504 mg, 0.61 mmol, 2.0 eq.) and $[NO][PF_6]$ (56 mg, 0.32 mmol, 1.0 eq.). SO_2 (ca. 3 mL) was then condensed onto the reaction mixture at -196° C and the flask was equipped with a bubbler. The vessel was then carefully vented with Ar and the bubbler was opened towards the fume hood while the reaction mixture was stirred at -35° C for 60 min (evolution of PF₅!). Then, the volatiles were removed at 0°C and a white solid was obtained which was further dried in vacuo (440 mg, 0.29 mmol, 88 %).

¹⁹F-NMR (376.54 MHz, C₆H₂F₄, 298 K): $\delta = -75.8$ (s, 54 F, [F{Al(OR^F)₃}₂]⁻), -184.4 (s, 1 F, [F{Al(OR^F)₃}₂]⁻) ppm.

²⁷Al-NMR (104.27 MHz, C₆H₂F₄, 298 K): δ = 36 (s, br, 2 Al, [F{Al(OR^F)₃}₂]⁻) ppm.

ATR-IR (diamond): $\tilde{v} = 1354$ (vw), 1301 (w), 1247 (vs), 1212 (vs), 1074 (vw), 968 (vs), 862 (vw), 760 (vw), 751 (vw), 726 (vs), 640 (w), 569 (w).

FT–Raman: \tilde{v} = 2340 (17), 1319 (11), 1271 (11), 1253 (13), 979 (4), 815 (36), 753 (100), 571 (26), 539 (34), 365 (23), 326 (57), 293 (17), 235 (13).

Synthesis of [Ph₃C][*f*-*al*]

In a Schlenk vessel equipped with a bubbler, $[Ph_3C][PF_6]$ (451 mg, 1.16 mmol) and Me₃Si-F-Al(OR^F)₃ (1.00 g, 1.21 mmol, 1.04 eq.) were weighed in one bulb of the vessel and CH₂Cl₂ (5 ml) was added onto the solids. Immediately the evolution of a gas (PF₅ and Me₃SiF) was observed. The reaction mixture was stirred for 1 h at rt. After removal of the solvent in vacuo the product was obtained as a yellow powder (1.10 g, 1.10 mmol, 95 %).

¹H-NMR (300.18 MHz, CD₂Cl₂, 298 K): $\delta = 8.33$ (m, 3 H, [Ph₃C]⁺), 7.94 (m, 6 H, [Ph₃C]⁺), 7.72 (m, 6 H, [Ph₃C]⁺) ppm

¹³C-NMR (75.48 MHz, 298 K, CD_2Cl_2): $\delta = 130.9$ ([Ph₃C]⁺), 140.0 ([Ph₃C]⁺), 142.9 ([Ph₃C]⁺), 143.7 ([Ph₃C]⁺), 210.7 ([Ph₃C]⁺) ppm.

¹⁹**F-NMR (282.45 MHz, CD₂Cl₂, 298 K):** $\delta = -75.8$ (d, ⁵*J*_{F-F} = 1.7 Hz,27 F, [F-Al(OR^F)₃]⁻), -186.1 (m, br, 1 F, [**F**-Al(OR^F)₃]⁻) ppm.

²⁷Al-NMR (104.27 MHz, CD₂Cl₂, 298 K): δ = 41.1 (s, 1 Al, [F-Al(OR^F)₃]⁻) ppm.

ATR-IR (diamond): \tilde{v} = 1585 (m), 1485 (s), 1452 (s), 1357 (m), 1295 (m), 1265 (w), 1238 (vw), 1210 (vw), 1187 (w), 1167 (w), 1030 (vs), 997 (s), 967 (vw), 841 (s), 825 (m), 806 (s), 766 (m), 725 (w), 699 (w), 661 (vs), 623 (s), 609 (s), 559 (s), 536 (m), 495 (vs), 446 (m), 402 (m).

Synthesis of [Ph₃C][*al*-*f*-*al*]

 $[Ph_3C][PF_6]$ (1.52 g, 3.91 mmol) and Me₃Si-F-Al(OR^F)₃ (6.70 g, 8.13 mmol, 2.1 eq.) were weighed into a Schlenk vessel equipped with a bubbler. After addition of *o*-DFB (10 ml), immediately a fierce evolution of PF₅ was observed, which was finished after several seconds. After stirring for 1 h at room temperature, the solvent was slowly removed in vacuo. The product was obtained as a fine yellow powder (5.94 g, 3.44 mmol, 88 %).

¹H-NMR (300.18 MHz, 298 K, CD₂Cl₂): δ = 7.71 (m, 2 H, [Ph₃C]⁺), 7.94 (m, 2 H, [Ph₃C]⁺), 8.33 (m, 1 H, [Ph₃C]⁺) ppm.

¹³C-NMR (75.48 MHz, 298 K, CD_2Cl_2): $\delta = 130.9$ ([Ph₃C]⁺), 140.0 ([Ph₃C]⁺), 142.8 ([Ph₃C]⁺), 143.9 ([Ph₃C]⁺), 210.8 ([Ph₃C]⁺) ppm.

¹⁹**F-NMR (282.45 MHz, 298 K, CD₂Cl₂):** $\delta = -75.8$ (d, 54 F, ⁵*J*_{F-F} = 0.5 Hz, [F{Al(OR^F)₃}₂]⁻), - 184.9 (s, 1 F, [**F**{Al(OR^F)₃}₂]⁻) ppm.

²⁷Al-NMR (78.22 MHz, 298 K, CD₂Cl₂): δ = 37 (s, br, [F{Al(OR^F)₃}₂]⁻) ppm.

Investigations on the Al(OR^F)₃ exchange reactions of $[al-f-al]^-$ and $[f-al]^-$

Non-stoichiometric amounts of Ag[f-al] and Ag[al-f-al] were filled into an NMR tube and dissolved in o-DFB and CD_2Cl_2 (1:1). For both anions the ${}^{1}J_{Al-F}$ couplings are resolved in the NMR spectra, proving the absence of an exchange of $Al(OR^F)_3$ between these anions. Al decoupling of the ${}^{19}F$ NMR spectrum leads to sharp signals of the Al-F atom for both anions.

Figure S- 29: ¹⁹F-NMR spectrum (282.45 MHz, 298 K, o-DFB/CD₂Cl₂) in the (AI-)F region of the mixture of Ag[f-al] and Ag[al-f-al]; black) ¹⁹F NMR spectrum; red) ¹⁹F{²⁷Al} NMR spectrum.

Figure S- 30: ²⁷Al-NMR spectrum (78.22 MHz, 298 K, o–DFB/CD₂Cl₂) of the mixture of Ag[f–al] and Ag[al–f–al.

Figure S- 31: ¹⁹F, ¹⁹F EXSY NMR spectrum (282.45 MHz, 298 K, o-DFB/CD₂Cl₂ mixing time: 1.6 s) of the mixture of Ag[*f*-*a*/] and Ag[*a*/-*f*-*a*/].

Reactions of Me₃Si-F-Al(OR^F)₃ with [Cat][BF₄]

a) $[Cat]^+ = K^+$

 $Me_3Si-F-Al(OR^F)_3$ (2.17 g, 2.6 mmol) and KBF_4 (165 mg, 1.3 mmol, 0.5 eq.) were weighed into a Schlenk vessel equipped with a bubbler and dissolved in *o*-DFB (10 ml). The solution was heated to 80°C for 2 h, which led to formation of a colorless precipitate.

Figure S- 32: ¹⁹F-NMR spectrum (282.45 MHz, 298 K) of the reaction of Me₃Si−F−Al(OR^F)₃ with KBF₄; black) in C₆H₅F/CDCl₃; red) ¹⁹F{¹¹B} NMR spectrum in C₆H₅F/CDCl₃; blue) in C₆H₅F/Acetone-d6.

Figure S- 33: ²⁷Al-NMR spectrum (78.22 MHz, 298 K) of the reaction of Me₃Si–F–Al(OR^F)₃ with KBF₄; black) in C₆H₅F/CDCl₃; blue) in C₆H₅F/Acetone-d6..

Figure S- 34: ¹¹B-NMR spectrum (96.31 MHz, 298 K) of the reaction of $Me_3Si-F-Al(OR^F)_3$ with KBF_4 ; black) in $C_6H_5F/CDCl_3$; blue) in $C_6H_5F/Acetone-d6$..

b) $[Cat]^{+} = Ag^{+}$

 $Me_3Si-F-Al(OR^F)_3$ (2.17 g, 2.6 mmol) and $AgBF_4$ (255 mg, 1.3 mmol, 0.5 eq.) were weighed into a Schlenk vessel equipped with a bubbler and dissolved in PhF (5 ml). The solution was stirred for 2 days and then stored at $-30^{\circ}C$. From the reaction solution single crystals of $[Ag(PhF)_2][F_2B(OR^F)_2]$ could be obtained.

Reaction of Ag[al-f-al] with R₃SiX

a) Ph₃SiCl

Ag[*al*–*f*–*al*] (151 mg, 0.09 mmol) and Ph₃SiCl (29 mg, 0.10 mmol, 1.0 eq.) were weighed into a Schlenk vessel and were dissolved in *o*–DFB (2 ml). The solution was stirred overnight, which led to formation of small amounts of a black precipitate. NMR spectra mainly showed signals of the starting materials. The ²⁹Si NMR Signal of Ph₃SiCl is shifted by 0.5 ppm compared to pure Ph₃SiCl (δ^{29} Si = 1.2 ppm), probably due to adduct formation.

¹H-NMR (400.17 MHz, 298 K, *o*–DFB/Toluene-d8): δ = 7.60-7.64 (m, 15H, Ph₃SiCl) ppm. ¹⁹F-NMR (282.45 MHz, 298 K, *o*–DFB/Toluene-d8): δ = -75.2 (s, 54F, [(OR^F)₃Al–F–Al(OR^F)₃]⁻), -169.2 (s, 1F, Ph₃SiF), -184.3 (s, 1F, [al–f–al]⁻) ppm. ²⁹Si-NMR (79.5 MHz, 298 K, *o*–DFB/Toluene-d8): δ = 1.7 (s, Ph₃SiCl), -3.9 (s, Ph₃SiF) ppm. b) tBu₃SiBr

Ag[*al*–*f*–*al*] (151 mg, 0.09 mmol) and *t*Bu₃SiBr (56 mg, 0.2 mmol, 2.0 Äq.) were weighed into a Schlenk vessel and cooled with liquid N₂. After addition of CH₂Cl₂ the reaction solution was warmed to –40°C and stirred overnight, which led to formation of small amounts of a black precipitate. NMR spectra of the reaction solution mainly showed signals of the starting materials. The ²⁹Si NMR Signal of *t*Bu₃SiBr is shifted by 2.0 ppm compared to the literature (δ^{29} Si = 41.3 ppm), probably due to adduct formation.

Storage of the reaction solution at -40° C yielded needle-shaped crystals of $[Ag(tBu_3SiBr)_2(CH_2Cl_2)_2][al-f-al]$.

¹H-NMR (300.18 MHz, 298 K, CD₂Cl₂): δ = 1.25 (s, 27H, *t*Bu₃SiBr) ppm. ¹³C-NMR (75.48 MHz, 298 K, CD₂Cl₂): δ = 24.5 (s, 3C, Me₃CSiBr), 29.9 (s, 9C, Me₃CSiBr) ppm. ¹⁹F-NMR (282.45 MHz, 298 K, CD₂Cl₂): δ = -184.9 (s, 1F, [al-f-al]⁻), -75.8 (s, 54F, [(R^FO)₃Al-F-Al(OR^F)₃]⁻) ppm. ²⁹Si-NMR (59.64 MHz, 298 K, CD₂Cl₂): δ = 43.3 (s, *t*Bu₃SiBr) ppm.

c) Me₃Sil

Ag[al-f-al] (235 mg, 0.148 mmol) was dissolved in 1,2,3-C₆H₃F₃ (2 ml) and toluene (0.2 ml). After addition of Me₃SiI (0.02 ml, 29 mg, 0.145 mmol) a colorless precipitate (AgI) formed. The orange solution was stirred for another 30 min and then analyzed by NMR spectroscopy.

¹H-NMR (400.17 MHz, 298 K, C₆H₃F₃/toluene): $\delta = 0.14$ (dec, ${}^{6}J_{H-F} = 0.4$ Hz, Me₃SiOC(CF₃)₃), 0.55 (d, ${}^{3}J_{H-F} = 12.8$ Hz, Me₃Si-F-Al(OR^F)₃), 0.59 (s, br, unknown side product), 0.67 (s, unknown side product) ppm.

¹⁹**F-NMR (376.54 MHz, 298 K, C₆H₃F₃/toluene):** $\delta = -184.8$ (s, $[al-f-al]^-$), -156.6 (s, br, Me₃Si-**F**-Al(OR^F)₃), -76.4 (s, Me₃Si-F-Al(OR^F)₃), -76.0 (s, $[al-f-al]^-$), -74.8 (s, Me₃SiOC(CF₃)₃) ppm.

²⁷Al-NMR (104.27 MHz, 298 K, C₆H₃F₃/toluene): $\delta = 40$ (s, br, Me₃Si-F-Al(OR^F)₃ / [*al*-*f*-*al*]⁻) ppm.

²⁹Si-NMR (79.50 MHz, 298 K, C₆H₃F₃/toluene): δ = 28.1 (s, Me₃SiOC(CF₃)₃), 61.3 (s, unknown side product), 84.6 (d, ¹J_{Si-F} = 260 Hz, Me₃Si-F-Al(OR^F)₃) ppm.

Figure S- 35: ¹H-NMR spectrum (400.17 MHz, 298 K, C₆H₃F₃/toluene) of the reaction of Ag[al-f-al] with Me₃Sil.

Figure S- 36: ¹⁹F-NMR spectrum (376.54 MHz, 298 K, C₆H₃F₃/toluene) of the reaction of Ag[al-f-al] with Me₃SiI. The ratio between Me₃Si-F-Al(OR^F)₃ and $[al-f-al]^-$ is 2.4 : 1.

Figure S- 37: ¹H,²⁹Si HMBC NMR spectrum (400.17 MHz, 79.50 MHz 298 K, C₆H₃F₃/toluene) of the reaction of Ag[*al–f–al*] with Me₃SiI.

Reaction of Ag[f-al] with PCl₃

Ag[f-al] (195 mg, 0.23 mmol) was weighed into a Schlenk vessel and dissolved in o-DFB (1 ml). Then PCl₃ (0.02 ml, 0.23 mmol, 1.0 eq.) was added and the solution became turbid after few seconds. The reaction mixture was stirred overnight. The reaction solution was analyzed by NMR spectroscopy.

¹⁹F-NMR (376.54 MHz, 298 K, *o*-DFB/CD₂Cl₂): $\delta = -33.4$ (d, ${}^{1}J_{P-F} = 1400$ Hz, PF₃), -37.8 (d, ${}^{1}J_{P-F} = 1375$ Hz, PF₂Cl), -58.0 (d, ${}^{1}J_{P-F} = 1320$ Hz, PFCl₂), -75.6 (s, 54 F, [F{Al(OR^F)₃}₂]⁻), -184.6 (s, 1 F, [F{Al(OR^F)₃}₂]⁻) ppm.

²⁷Al-NMR (104.27 MHz, 298 K, *o*-DFB/CD₂Cl₂): δ = 37 (s, br, [F{Al(OR^F)₃}₂]⁻) ppm. ³¹P-NMR (161.99 MHz, 298 K, *o*-DFB/CD₂Cl₂): δ = 219.2 (s, PCl₃), 218.1 (d, ¹*J*_{P-F} = 1320 Hz, PFCl₂), 104.6 (q, ¹*J*_{P-F} = 1400 Hz, PF₃) ppm.

Figure S- 39: ³¹P-NMR spectrum (166.99 MHz, 298 K, o-DFB/CD₂Cl₂) of the reaction of Ag[f-al] with PCl_{3.}

Figure S- 40: ¹⁹F,³¹P COSY-NMR spectrum (376.54 MHz, 298 K, o-DFB/CD₂Cl₂) of the reaction of Ag[*f*-al] with PCl₃.

Crystal Structure Data

Crystal Structures of [SeCl₃][WCA]

Since the original data of these crystal structures will be published separate (see Ref. 33), only the asymmetric units of the different [SeCl₃][WCA] salts will be shown here (Figure S-41). It should be noted, that in case of [SeCl₃][al-f-al] the anion is located at an inversion center, which is commonly observed in structures containing [al-f-al]⁻ as anion. Therefore the asymmetric unit formally shows two [f-al]⁻ anions. In reality each of these [f-al]⁻ anions is one half of [al-f-al]⁻ with the (Al–)F atom being only 50% occupied.

Figure S- 41: Asymmetric unit of $[SeCl_3]^+[WCA]^-$ at 100 K with thermal ellipsoids at 50% probability level. Disorder was omitted for clarity. a) $[SeCl_3]^+[Al(OR^F)_4]^-$. The $C(CF_3)_3$ moieties are shown in wireframe; b) $[SeCl_3]^+[f-al]^-$; c) $[SeCl_3]^+[al-f-al]^-$. The anion is located at an inversion center and therefore the asymmetric unit contains two half anions. Scheme: Se (orange), Cl (green), Al (pink), O (red), F (light green), C (grey).

Crystal Structure of [Li(NCCCl₃)][f-al]

 $[Li(NCCCl_3)][f-al]$ was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution at -40°C. Equivalent C-C and C-F bond distances and thermal ellipsoids were equalized by using SADI, SIMU and RIGU commands.

Figure S- 42: Molecular structure of $[Li(NCCCl_3)][f-al]$ with thermal ellipsoids at 50% probability level. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Li (violet), Al (pink), O (red), F (light green), Cl (green), C (grey), N (blue) H (white).

Table S-1. Crystal data and structure refinement for $[Li(NCCCl_3)][f-al]$.

CCDC number	CCDC 1845808	
Empirical formula	C28 Al2 Cl6 F56 Li2 N2 O6	
Formula weight	1804.84	
Temperature	373(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 3041.36(13) pm	a= 90°.
	b = 1173.18(5) pm	b= 129.575(9)°.
	c = 2062.58(15) pm	g = 90°.
Volume	5.6726(8) nm ³	
Z	4	
Density (calculated)	2.113 Mg/m ³	
Absorption coefficient	0.562 mm ⁻¹	

F(000)	3472
Crystal size	0.200 x 0.200 x 0.200 mm ³
Theta range for data collection	3.132 to 27.480°.
Index ranges	-39<=h<=39, -15<=k<=15, -26<=l<=26
Reflections collected	79101
Independent reflections	6479 [R(int) = 0.0677]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.795
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6479 / 2844 / 587
Goodness-of-fit on F ²	1.092
Final R indices [I>2sigma(I)]	R1 = 0.0651, wR2 = 0.1807
R indices (all data)	R1 = 0.0841, wR2 = 0.1964
Extinction coefficient	n/a
Largest diff. peak and hole	1.555 and -0.554 e.Å ⁻³

Crystal Structure of DMC-Al(OR^F)₃

DMC-Al(OR^F)₃ was synthesized as described above. Crystals suited for SC-XRD could be obtained from the reaction solution by addition of CH_2Cl_2 , followed by storage at -30°C. Equivalent C-C, C-O and C-F bond distances and thermal ellipsoids in the disordered $OC(CF_3)_3$ and DMC groups were equalized by using SADI, SIMU and RIGU commands.

Figure S-43: Molecular structure of DMC–Al(OR^F)₃ with thermal ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups and the DMC group were disordered over two positions. Only the most occupied moiety is shown. Scheme: Al (pink), O (red), F (light green), C (grey), H (white).

Table S-2. Crystal data and structure refinement for DMC-Al(OR^F)₃.

CCDC number	CCDC 1845809	
Empirical formula	C15 H6 Al F27 O6	
Formula weight	822.18	
Temperature	100(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 1080.66(3) pm	a= 90°.
	b = 1395.80(4) pm	b= 90.190(2)°.
	c = 1729.77(5) pm	g = 90°.
Volume	2.60915(13) nm ³	
Z	4	
Density (calculated)	2.093 Mg/m ³	
Absorption coefficient	0.305 mm ⁻¹	
F(000)	1600	
Crystal size	0.15 x 0.15 x 0.01 mm ³	
Theta range for data collection	1.875 to 30.588°.	
Index ranges	-14<=h<=15, -19<=k<=19, -24<=l<=24	

Reflections collected	82953
Independent reflections	7987 [R(int) = 0.0404]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.7064
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7987 / 5038 / 719
Goodness-of-fit on F ²	0.931
Final R indices [I>2sigma(I)]	R1 = 0.0429, wR2 = 0.0991
R indices (all data)	R1 = 0.0721, wR2 = 0.1161
Extinction coefficient	n/a
Largest diff. peak and hole	0.390 and -0.291 e.Å ⁻³

Crystal Structure of [Li(DMC)₃][f-al]

 $[Li(DMC)_3][f-al]$ was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution by addition of CH₂Cl₂, followed by storage at -30°C. Equivalent C-C, C-O and C-F bond distances and thermal ellipsoids in the disordered OC(CF₃)₃ and DMC groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 44: Molecular structure of $[Li(DMC)_3][f-al]$ with thermal ellipsoids at 50% probability level. For clarity, only one of two independent molecules of the asymmetric unit is shown and H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups and the DMC groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Li (violet), Al (pink), O (red), F (light green), Cl (green), C (grey), H (white).

Table S-3. Crystal data and structure refinement for $[Li(DMC)_3][f-al]$.

CCDC number	CCDC 1845810	
Empirical formula	C21 H18 Al F28 Li O12	
Formula weight	1028.27	
Temperature	100(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 3592.21(16) pm	a= 90°.
	b = 1074.68(5) pm	b= 102.381(2)°.
	c = 1939.85(9) pm	g = 90°.
Volume	7.3146(6) nm ³	
Z	8	
Density (calculated)	1.867 Mg/m ³	
Absorption coefficient	0.253 mm ⁻¹	
F(000)	4064	
Crystal size	0.140 x 0.080 x 0.040 mm ³	
Theta range for data collection	1.161 to 25.408°.	
Index ranges	-43<=h<=43, -12<=k<=12, -23<=l<=23	
Reflections collected	256191	
Independent reflections	13451 [R(int) = 0.0588]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7454 and 0.6989	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	13451 / 11779 / 1458	
Goodness-of-fit on F ²	1.037	
Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.1036	
R indices (all data)	R1 = 0.0618, wR2 = 0.1132	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.644 and -0.489 e.Å ⁻³	

Crystal Structure of [Ag(o-DFB)₃][f-al]

 $[Ag(o-DFB)_3][f-al]$ was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution by layering with pentane at rt. Equivalent C–C and C–F bond distances and thermal ellipsoids in the disordered o–DFB groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 45: Molecular structure of $[Ag(o-DFB)_3][f-al]$ with thermal ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius. Some of the o-DFB groups were disordered over two or three positions. Only the most occupied moiety is shown. Scheme: Ag (light grey), Al (pink), O (red), F (light green), C (grey), H (white).

Table S-4. Crystal data and structure refinement for $[Ag(o-DFB)_3][f-al]$.

CCDC number	CCDC 1845811	
Empirical formula	C30 H12 Ag Al F34 O3	
Formula weight	1201.25	
Temperature	100(2) К	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 1026.59(2) pm a= 90°.	
	b = 1746.05(4) pm b= 99.0980(10)°.	
	c = 2099.05(5) pm g = 90°.	
Volume	3.71516(14) nm ³	
Z	4	
Density (calculated)	2.148 Mg/m ³	
Absorption coefficient	0.774 mm ⁻¹	
F(000)	2328	
Crystal size	0.6 x 0.2 x 0.05 mm ³	
Theta range for data collection	1.525 to 33.453°.	
Index ranges	-15<=h<=15, -23<=k<=26, -27<=l<=30	
Reflections collected	138683	
Independent reflections	12900 [R(int) = 0.0231]	
Completeness to theta = 25.242°	100.0 %	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7466 and 0.6267
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	12900 / 2245 / 813
Goodness-of-fit on F ²	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0276, wR2 = 0.0674
R indices (all data)	R1 = 0.0324, wR2 = 0.0704
Extinction coefficient	n/a
Largest diff. peak and hole	0.858 and -0.639 e.Å ⁻³

Crystal Structure of [Ag(o-DFB)₃][al-f-al]

 $[Ag(o-DFB)_3][al-f-al]$ was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution by storage at -30°C. Equivalent C-C and C-F bond distances and thermal ellipsoids in the disordered *o*-DFB groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 46: Molecular structure of $[Ag(o-DFB)_3][al-f-al]$ with thermal ellipsoids at 50% probability level. For clarity, only one of two independent molecules of the asymmetric unit is shown and H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Ag (light grey), Al (pink), O (red), F (light green), C (grey), H (white).

Table S-5. Crystal data and structure refinement for $[Ag(o-DFB)_3][al-f-al]$.

CCDC number	CCDC 1845817
Empirical formula	C42 H12 Ag Al2 F61 O6
Formula weight	1933.35
Temperature	100(2) K
Wavelength	71.073 pm
Crystal system	Triclinic
Space group	P-1

Unit cell dimensions	a = 1548.56(4) pm	a= 76.0930(10)°.		
	b = 1768.66(5) pm	b= 84.0230(10)°.		
	c = 2256.79(6) pm	g = 81.6170(10)°.		
Volume	5.9204(3) nm ³			
Z	4			
Density (calculated)	2.169 Mg/m ³	2.169 Mg/m ³		
Absorption coefficient	0.611 mm ⁻¹	0.611 mm ⁻¹		
F(000)	3736	3736		
Crystal size	0.220 x 0.210 x 0.200	0.220 x 0.210 x 0.200 mm ³		
Theta range for data collection	0.932 to 26.855°.	0.932 to 26.855°.		
Index ranges	-19<=h<=17, -21<=k<=	-19<=h<=17, -21<=k<=22, -28<=l<=28		
Reflections collected	130364	130364		
Independent reflections	25254 [R(int) = 0.0276	25254 [R(int) = 0.0276]		
Completeness to theta = 25.242°	99.8 %	99.8 %		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Data / restraints / parameters	25254 / 40740 / 2528	25254 / 40740 / 2528		
Goodness-of-fit on F ²	1.047	1.047		
Final R indices [I>2sigma(I)]	R1 = 0.0555, wR2 = 0.	R1 = 0.0555, wR2 = 0.1448		
R indices (all data)	R1 = 0.0771, wR2 = 0.	R1 = 0.0771, wR2 = 0.1604		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	2.616 and -0.478 e.Å ⁻³	2.616 and -0.478 e.Å ⁻³		

Crystal Structure of [Ag(o-DFB)₂][al-f-al]

 $[Ag(o-DFB)_2][al-f-al]$ was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution by layering with pentane. Equivalent C–C and C–F bond distances and thermal ellipsoids in the disordered o–DFB groups were equalized by using SADI, SIMU and RIGU commands. The Ag atoms in the cation were disordered over eight positions.

Figure S- 47: Molecular structure of $[Ag(o-DFB)_2][al-f-al]$ with thermal ellipsoids at 50% probability level. For clarity, H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Ag (light grey), Al (pink), O (red), F (light green), C (grey), H (white).

Table S-6. Crystal data and structure refinement for $[Ag(o-DFB)_2][al-f-al]$.

CCDC 1845812	
C36 H8 Ag Al2 F59 O6	
1819.46	
100(2) K	
71.073 pm	
Monoclinic	
Сс	
a = 1310.28(12) pm	a= 90°.
b = 2939.0(3) pm	b= 99.674(4)°.
c = 1412.90(12) pm	g = 90°.
5.3636(8) nm ³	
4	
2.253 Mg/m ³	
0.662 mm ⁻¹	
3504	
0.23 x 0.15 x 0.10 mm ³	
1.722 to 29.599°.	
-18<=h<=17, -40<=k<=39, -19<=l<=19	
60147	
14011 [R(int) = 0.0275]	
100.0 %	
Semi-empirical from equivalents	
0.7459 and 0.7057	
	CCDC 1845812 C36 H8 Ag Al2 F59 O6 1819.46 100(2) K 71.073 pm Monoclinic Cc a = 1310.28(12) pm b = 2939.0(3) pm c = 1412.90(12) pm 5.3636(8) nm ³ 4 2.253 Mg/m ³ 0.662 mm ⁻¹ 3504 0.23 x 0.15 x 0.10 mm ³ 1.722 to 29.599°. -18<=h<=17, -40<=k<=39, 60147 14011 [R(int) = 0.0275] 100.0 % Semi-empirical from equit 0.7459 and 0.7057

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	14011 / 19238 / 1510
Goodness-of-fit on F ²	0.994
Final R indices [I>2sigma(I)]	R1 = 0.0633, wR2 = 0.1652
R indices (all data)	R1 = 0.0782, wR2 = 0.1793
Absolute structure parameter	0.47(4)
Extinction coefficient	n/a
Largest diff. peak and hole	0.942 and -0.501 e.Å ⁻³

Crystal Structure of [Ag(o-DFB)₂][Al(OR^F)₄]

 $[Ag(o-DFB)_2][Al(OR^F)_4]$ was synthesized as described in the literature in o-DFB and crystals suited for SC-XRD could be obtained from the reaction solution by layering with pentane. Equivalent C-C and C-F bond distances and thermal ellipsoids in the disordered o-DFBgroups were equalized by using SADI, SIMU and RIGU commands. The Ag atoms in the cation are disordered over an inversion center.

Figure S- 48: Molecular structure of $[Ag(o-DFB)_2][Al(OR^F)_4]$ with thermal ellipsoids at 50% probability level. For clarity, H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Ag (light grey), Al (pink), O (red), F (light green), C (grey), H (white).

Table S-7. Crystal data and structure refinement for $[Ag(o-DFB)_2][Al(OR^F)_4]$.

CCDC number	CCDC 1845813
Empirical formula	C28 H8 Ag Al F40 O4
Formula weight	1303.19
Temperature	100(2) K
Wavelength	71.073 pm

Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 1415.65(5) pm	a= 90°.
	b = 1845.64(6) pm	b= 91.200(2)°.
	c = 1465.10(5) pm	g = 90°.
Volume	3.8271(2) nm ³	
Z	4	
Density (calculated)	2.262 Mg/m ³	
Absorption coefficient	0.785 mm ⁻¹	
F(000)	2512	
Crystal size	0.200 x 0.200 x 0.050 mm ³	
Theta range for data collection	1.775 to 27.100°.	
Index ranges	-18<=h<=18, 0<=k<=23, 0<=l<=18	
Reflections collected	9266	
Independent reflections	9266 [R(int) = ?]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.746333 and 0.683262	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9266 / 3079 / 697	
Goodness-of-fit on F ²	1.029	
Final R indices [I>2sigma(I)]	R1 = 0.0446, wR2 = 0.1066	
R indices (all data)	R1 = 0.0685, wR2 = 0.117	2
Extinction coefficient	n/a	
Largest diff. peak and hole	0.687 and -0.425 e.Å ⁻³	

Crystal Structure of [NO][*al-f-al*]

[NO][al-f-al] was synthesized as described above and crystals suited for SC-XRD could be obtained from the reaction solution by storage at -30°C. Equivalent C-C and C-F bond distances and thermal ellipsoids in the disordered OR^F groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 49: Molecular structure of [NO][al-f-al] with thermal ellipsoids at 50% probability level. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: N (blue), AI (pink), O (red), F (light green), C (grey), H (white).

Table S-8. Crystal data and structure refinement for [NO][*al*-*f*-*al*].

CCDC 18458114	
C24 Al2 F55 N O7	
1513.21	
100(2) K	
71.073 pm	
Monoclinic	
P2 ₁ /n	
a = 1068.41(2) pm	a= 90°.
b = 1829.66(3) pm	b= 94.8220(10)°.
c = 2237.98(3) pm	g = 90°.
4.35938(12) nm ³	
4	
2.306 Mg/m ³	
0.350 mm ⁻¹	
2912	
0.160 x 0.100 x 0.070 mm ³	
1.440 to 27.102°.	
-13<=h<=13, -23<=k<=23, -28<=l<=28	
70133	
	CCDC 18458114 C24 Al2 F55 N O7 1513.21 100(2) K 71.073 pm Monoclinic P2 ₁ /n a = 1068.41(2) pm b = 1829.66(3) pm c = 2237.98(3) pm 4.35938(12) nm ³ 4 2.306 Mg/m ³ 0.350 mm ⁻¹ 2912 0.160 x 0.100 x 0.070 mm 1.440 to 27.102°. -13<=h<=13, -23<=k<=23, 70133

Independent reflections	9618 [R(int) = 0.0415]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.7115
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9618 / 12483 / 1073
Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)]	R1 = 0.0489, wR2 = 0.1079
R indices (all data)	R1 = 0.0726, wR2 = 0.1202
Extinction coefficient	n/a
Largest diff. peak and hole	0.449 and -0.372 e.Å ⁻³

Crystal Structure of [Ag(PhF)₂][F₂B(OR^F)₂]

The reaction of $Me_3Si-F-Al(OR^F)_3$ with $AgBF_4$ yielded crystals of $[Ag(PhF)_2][F_2B(OR^F)_2]$ suited for SC-XRD from the reaction solution by storage at $-30^{\circ}C$. Equivalent C–C and C–F bond distances and thermal ellipsoids in the disordered OR^F groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 50: Molecular structure of $[Ag(PhF)_2][F_2B(OR^F)_2]$ with thermal ellipsoids at 50% probability level. For clarity, only one of two independent molecules of the asymmetric unit is shown and H atoms are shown as spheres of arbitrary radius. Some of the OR^F groups were disordered over two positions. Only the most occupied moiety is shown. Scheme: Ag (light grey), B (pink), O (red), F (light green), C (grey), H (white).

Table S-9. Crystal data and structure refinement for [Ag(PhF)₂][F₂B(OR^F)₂].

CCDC number	CCDC 1845815
Empirical formula	C20 H10 Ag B F22 O2
Formula weight	818.96

Temperature	100(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 3437.12(10) pm	a= 90°.
	b = 1064.65(3) pm	b= 100.4520(10)°.
	c = 1378.45(4) pm	g = 90°.
Volume	4.9605(2) nm ³	
Z	8	
Density (calculated)	2.193 Mg/m ³	
Absorption coefficient	1.000 mm ⁻¹	
F(000)	3168	
Crystal size	0.400 x 0.250 x 0.200 mm ³	
Theta range for data collection	1.205 to 32.351°.	
Index ranges	-48<=h<=49, -14<=k<=15, -19<=l<=20	
Reflections collected	123649	
Independent reflections	15178 [R(int) = 0.0187]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7464 and 0.6502	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	15178 / 3333 / 893	
Goodness-of-fit on F ²	1.141	
Final R indices [I>2sigma(I)]	R1 = 0.0265, wR2 = 0.0568	
R indices (all data)	R1 = 0.0306, wR2 = 0.0581	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.608 and -1.121 e.Å ⁻³	

Crystal Structure of [Ag(*t*Bu₃SiBr)₂(CH₂Cl₂)₂][*al*-*f*-*al*]

The reaction of Ag[al-f-al] with Me_3SiBr in CH_2Cl_2 yielded crystals of $[Ag(tBu_3SiBr)_2(CH_2Cl_2)_2][al-f-al]$ suited for SC-XRD from the reaction solution by storage at -40°C. Equivalent C–C and C–F bond distances and thermal ellipsoids in the disordered OR^F groups were equalized by using SADI, SIMU and RIGU commands.

Figure S- 51: Molecular structure of $[Ag(tBu_3SiBr)_2(CH_2Cl_2)_2][al-f-al]$ with thermal ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius. Scheme: Ag (light grey), Al (pink), O (red), F (light green), Cl (green), Br (brown), C (grey), H (white).

CCDC number	CCDC 1845816
Empirical formula	C50 H58 Ag Al2 Br2 Cl4 F55 O6 Si2
Formula weight	2319.57
Temperature	100(2) К
Wavelength	71.073 pm
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 1547.60(18) pm a= 89.488(4)°.
	b = 1661.5(2) pm b= 67.742(4)°.
	c = 1829.67(19) pm g = 70.537(4)°.
Volume	4.0680(8) nm ³
Z	2
	2

Table S-10. Crystal data and structure refinement for $[Ag(tBu_3SiBr)_2(CH_2Cl_2)_2][al-f-al]$.

	c = 1829.67(19) pm	g = 70.537(4
Volume	4.0680(8) nm ³	
Z	2	
Density (calculated)	1.894 Mg/m ³	
Absorption coefficient	1.582 mm ⁻¹	
F(000)	2280.0	
Crystal size	0.39 x 0.39 x 0.27 mm ³	
Theta range for data collection	1.214 to 26.099°.	
Index ranges	-19<=h<=19, -20<=k<=20,	, -18<=l<=22
Reflections collected	85154	
Independent reflections	16093 [R(int) = 0.0181]	

Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 100.0 % Semi-empirical from equivalents 0.7453 and 0.6110 Full-matrix least-squares on F² 16093 / 5916 / 1117 1.029 R1 = 0.0272, wR2 = 0.0665 R1 = 0.0327, wR2 = 0.0693 n/a 0.753 and -0.621 e.Å⁻³

Quantum Chemical Calculations

DFT optimizations were carried out with TURBOMOLE^[QC 1,2] using the BP86^[QC 3,4] density functional (RI approximation^[QC 5a]) in combination with the def-SV(P) basis set^[QC 5b,c] and D3 dispersion correction with Becke-Johnson damping.^[QC 5d,e] Vibrational frequencies were calculated analytically with the AOFORCE^[QC 6,7] module and all structures represented true minima without imaginary frequencies on the respective hypersurface. Thermodynamic terms were calculated with inclusion of zero-point energy and thermal contributions to the enthalpy/entropy (FREEH tool; unscaled BP86 vibrational frequencies). Solvation effects were calculated using the COSMO^[QC 8] module combined with a geometry optimization. Default options and standard optimized COSMO radii included in the module were used. For AI a radius of 1.404 Å was used. For the calculation were used for the COSMO calculations.

[QC 1] O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346.

[QC 2] R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, Chem. Phys. Lett. 1989, 162, 165.

[QC 3] J. P. Perdew, Phys. Rev. B 1986, 34.

[QC 4] A. D. Becke, Phys. Rev. A: Gen. Phys. 1988, 38, 3098.

[QC 5] a) K. Eichkorn, O. Treutler, H. Oehm, M. Haeser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 242, 652; b) A. Schäfer, H. Horn, R. Ahlrichs, *J. Chem. Phys.* 1992, 97, 2571-2577; c) A. Schäfer, C. Huber, R. Ahlrichs, *The Journal of Chemical Physics* 1994, 100, 5829; d) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *The Journal of Chemical Physics* 2010, 132, 154104; e) S. Grimme, S. Ehrlich, L. Goerigk, *Journal of Computational chemistry* 2011, 32, 1456.

[QC 6] P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511.

[QC 7] P. Deglmann, F. Furche, J. Chem. Phys. 2002, 117, 9535.

[QC 8] A. Klamt, G. Schueuermann, J. Chem. Soc., Perkin Trans. 2 1993, 799.

[QC 9] A. Schäfer, A. Klamt, D. Sattel, J. C. W. Lohrenz, F. Eckert, *Phys. Chem. Chem. Phys.* 2000, *2*, 2187.

Calculations of the FIA

The fluoride ion affinity (FIA)^[FIA 1] for $[al-f-al]^-$ was calculated by the following reaction (BP86–D3(BJ)/def-SV(P)):

 $[al-f-al]^{-} + [COF_3]^{-} \xrightarrow{\Delta_r H^{\circ}(g)} 2 [f-al]^{-} + COF_2$

After substracting the FIA of COF_2 (FIA = 209 kJ·mol^{-1 [FIA 2]}) from ΔH the FIAs for $[al-f-al]^-$ were obtained.

- [FIA 1] T. E. Mallouk, G. L. Rosenthal, G. Mueller, R. Brusasco, N. Bartlett, *Inorg. Chem.* **1984**, *23*, 3167.
- [FIA 2] K. O. Christe, D. A. Dixon, D. McLemore, W. W. Wilson, J. A. Sheehy, J. A. Boatz, J. Fluorine Chem. 2000, 101, 151.

Optimized coordinates and energies of the calculated compounds:

Atomic coordinates are given in Å, SCF energies are given in Hartree, the FREEH energy is given in kJ mol⁻¹, and the FREEH entropy is given in kJ mol⁻¹ K⁻¹. $H^0_{(g)}$, $G^0_{(g)}$ and $G^0_{(solv)}$ are calculated by the following equations:

 $H^{0}_{(g)} = SCF energy + FREEH energy + R \cdot T$

 $G^{0}_{(g)} = SCF energy + FREEH energy + R \cdot T - T \cdot FREEH entropy$

 $G^{0}_{solv} = G^{0}_{(g)} + \Delta_{solv}G^{0}$ with $\Delta_{solv}G^{0} = COSMO$ energy - SCF energy + 7.96 kJ mol⁻¹

BP86/def-SV(P)

COF_2

С	0.00000	0.00000	0.09545
0	0.00000	0.00000	1.28032
F	1.07294	0.00000	-0.68794
F	-1.07294	0.00000	-0.68794
SCF	energy = -31	2.80298592	10
FRE	EH energy =	44.84	
FRE	EH entropy =	0.25983	

[COF₃][−]

С	-0.00000	0.00000	0.15221
0	0.00000	0.00000	1.37582
F	0.64255	1.11292	-0.50932
F	0.64255	-1.11292	-0.50932
F	-1.28509	0.00000	-0.50932
SCF e	energy = -41	2.63732710	36
FREE	H energy =	51.64	
FREE	H entropy =	0.27750	

$[F-AI(OR^{F})_{3}]^{-}([f-al]^{-})$

F	-1.17384	-0.56180	2.06645
Al	-0.37466	-0.19700	0.62257
0	1.34539	0.16068	0.88528
С	2.22788	1.01979	1.43362
С	3.58122	0.24022	1.67007
F	3.34554	-0.95781	2.22511
F	4.22474	0.03104	0.50069
F	4.43321	0.91281	2.48602
С	2.49781	2.23142	0.45234
F	1.49218	3.12971	0.50444
F	3.64706	2.89319	0.74832
F	2.59105	1.79482	-0.81278
С	1.71556	1.58266	2.81632
F	0.43076	1.96553	2.71691

F	1.78676	0.63781	3.77811
F	2.43304	2.65241	3.24216
0	-1.07359	1.20505	-0.21565
С	-2.20914	1.75431	-0.69256
С	-2.97702	2.52008	0.45915
F	-3.63510	1.65360	1.25912
F	-3.89136	3.40189	-0.02215
F	-2.11278	3.20379	1.22462
С	-1.81139	2.78641	-1.81989
F	-1.28624	3.90868	-1.28059
F	-0.88854	2.25872	-2.63759
F	-2.87275	3.16172	-2.57889
С	-3.17167	0.66615	-1.31127
F	-3.25964	-0.39523	-0.49066
F	-4.42861	1.13614	-1.51264
F	-2.70713	0.23004	-2.50023
0	-0.42666	-1.53942	-0.54014
С	0.01125	-2.78195	-0.82391
С	-0.05411	-3.72336	0.44095
F	-1.33207	-4.04818	0.73322
F	0.63063	-4.88154	0.26597
F	0.46215	-3.10065	1.51453
С	1.50014	-2.74228	-1.35980
F	1.67211	-1.69589	-2.18087
F	2.37885	-2.61949	-0.34308
F	1.83381	-3.86716	-2.04585
С	-0.92139	-3.37406	-1.95318
F	-2.21192	-3.13650	-1.67439
F	-0.64925	-2.80130	-3.14651
F	-0.77227	-4.71504	-2.10334
SCF	energy = -37	718.8778574	64
FRE	EH energy =	548.64	
FRE	EH entropy =	1.14241	

$[(\mathsf{R}^{\mathsf{F}}\mathsf{O})_{3}\mathsf{A}\mathsf{I}-\mathsf{F}-\mathsf{A}\mathsf{I}(\mathsf{O}\mathsf{R}^{\mathsf{F}})_{3}]^{-}([al-f-al]^{-})$

Al	-1.1769512	0.0308906	-1.3973779
0	-0.8456166	-1.5135007	-2.1443676
0	-2.8022558	0.0654694	-0.7670515

0	-0.8165503	1.4722058	-2.3005314
С	-0.0001128	2.2963848	-3.0038569
С	0.9158968	1.4726984	-3.9897976
F	1.3793645	0.3737025	-3.3677301
F	1.9756585	2.1856656	-4.4277871
F	0.2162077	1.0693251	-5.0698737
С	-0.8934728	3.2930619	-3.8394615
F	-1.4246146	4.2455122	-3.0463697
C	0.9060847	3.1148610	-2.0066874
F	1 8791987	2 3187567	-1 5126155
F	0 1754654	3 5595512	-0 9755685
F	1 4962994	4 1769121	-2 5977608
F	-1 9041653	2 6381764	-4 4292240
F	-0 1765391	2.0301704	-1 8012110
' C	-3 87/0571	0 7038300	-4.8042440
C C	1 200/070	0.7938390	2 0046722
C C	-1.2004079	-2.4710000	-3.0040733
с г	-0.1252209	-2.7697552	-4.0520991
r r	-0.0447081	-1.8210/88	-4.9/1224/
F	-0.3224987	-3.9654927	-4.0/30393
F	1.0578406	-2.8519686	-3.4059847
C F	-1.6281599	-3.7839969	-2.1989740
F	-0.5052801	-4.4140560	-1.801/82/
+	-2.34/1/29	-4.65/1942	-2.9449565
F	-2.3451016	-3.4850368	-1.1051634
C	-2.5622872	-2.0068175	-3.8004038
F	-2.4348845	-0.7098890	-4.1458416
F	-3.6717466	-2.1191393	-3.0441170
F	-2.7592908	-2.7218948	-4.9290497
С	-3.4906616	1.6945785	0.8730349
F	-3.3928663	0.9527921	1.9925113
F	-4.3932061	2.6734429	1.1010505
F	-2.2933025	2.2703539	0.6553912
С	-5.0114697	-0.2173822	0.0562022
F	-4.5068553	-1.2172113	0.7899843
F	-5.5924483	-0.7598758	-1.0355670
F	-5.9825887	0.3883460	0.7799767
С	-4.4094679	1.7150296	-1.5300262
F	-3.6369840	2.8125950	-1.6663649
F	-5.6777392	2.1326491	-1.3094927
F	-4.3876989	1.0505306	-2.6960578
Al	1.1566533	-0.0278995	1.4096989
0	0.8411298	-1.4464032	2.3638941
0	0.8255421	1.5235800	2.1392498
0	2.7310456	-0.0883369	0.6653033
С	3.8412537	-0.8034377	0.3469761
С	3.4789081	-2.2921437	-0.0403668
F	3.2907213	-3.0454979	1.0630382
F	4.4466037	-2.8813339	-0.7768669

F	2.3387546	-2.3133159	-0.7497796		
С	4.5317635	-0.1017120	-0.8865742		
F	4.5560399	1.2274934	-0.7184974		
С	4.8462618	-0.8174880	1.5639355		
F	4.1872847	-1.0582576	2.7095948		
F	5.4682428	0.3726734	1.6919523		
F	5.8019543	-1.7651204	1.4218414		
F	3.8524299	-0.3644859	-2.0209716		
F	5.8065557	-0.5252234	-1.0604124		
С	1.2560960	2.5022868	2.9776766		
С	0.0423618	-2.3103053	3.0388762		
С	-0.8479420	-3.1148883	2.0168127		
F	-1.8378625	-2.3246737	1.5485794		
F	-1.4130587	-4.2095486	2.5701105		
F	-0.1053548	-3.5077154	0.9716699		
С	0.9579162	-3.3127820	3.8426900		
F	1.5072606	-4.2302061	3.0213268		
F	0.2551402	-3.9804770	4.7889012		
F	1.9558211	-2.6552051	4.4499560		
С	-0.8913563	-1.5386959	4.0509056		
F	-1.3688281	-0.4239341	3.4716630		
F	-0.2036614	-1.1666176	5.1511225		
F	-1.9407688	-2.2857934	4.4561852		
С	1.6263140	1.9084861	4.3928212		
F	0.5179711	1.6312605	5.1077490		
F	2.3873923	2.7501598	5.1258455		
F	2.3102762	0.7576156	4.2379679		
С	0.0859150	3.5470990	3.1462307		
F	-1.0807527	2.9190886	3.3481198		
F	-0.0369406	4.3089350	2.0419670		
F	0.3026467	4.3753675	4.1967715		
С	2.5247281	3.2318552	2.3828198		
F	3.6264948	2.4675361	2.5440027		
F	2.7589965	4.4212310	2.9841460		
F	2.3672794	3.4533807	1.0713599		
F	-0.0438820	-0.0145512	0.0328987		
SC	Fenergy = -	7337.852033	461		
FR	FREEH energy = 1097.70				
FR	EEH entropy	= 2.02172			

BP86-D3(BJ)/def-SV(P)

COF₂

С	0.00000	0.00000	0.09548
0	0.00000	0.00000	1.28034
F	-1.07291	0.00000	-0.68791

F 1.07291 0.00000 -0.68791 SCF energy = -312.8049642616 FREEH energy = 44.85 FREEH entropy = 0.25983

[COF₃]⁻

С	-0.00000	0.00000	0.15219		
0	0.00000	0.00000	1.37577		
F	0.64252	1.11288	-0.50932		
F	0.64252	-1.11288	-0.50932		
F	-1.28504	0.00000	-0.50932		
SCF energy GEOOPT = -412.6401543431					
FREEH energy = 51.64					
FREEH entropy = 0.27749					

$[F-AI(OR^F)_3]^-([f-al]^-)$

F	-1.2738272	-0.6714239	2.2510177
Al	-0.4718268	-0.2744813	0.8172892
0	1.2620204	-0.0179498	1.0788598
С	2.1458432	0.9215402	1.4683591
С	3.5255737	0.2022785	1.7138275
F	3.3472567	-0.9406692	2.3922319
F	4.1204570	-0.1054052	0.5407688
F	4.3938250	0.9713118	2.4197374
С	2.3324118	2.0209381	0.3489329
F	1.3329373	2.9252657	0.3803841
F	3.4986997	2.7051562	0.4895264
F	2.3339825	1.4499231	-0.8640742
С	1.6845771	1.6205254	2.8013419
F	0.3810553	1.9431310	2.7273052
F	1.8391666	0.7925913	3.8571385
F	2.3786939	2.7543926	3.0662864
0	-1.0905694	1.2042932	0.0677088
С	-2.1350716	1.7312665	-0.5994829
С	-2.9648798	2.6468952	0.3794516
F	-3.7167885	1.8938344	1.2122042
F	-3.8024047	3.4909053	-0.2760115
F	-2.1435188	3.3900840	1.1359503
С	-1.5748322	2.6064060	-1.7834252
F	-1.0555565	3.7652021	-1.3223843
F	-0.6000405	1.9508151	-2.4290237
F	-2.5344784	2.9265567	-2.6893291
С	-3.0847104	0.6199578	-1.1909132

F	-3.2889942	-0.3451835	-0.2767409	
F	-4.2976488	1.1108400	-1.5492701	
F	-2.5405617	0.0478163	-2.2827830	
0	-0.6043950	-1.5506558	-0.4047313	
С	-0.0367129	-2.6961743	-0.8275246	
С	0.0737515	-3.7386217	0.3461934	
F	-1.1407937	-4.2397725	0.6602270	
F	0.8808039	-4.7852141	0.0430702	
F	0.5639379	-3.1446837	1.4485203	
С	1.4053327	-2.4373821	-1.4222633	
F	1.4213963	-1.2880255	-2.1115962	
F	2.3308597	-2.3517075	-0.4458716	
F	1.7998105	-3.4322977	-2.2608453	
С	-0.9578384	-3.2861144	-1.9610578	
F	-2.2490448	-3.2162343	-1.6039331	
F	-0.8115824	-2.5852608	-3.1065222	
F	-0.6763159	-4.5846690	-2.2385488	
SCF energy = -3718.966567137				
FREEH energy = 549.69				
FREEH entropy = 1.12307				

$[(\mathsf{R}^{\mathsf{F}}\mathsf{O})_{3}\mathsf{A}\mathsf{I}-\mathsf{F}-\mathsf{A}\mathsf{I}(\mathsf{O}\mathsf{R}^{\mathsf{F}})_{3}]^{-}([al-f-al]^{-})$

Al	-1.18955	-0.09642	-1.36439
0	-0.86225	-1.68221	-2.01450
0	-2.81669	-0.05962	-0.74571
0	-0.88280	1.31839	-2.32615
С	0.04456	2.09689	-2.93609
С	1.01895	1.21544	-3.80323
F	1.35061	0.10500	-3.11627
F	2.15536	1.86352	-4.13026
F	0.42025	0.82509	-4.94636
С	-0.70993	3.11338	-3.86899
F	-1.27631	4.10150	-3.14735
С	0.86847	2.88511	-1.85255
F	1.73638	2.04529	-1.24564
F	0.05000	3.37663	-0.91387
F	1.57522	3.90653	-2.38139
F	-1.68315	2.49236	-4.55021
F	0.13096	3.68865	-4.76179
С	-3.79283	0.77727	-0.31031
С	-1.36217	-2.59332	-2.88913
С	-0.22187	-2.97585	-3.90612
F	-0.05597	-1.99182	-4.81662
F	-0.50088	-4.11654	-4.58015
F	0.94106	-3.14423	-3.26582
С	-1.81348	-3.88048	-2.10306
F	-0.74681	-4.59899	-1.70241

F	-2.58802	-4.68762	-2.86784
F	-2.51806	-3.53975	-1.01317
С	-2.59888	-2.02461	-3.68537
F	-2.37778	-0.72759	-3.98578
F	-3.72433	-2.08343	-2.94848
F	-2.82476	-2.68820	-4.83862
С	-3.27836	1.62075	0.91439
F	-3.21964	0.86287	2.02467
F	-4.06294	2.68698	1.17638
F	-2.03339	2.06650	0.65510
С	-5.00759	-0.11702	0.13507
F	-4.58280	-1.16461	0.85268
F	-5.66377	-0.59552	-0.94408
F	-5.89685	0.57577	0.88507
C	-4.25787	1.75377	-1.45783
F	-3.39392	2.77931	-1.59818
F	-5.48037	2.28092	-1.21157
F	-4.31412	1.09965	-2.62819
AI	1.16065	0.08085	1.37715
0	0.96096	-1.35999	2.32687
0	0.70186	1.61933	2.05777
0	2.74710	0.14376	0.67343
C	3.83315	-0.58344	0.31149
C	3.41501	-1.98269	-0.28450
F	3.13738	-2.86290	0.69915
F	4.38302	-2.52165	-1.05687
F	2.30665	-1.84322	-1.03076
С	4.61014	0.23790	-0.78444
F	4.67696	1.53126	-0.44142
С	4.76681	-0.80512	1.55858
F	4.03923	-1.17172	2.62564
F	5.41711	0.33288	1.87923
F	5.69703	-1.76165	1.33317
F	3.97863	0.15588	-1.97294
F	5.87412	-0.21721	-0.95588
С	1.13558	2.55689	2.93950
С	0.10471	-2.25317	2.88107
С	-0.81162	-2.87798	1.76575
F	-1.75417	-1.98348	1.39338
F	-1.43730	-4.00045	2.17473
F	-0.07375	-3.17118	0.68522
С	0.95883	-3.38511	3.56081
F	1.47566	-4.21887	2.63629
F	0.21320	-4.12846	4.41315
F	1.97800	-2.85391	4.25065
С	-0.79219	-1.55013	3.96695
F	-1.20612	-0.35624	3.50729
F	-0.09219	-1.33160	5.09962

F	-1.88153	-2.27974	4.28872		
С	1.52628	1.89395	4.31420		
F	0.43157	1.56789	5.02739		
F	2.29360	2.69687	5.08109		
F	2.21502	0.75610	4.08318		
С	-0.04084	3.57515	3.16649		
F	-1.19544	2.92352	3.36628		
F	-0.19326	4.37344	2.09291		
F	0.18441	4.36631	4.24339		
С	2.39185	3.31945	2.36695		
F	3.49438	2.54701	2.46631		
F	2.63501	4.47280	3.03195		
F	2.21246	3.61711	1.07372		
F	-0.03161	-0.03819	0.02147		
SCF energy = -7338.054736403					
FREEH energy = 1100.04					
FRE	EH entropy =	1.97596			

[PF₆]⁻

Р	0.00000	0.00000	-0.00000			
F	0.00000	-1.65285	0.00000			
F	-0.00000	1.65285	-0.00000			
F	-0.00000	0.00000	1.65285			
F	-0.00000	-0.00000	-1.65285			
F	-1.65285	-0.00000	0.00000			
F	1.65285	0.00000	-0.00000			
SCF	SCF energy = -940.1613250131					
FRE	EH energy =	66.14				
FRE	EH entropy =	0.30326				

PF₅

Р	-0.00000	0.00000	-0.00000
F	-0.79557	1.37797	0.00000
F	0.00000	0.00000	1.61284
F	-0.79557	-1.37797	0.00000
F	1.59115	0.00000	0.00000
F	0.00000	0.00000	-1.61284
SCF	energy = -84	10.25481194	32
FRE	EH energy =	57.04	
FRE	EH entropy =	0.30760	

Me₃Si-F-Al(OR^F)₃

Si	-0.57827	0.07487	-2.91554
С	0.81813	1.29983	-3.06793
С	-2.29430	0.79924	-2.82863

С	-0.38563	-1.45969	-3.96324	Н	-3.04517	0.01856	-2.58152
F	-0.36361	-0.61550	-1.30225	Н	-2.57554	1.26192	-3.80111
Al	0.08347	0.00316	0.39215	н	-2.33111	1.58088	-2.04063
0	-0.63045	-1.18916	1.41006	Н	-0.49026	-1.21648	-5.04424
С	-1.61332	-2.11331	1.58616	н	-1.15318	-2.22057	-3.70311
С	-2.21821	-1.91230	3.02730	Н	0.61894	-1.90890	-3.80479
F	-3.04503	-0.84525	3.03935	SC	F energy = -42	128.0011048	93
F	-1.23745	-1.68406	3.90962	FR	EEH energy =	861.70	
F	-2.92002	-2.98950	3.43282	FR	EEH entropy =	1.26227	
С	-0.98827	-3.55263	1.46600		.,		
F	-1.94077	-4.50082	1.34322	SC)₂−AI(ORF)₃		
F	-0.18956	-3.61626	0.38560	S	-1.48829	0.74877	-2.94386
F	-0.24471	-3.83830	2.54856	0	-0.39203	-0.14423	-2.35327
С	-2.75671	-1.95002	0.51377	Al	-0.00568	-0.07092	-0.45503
F	-2.39387	-2.49080	-0.67441	0	-0.62638	-1.55149	0.16327
F	-3.90787	-2.52513	0.89328	C	-1.73669	-2.24642	0.53339
F	-2.98797	-0.63747	0.29009	C	-2.36861	-1.60977	1.82863
0	-0.62477	1.58542	0.09598	F	-3.06044	-0.49283	1.51031
C	-0.79217	2.69423	0.87860	F	-1.39700	-1.25815	2.68275
C	-0.52353	3.96505	-0.00010	F	-3.20832	-2.45753	2.44909
F	-0.41964	5.07700	0.75112	C	-1.28789	-3.72809	0.82597
F	0.61761	3.81884	-0.69999	F	-2.34775	-4.56083	0.88704
F	-1.52334	4.14451	-0.88913	F	-0.46545	-4.15717	-0.14057
C	-2.26955	2.71823	1.42194	F	-0.62980	-3.79144	1.99699
F	-2.60897	3.91935	1.92688	С	-2.79073	-2.23698	-0.63271
F	-2.41294	1.79282	2.39216	F	-2.37776	-2.99328	-1.66302
F	-3.12987	2.41542	0.43528	F	-4.00270	-2.65181	-0.24797
C	0.21472	2.66600	2.08927	F	-2.92272	-0.96142	-1.11344
F	-0.18941	3.38884	3.13852	0	-0.97202	1.36730	-0.23068
F	0.33333	1.36107	2.49549	C	-0.93382	2.63907	0.27036
F	1.43908	3.07531	1.72994	C	-0.75773	3.63102	-0.93504
0	1.80718	0.08521	0.27764	F	-0.39479	4.86069	-0.55431
C	2.98802	-0.58577	0.34625	F	0.17968	3.14691	-1.78789
C	4.13663	0.48627	0.25607	F	-1.90735	3.72192	-1.64412
F	4.24530	1.15548	1.41932	C	-2.30292	2.91070	0.99619
F	3.85813	1.38064	-0.70753	F	-2.50807	4.22824	1.19161
F	5.32917	-0.07847	-0.02156	F	-2.32578	2.29279	2.19109
С	3.10487	-1.37786	1.70358	F	-3.31587	2.42801	0.25900
F	4.37641	-1.72361	1.98012	С	0.25426	2.81940	1.28920
F	2.36507	-2.50618	1.65271	F	0.05363	3.85760	2.11774
F	2.63603	-0.62688	2.71260	F	0.37742	1.69692	2.02586
C	3.10521	-1.59217	-0.85761	F	1.41645	3.01824	0.64025
F	4.09632	-2.48236	-0.69433	0	1.68869	0.20200	-0.34683
F	1.94618	-2.26646	-1.01013	C	2.88822	-0.45395	-0.33939
F	3.32633	-0.92919	-2.01980	с С	4.01612	0.64058	-0.32776
H	0.66103	2.17134	-2.40011	F	4,11012	1.20478	0.89126
н	0.89166	1.66696	-4.11658	F	3.72904	1.60860	-1.21079
н	1.78663	0.82866	-2.79720	F	5.21632	0.11445	-0.64507
							0.0.00/

С	3.00334	-1.35857	0.94523
F	4.27697	-1.70657	1.20277
F	2.28092	-2.48850	0.79032
F	2.51155	-0.70390	2.00949
С	3.01211	-1.34177	-1.63013
F	3.99628	-2.24939	-1.53976
F	1.84450	-1.99788	-1.83258
F	3.23214	-0.57764	-2.71690
0	-1.56117	0.65256	-4.40668
SCF er	ergy = -416	7.460872852	2
FREEH	energy = 5	574.79	
FREEH	entropy =	1.19123	

Me₃SiF

Si	0.00000	0.00000	0.43615	
С	0.89923	-1.55750	-0.12092	
С	0.89923	1.55750	-0.12092	
С	-1.79845	0.00000	-0.12092	
F	0.00000	0.00000	2.09156	
Н	0.38884	-2.47196	0.25515	
Н	1.94636	-1.57273	0.25515	
Н	0.93580	-1.62086	-1.23196	
Н	0.38884	2.47196	0.25515	
Н	1.94636	1.57273	0.25515	
Н	0.93580	1.62086	-1.23196	
Н	-2.33520	0.89923	0.25515	
Н	-2.33520	-0.89923	0.25515	
Н	-1.87161	0.00000	-1.23196	
SCF energy = -508.9439675558				
FREEH energy = 310.97				
FREEH entropy = 0.35436				

Me₃SiCl

-0.00000	0.00000	0.41132
-0.89960	1.55815	-0.15263
-0.89960	-1.55815	-0.15263
1.79920	0.00000	-0.15263
-0.00000	0.00000	2.52137
-0.38813	2.47112	0.22369
-1.94598	1.57169	0.22369
-0.93051	1.61169	-1.26476
-0.38813	-2.47112	0.22369
-1.94598	-1.57169	0.22369
-0.93051	-1.61169	-1.26476
2.33412	-0.89942	0.22369
2.33412	0.89942	0.22369
	-0.00000 -0.89960 1.79920 -0.00000 -0.38813 -1.94598 -0.93051 -0.38813 -1.94598 -0.93051 2.33412 2.33412	-0.000000.00000-0.899601.55815-0.89960-1.558151.799200.00000-0.000000.00000-0.388132.47112-1.945981.57169-0.930511.61169-0.38813-2.47112-1.94598-1.57169-0.93051-1.61169-0.93051-1.611692.33412-0.899422.334120.89942

```
H 1.86102 0.00000 -1.26476
SCF energy = -869.2788899828
FREEH energy = 309.53
FREEH entropy = 0.36300
```

[Me₃Si]⁺

Si	0.00006	-0.00003	-0.00021	
С	0.51998	1.76879	-0.06424	
С	-1.78926	-0.43927	-0.09310	
С	1.26932	-1.32952	0.15720	
Н	1.61855	1.90570	0.01829	
Н	0.16397	2.22836	-1.01858	
Н	0.01433	2.34010	0.75170	
Н	-2.45252	0.44499	-0.19619	
Н	-1.96271	-1.13237	-0.95189	
Н	-2.08150	-1.01280	0.82026	
Н	1.99773	-1.25584	-0.68664	
Н	1.86807	-1.16754	1.08657	
Н	0.83396	-2.35057	0.17684	
SCF energy = -408.8229126821				
FREE	H energy =	297.91		
FREEH entropy = 0.36826				

CH_2CI_2

С	0.00000	0.00000	0.14122
Cl	0.00000	-1.49815	-0.83682
Cl	0.00000	1.49815	-0.83682
Н	-0.91218	0.00000	0.76598
Н	0.91218	0.00000	0.76598
SCF (energy = -95	9.48676920	78
FREE	EH energy =	84.01	
FREE	H entropy =	0.27150	

[CH₂Cl]⁺

С	-0.09138	0.09457	0.00000		
Cl	1.02705	-1.06324	0.00000		
Н	-0.46784	0.48434	-0.97252		
Н	-0.46784	0.48434	0.97252		
SCF e	SCF energy = -498.9955862583				
FREE	H energy =	71.72			
FREE	H entropy =	0.23827			

BF₃

В	0.00000	0.00000	0.00000		
F	-0.66177	1.14622	0.00000		
F	-0.66177	-1.14622	0.00000		
F	1.32354	0.00000	0.00000		
SCF	SCF energy = -324.3194833005				
FRE	EH energy =	41.39			
FRE	EH entropy =	0.25544			

$[F_3B-OR^F]^-$

В	0.08923	2.17847	0.81498	
F	-0.85419	3.20223	0.69892	
F	1.37270	2.63815	0.48582	
F	0.07469	1.61115	2.09872	
0	-0.33509	1.13354	-0.21684	
С	-0.09374	-0.19385	-0.22843	
С	-0.82893	-0.98140	0.94506	
F	-1.15364	-2.25779	0.57198	
F	-1.97129	-0.36382	1.27357	
F	-0.07460	-1.10074	2.05468	
С	-0.70180	-0.68988	-1.59982	
F	-0.33166	-1.95112	-1.94265	
F	-0.32809	0.11651	-2.60738	
F	-2.05455	-0.66982	-1.54836	
С	1.43799	-0.57035	-0.19678	
F	1.62200	-1.92262	-0.12281	
F	2.07695	-0.02848	0.84468	
F	2.05401	-0.15018	-1.32533	
SCF energy = -1449.918370528				
FREE	H energy =	217.62		
FREEH entropy = 0.54990				

[F₅P−OR^F]⁻

Р	-1.40048	-1.38388	1.18265
F	-2.04680	0.13102	1.07000
F	-0.69410	-2.85798	1.26236
F	-2.76500	-1.94005	1.90484
0	0.10187	-0.84120	0.40918
С	0.46263	0.26323	-0.29813
F	-0.75800	-0.99462	2.64326
F	-2.01985	-1.75766	-0.29874
С	0.38722	1.62922	0.51806
F	0.53754	1.39990	1.82552
F	-0.76507	2.30042	0.32805
F	1.38303	2.48560	0.13727

С	1.98919	-0.03115	-0.60716	
F	2.53818	0.80265	-1.52489	
F	2.14838	-1.28140	-1.06800	
F	2.71687	0.08092	0.52672	
С	-0.29589	0.44901	-1.67019	
F	-1.61683	0.58239	-1.54165	
F	-0.05793	-0.60270	-2.48308	
F	0.15502	1.56627	-2.31606	
SCF energy = -1965.866108003				
FREEH energy = 234.88				
FREEH entropy = 0.58119				

[OR^F]⁻

0	0.53850	1.75682	0.06111
С	0.16059	0.52370	0.01830
С	0.73622	-0.25205	-1.26404
F	0.67450	-1.62401	-1.22546
F	2.03555	0.06481	-1.46356
F	0.07320	0.12075	-2.39654
С	0.64118	-0.31178	1.30225
F	0.01521	-1.51592	1.51611
F	0.46555	0.41376	2.42972
F	1.97466	-0.59086	1.23073
С	-1.43641	0.37108	-0.04490
F	-1.96288	1.27168	-0.90518
F	-1.99902	0.62928	1.17085
F	-1.91684	-0.85726	-0.42938
SCF	energy = -12	125.5168289	66

FREEH energy = 166.13

FREEH entropy = 0.47186

C₄F₈O–Al(OR^F)₃

Al	0.11112	-0.01004	-0.22246
0	1.12873	-1.28000	0.30554
С	2.13981	-2.18590	0.30653
С	3.10720	-1.86112	1.50730
F	2.39150	-1.54131	2.60112
F	3.89973	-2.90591	1.81038
F	3.89005	-0.80693	1.20951
С	1.51051	-3.61590	0.49449
F	0.44269	-3.75364	-0.31021
F	2.38853	-4.59588	0.21248
F	1.08786	-3.77853	1.76528
С	2.94569	-2.13012	-1.04350
F	3.14865	-0.84786	-1.40039
F	4.13934	-2.74007	-0.94463

F	2.25061	-2.72335	-2.03663	C ₄ F ₈	O−AI(OR ^F)₂−F	-Al(OR [⊧])₃	
0	-0.80299	0.12197	1.60104				
С	-2.11334	-0.14358	2.19962	Al	-1.16382	-0.00322	-1.33356
С	-0.83587	-0.32174	2.94320	0	-0.83232	-1.49694	-2.13079
F	-0.39801	0.53193	3.84402	0	-2.41018	0.00506	-0.12339
F	-0.36044	-1.52988	3.17297	0	-1.01567	1.50524	-2.15680
С	-2.98159	1.12607	2.33715	C	-0.18185	2.43278	-2.69483
F	-3.31445	1.57467	1.12163	C	0.75043	1.76403	-3.76876
F	-4.09687	0.81091	3.02208	F	1.20768	0.58563	-3.28137
F	-2 33346	2 09842	2 98952	F	1 81618	2 52728	-4 07547
C	-2 86410	-1 41978	1 73255	F	0.07591	1 49933	-4 89784
F	-3 42856	-1 97228	2 82597	Ċ	-1 06495	3 54404	-3 37291
F	-2 01970	-2 30068	1 18913	F	-1 61834	4 34068	-2 43813
' E	-3 82016	_1 12737	0.85/05	Ċ	0.60365	3 07248	-1 55/65
$^{\prime}$	-3.82940	0 22801	0.80495	C E	1 68016	2 20666	1 10107
C C	-1.40270	-0.33891	-0.89425	г Г	0.05010	2.20000	-1.19197
C C	-1.02000	-0.30334	-2.22100	г г	-0.03665	3.23424	-0.40775
C F	-3.02/10	-1.30142	-2.41090	г г	1.27433	4.22420	-1.92531
r r	-2.81017	-2.48378	-1./1531	г г	-2.05325	2.98151	-4.07944
F	-4.17865	-0.81093	-1.99276	F	-0.32991	4.31/16	-4.20080
F	-3.16991	-1.68906	-3./1923	C	-3.65/83	0.50322	0.11617
C -	-2.24324	1.07834	-2.69451	C	-1.19661	-2.42691	-3.05680
F _	-1.14387	1.85234	-2.82278	C	0.03355	-2.69589	-4.00198
F	-2.88156	1.05489	-3.88007	F	0.19341	-1.67410	-4.86660
F	-3.04403	1.64569	-1.78395	F	-0.11442	-3.83013	-4.71360
С	-0.59767	-0.86651	-3.06015	F	1.16210	-2.79947	-3.27932
F	0.54154	-0.34713	-2.43078	С	-1.59420	-3.74964	-2.30479
F	-0.57081	-0.45143	-4.32181	F	-0.49801	-4.33863	-1.78135
F	-0.46558	-2.19275	-3.02645	F	-2.19635	-4.63390	-3.12368
0	0.62878	1.61811	-0.37911	F	-2.43125	-3.47236	-1.29178
С	1.33158	2.69220	0.06689	С	-2.41198	-1.92565	-3.92248
С	1.50993	2.62563	1.62797	F	-2.23569	-0.62447	-4.23020
F	1.80512	1.35416	1.99468	F	-3.56350	-2.02501	-3.22961
F	0.36113	2.95626	2.25484	F	-2.54703	-2.61959	-5.06554
F	2.48344	3.42929	2.07764	С	-3.59144	1.46621	1.35896
С	2.74392	2.71280	-0.62731	F	-3.50430	0.76371	2.51111
F	2.62020	2.41694	-1.92915	F	-4.67739	2.25655	1.44320
F	3.34427	3.91273	-0.51302	F	-2.49848	2.24515	1.27440
F	3.54679	1.78313	-0.06707	С	-4.61353	-0.70863	0.41996
С	0.52098	3.98640	-0.31488	F	-4.00455	-1.58497	1.23475
F	0.62646	4.24016	-1.63140	F	-4.91995	-1.35469	-0.72241
F	-0.78058	3.81029	-0.03033	F	-5.76169	-0.31201	1.00484
F	0.96349	5.06598	0.36167	С	-4.20756	1.30712	-1.12334
SCF	energy GFOC	PT = -4644.	686989998	F	-3.68761	2.54730	-1.16583
FRFF	=Henergy =	710.67		F	-5.54650	1.41158	-1.11624
FRFF	EH entronv =	1.33007		F	-3.83771	0.67102	-2.25826
				Al	1.05535	0.02655	1.42027
				0	1.23843	-1.48521	2.28128
				0 0	1.30756	1.62903	1.94813
				<u> </u>	1.007.00	1.02000	1.0 1010

0	2.88561	-0.17837	0.57995
С	3.66972	-1.12793	-0.23849
С	3.16022	-2.59240	-0.23509
F	3.28626	-3.16899	0.96258
F	3.88071	-3.29565	-1.12409
F	1.87070	-2.59431	-0.59618
С	4.07697	-0.57225	-1.63140
F	4.04948	0.76236	-1.63220
С	4.22550	-0.47921	0.97521
F	5.07320	0.52371	0.88332
F	4.36970	-1.11741	2.11402
F	3.26040	-1.03121	-2.58293
F	5.33142	-0.99059	-1.88313
С	1.70661	2.52832	2.89473
С	0.23837	-2.15472	2.95156
С	-0.35387	-3.26410	2.00724
F	-0.98318	-2.65270	0.97871
F	-1.23033	-4.05569	2.64442
F	0.62333	-4.02531	1.50347
С	0.84358	-2.78469	4.25354
F	1.63361	-3.82725	3.95340
F	-0.13900	-3.21262	5.07304
F	1.58243	-1.87261	4.90240
С	-0.90530	-1.13931	3.33697
F	-0.85504	-0.12927	2.32991
F	-0.68684	-0.50614	4.48244
F	-2.12688	-1.63188	3.32671
С	2.35432	1.78385	4.12076
F	1.40720	1.22368	4.89558
F	3.10772	2.58721	4.88086
F	3.13801	0.77424	3.66311
С	0.45284	3.35099	3.37423
F	-0.57379	2.51549	3.60827
F	0.07171	4.22711	2.43248
F	0.72025	4.02902	4.50754
С	2.77131	3.48712	2.24563
F	3.93149	2.81229	2.05801
F	3.02398	4.55260	3.02403
F	2.35578	3.91858	1.05044
F	0.28980	-0.03830	-0.15651
SCF e	nergy GEO	OPT = -7238.0)40425367
FREE	H energy =	1089.98	
FREE	H entropy =	1.92241	

COSMO (ϵ = 8.93)/BP86-D3(BJ)/def-SV(P)

COSMO energy = -99.8190863141

[Me₃Si]⁺

Si	0.00010	-0.00009	-0.00101
С	0.51839	1.76602	-0.06393
С	-1.78604	-0.43940	-0.09393
С	1.26775	-1.32672	0.15676
Н	1.61766	1.89210	0.01577
Н	0.15604	2.21226	-1.02007
Н	0.01279	2.32083	0.76105
Н	-2.44008	0.45018	-0.20146
Н	-1.94444	-1.13226	-0.95348
Н	-2.06467	-1.00256	0.82798
Н	1.98590	-1.24257	-0.69256
Н	1.85330	-1.15478	1.09061
Н	0.82331	-2.34300	0.17428
COSN	/IO energy =	-408.89984	50633

Me₃SiF

Si	0.00000	0.00000	0.42133
С	0.90046	-1.55964	-0.11975
С	0.90046	1.55964	-0.11975
С	-1.80092	0.00000	-0.11975
F	-0.00000	0.00000	2.08826
Н	0.38610	-2.47183	0.25712
Н	1.94762	-1.57029	0.25712
Н	0.93618	-1.62151	-1.23101
Н	0.38610	2.47183	0.25712
Н	1.94762	1.57029	0.25712
Н	0.93618	1.62151	-1.23101
Н	-2.33372	0.90155	0.25712
Н	-2.33372	-0.90155	0.25712
Н	-1.87236	0.00000	-1.23101
COSI	MO energy =	-508.94764	74420

Me₃SiCl

Si	-0.00000	0.00000	0.39459
С	-0.90094	1.56048	-0.15104
С	-0.90094	-1.56048	-0.15104
С	1.80189	0.00000	-0.15104
Cl	0.00000	0.00000	2.52457
Н	-0.38555	2.47169	0.22456
н	-1.94777	1.56974	0.22456
н	-0.92961	1.61014	-1.26358
Н	-0.38555	-2.47169	0.22456

F⁻

Н	-1.94777	-1.56974	0.22456	0	0.64002	-1.61222	-0.32103
Н	-0.92961	-1.61014	-1.26358	С	1.72166	-2.40885	-0.18736
Н	2.33332	-0.90195	0.22456	С	2.74712	-1.86040	0.87979
Н	2.33332	0.90195	0.22456	F	2.08016	-1.33760	1.92451
Н	1.85922	0.00000	-1.26358	F	3.56774	-2.82885	1.35150
COS	MO energy =	-869.28234	01519	F	3.52451	-0.88964	0.36063
				С	1.22095	-3.83052	0.27175
F⁻				F	0.12408	-4.18564	-0.41313
				F	2.15600	-4.79370	0.08970
SCF	energy = -9	9.68993876	116	F	0.89810	-3.81545	1.58397
				С	2.45414	-2.53777	-1.57543
COF	2			F	2.57456	-1.33331	-2.15383
				F	3.69441	-3.07106	-1.45269
С	0.00000	0.00000	0.09151	F	1.75397	-3.32989	-2.41584
0	0.00000	0.00000	1.27899	0	-0.56246	0.25105	1.66347
F	-1.07277	0.00000	-0.68525	С	-1.55959	-0.01972	2.53187
F	1.07277	0.00000	-0.68525	С	-1.16440	0.61490	3.91842
COS	MO energy =	-312.80804	48842	F	-1.34040	1.95388	3.89729
	0,			F	-1.90505	0.12104	4.93966
[COI	Fa]-			F	0.12676	0.37741	4.19176
-				С	-2.92589	0.60765	2.05142
С	0.00000	0.00000	0.14323	F	-3.50242	-0.15699	1.10135
0	-0.00000	0.00000	1.37210	F	-3.81643	0.72956	3.06733
F	0.63918	1.10710	-0.50511	F	-2.72030	1.82694	1.53312
F	0.63918	-1.10710	-0.50511	С	-1.73947	-1.57328	2.70618
F	-1.27837	0.00000	-0.50511	F	-2.89553	-1.89774	3.33050
cos	MO energy =	-412.72753	30459	F	-0.72380	-2.09444	3.42429
	07			F	-1.73761	-2.17413	1.50160
CH ₂ CH	CI2			0	-1.39099	0.23593	-1.03796
-	-			С	-1.91228	0.04944	-2.26784
С	0.00000	0.00000	0.14834	С	-2.92478	-1.15768	-2.23653
Cl	0.00000	-1.49598	-0.84216	F	-2.40175	-2.18725	-1.55418
Cl	0.00000	1.49598	-0.84216	F	-4.07721	-0.80451	-1.62755
н	-0.91440	0.00000	0.76776	F	-3.23994	-1.59377	-3.48064
н	0.91440	0.00000	0.76776	С	-2.68086	1.36302	-2.67424
cos	MO energy =	-959.49071	.95418	F	-1.80778	2.32874	-3.03604
	07			F	-3.52753	1.16546	-3.71316
[CH ₂	CI]+			F	-3.39625	1.82730	-1.63972
L - 2				С	-0.79875	-0.24678	-3.34417
С	-0.09353	0.09693	0.00000	F	0.27480	0.53013	-3.11744
CI	1.02335	-1.05944	0.00000	F	-1.22365	-0.01508	-4.60798
H.	-0.46491	0.48125	-0.97264	F	-0.39432	-1.53264	-3.28016
н	-0.46491	0.48125	0.97264	0	1.33632	1.10547	-0.24309
COS	MO energy =	-499.09044	65385	C	1.75299	2.37620	-0.06421
				C.	1.94038	2.70226	1.46813
[Δ]((OR ^F)⊿1−			F	2.49138	1.65694	2.10196
L(/4]			F	0.75355	2.96410	2.05508
AI	-0.00338	-0.00786	0.01423	F	2.73788	3.78079	1.66813
				-			

С	3.14048	2.52590	-0.79487
F	3.10184	1.93799	-1.99944
F	3.48997	3.82275	-0.97373
F	4.12234	1.93379	-0.08095
С	0.72918	3.39714	-0.68669
F	0.79640	3.38179	-2.03346
F	-0.52617	3.06052	-0.33682
F	0.94732	4.66869	-0.27744
COSMO energy = -4744.7142036950			

C₄F₈O-Al(OR^F)₃

Al	0.08930	-0.00698	-0.18735
0	1.16560	-1.24316	0.30101
С	2.15061	-2.17365	0.30066
С	3.12078	-1.87574	1.50615
F	2.41022	-1.54831	2.59927
F	3.89285	-2.93856	1.80448
F	3.92688	-0.83594	1.21571
С	1.49225	-3.59225	0.47948
F	0.42147	-3.70264	-0.32540
F	2.35086	-4.58832	0.18802
F	1.06887	-3.75753	1.74887
С	2.96208	-2.12973	-1.04742
F	3.19278	-0.85233	-1.40066
F	4.14458	-2.76415	-0.94447
F	2.26056	-2.70887	-2.04345
0	-0.80645	0.10359	1.61284
С	-2.11272	-0.13998	2.23539
С	-0.83140	-0.35054	2.96197
F	-0.35741	0.49129	3.84980
F	-0.37239	-1.56698	3.16797
С	-2.94856	1.15263	2.37700
F	-3.18603	1.64918	1.15357
F	-4.11310	0.85747	2.97490
F	-2.30942	2.08129	3.09648
С	-2.89532	-1.39052	1.75072
F	-3.49646	-1.93459	2.82278
F	-2.06516	-2.29039	1.21088
F	-3.82979	-1.05803	0.85207
0	-1.47271	-0.36625	-0.90518
С	-1.81474	-0.38669	-2.23201
С	-2.99905	-1.39819	-2.43478
F	-2.77259	-2.52195	-1.74109
F	-4.15858	-0.86646	-2.00665
F	-3.13902	-1.71843	-3.73959
С	-2.25233	1.05422	-2.69292

F	-1.16613	1.84745	-2.81898	
F	-2.89476	1.03103	-3.87690	
F	-3.05922	1.60316	-1.77580	
С	-0.57618	-0.86084	-3.07721	
F	0.55271	-0.33014	-2.45606	
F	-0.57178	-0.43891	-4.33838	
F	-0.42815	-2.18728	-3.05320	
0	0.58949	1.62826	-0.36920	
С	1.30577	2.69538	0.07004	
С	1.48812	2.63656	1.63133	
F	1.78571	1.36797	2.00214	
F	0.34251	2.97254	2.25800	
F	2.46517	3.44328	2.07186	
С	2.71686	2.69859	-0.62700	
F	2.58867	2.39697	-1.92754	
F	3.33021	3.89394	-0.52197	
F	3.51381	1.76526	-0.06425	
С	0.50958	3.99678	-0.31764	
F	0.61495	4.23999	-1.63763	
F	-0.79222	3.84046	-0.02881	
F	0.96844	5.07708	0.34818	
COSMO energy = -4644.6914991082				

[al−f−al]⁻

41	-1.18822	-0.09873	-1.36316
С	-0.85949	-1.68507	-2.00946
С	-2.81444	-0.06095	-0.74257
С	-0.88242	1.31652	-2.32455
С	0.04584	2.09571	-2.93201
С	1.02136	1.21576	-3.79919
F	1.35170	0.10378	-3.11308
F	2.15822	1.86421	-4.12239
F	0.42409	0.82716	-4.94328
С	-0.70730	3.11418	-3.86396
F	-1.27637	4.09860	-3.13878
С	0.86864	2.88166	-1.84648
F	1.73686	2.04181	-1.24049
F	0.04899	3.37072	-0.90661
F	1.57510	3.90522	-2.37149
F	-1.67918	2.49279	-4.54717
F	0.13436	3.69162	-4.75227
С	-3.78947	0.77760	-0.30827
С	-1.35994	-2.59514	-2.88519
С	-0.22098	-2.97401	-3.90486
F	-0.05721	-1.98599	-4.81152
F	-0.49904	-4.11237	-4.58025
F	0.94321	-3.14144	-3.26481

С	-1.80785	-3.88401	-2.10053	F	-1.20771	-0.35519	3.50066
F	-0.73862	-4.59906	-1.69991	F	-0.09873	-1.33215	5.09571
F	-2.58037	-4.69141	-2.86468	F	-1.88594	-2.27963	4.27792
F	-2.51247	-3.54476	-1.00912	С	1.52311	1.89474	4.30877
С	-2.59890	-2.02679	-3.67819	F	0.42808	1.56540	5.01956
F	-2.37894	-0.72783	-3.97473	F	2.28968	2.69556	5.07582
F	-3.72236	-2.08755	-2.93780	F	2.21223	0.75666	4.07349
F	-2.82527	-2.68748	-4.83109	С	-0.04431	3.57714	3.16271
С	-3.27380	1.62290	0.91421	F	-1.19837	2.92344	3.36314
F	-3.21428	0.86683	2.02624	F	-0.19868	4.37262	2.08659
F	-4.05762	2.68980	1.17552	F	0.18126	4.36872	4.23708
F	-2.02897	2.06797	0.65371	С	2.38863	3.32304	2.36384
С	-5.00444	-0.11525	0.13922	F	3.49007	2.54783	2.45846
F	-4.57750	-1.16122	0.85958	F	2.63316	4.47301	3.03124
F	-5.65791	-0.59744	-0.93953	F	2.20776	3.62394	1.07067
F	-5.89266	0.57878	0.88699	F	-0.03102	-0.03849	0.02185
С	-4.25482	1.75286	-1.45677	COSI	MO energy =	-7338.0904	129776
F	-3.38958	2.77812	-1.59809				
F	-5.47609	2.27988	-1.21098	C ₄ F ₈	O−AI(OR ^F)₂−F	-AI(OR [⊧])₃	
F	-4.30955	1.09706	-2.62636				
Al	1.16033	0.08321	1.37759	Al	-1.14109	-0.00752	-1.31119
0	0.96178	-1.35831	2.32608	0	-0.82094	-1.49250	-2.13037
0	0.69891	1.62314	2.05144	0	-2.42375	-0.00916	-0.14081
0	2.74529	0.14469	0.67081	0	-1.01887	1.50259	-2.14143
С	3.82992	-0.58469	0.30964	С	-0.19414	2.42830	-2.69613
С	3.40945	-1.98185	-0.28892	С	0.72411	1.75732	-3.78152
F	3.12770	-2.86317	0.69297	F	1.19060	0.58388	-3.29934
F	4.37692	-2.52205	-1.06079	F	1.78027	2.52487	-4.10940
F	2.30236	-1.83919	-1.03687	F	0.02993	1.48867	-4.90041
С	4.60993	0.23611	-0.78449	С	-1.08860	3.53408	-3.36698
F	4.67827	1.52907	-0.43881	F	-1.63252	4.33536	-2.42975
С	4.76180	-0.81015	1.55742	С	0.69661	3.07560	-1.57186
F	4.03043	-1.17776	2.62242	F	1.68434	2.21392	-1.21541
F	5.41118	0.32716	1.88093	F	-0.04442	3.31032	-0.47942
F	5.68960	-1.76722	1.33098	F	1.27211	4.22588	-1.96116
F	3.97693	0.15809	-1.97320	F	-2.08657	2.96671	-4.05777
F	5.87145	-0.22160	-0.95625	F	-0.36855	4.30599	-4.20962
С	1.13239	2.55962	2.93502	С	-3.66082	0.50517	0.10724
С	0.10437	-2.25192	2.87784	С	-1.19677	-2.41996	-3.05179
С	-0.80870	-2.87612	1.76008	С	0.03504	-2.71726	-3.98701
F	-1.75191	-1.98241	1.38626	F	0.21569	-1.70440	-4.85960
F	-1.43491	-3.99971	2.16569	F	-0.13147	-3.85399	-4.69374
F	-0.06854	-3.16765	0.68057	F	1.15506	-2.83599	-3.25860
С	0.95713	-3.38435	3.55866	С	-1.62540	-3.73272	-2.29813
F	1.47711	-4.21505	2.63260	F	-0.54656	-4.34552	-1.77064
F	0.21011	-4.12803	4.40696	F	-2.24513	-4.60500	-3.12004
F	1.97473	-2.85167	4.25018	F	-2.46239	-3.43509	-1.29088
С	-0.79556	-1.54991	3.96183	С	-2.39704	-1.90172	-3.92898

F-3.55649-1.98095-3.24541C0.446F-2.53532-2.59798-5.07149F-0.588C-3.578301.463481.35364F0.072F-3.495760.758412.50217F0.717F-4.657342.266191.44294C2.768F-2.479212.232381.26461F3.923C-4.62975-0.696030.41274F3.022F-4.02938-1.582371.22044F2.358F-4.95183-1.33399-0.73143F0.302F-4.95183-1.33399-0.73143F0.302F-5.77157-0.286821.00401COSMO enC-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685Image: second se
F -2.53532 -2.59798 -5.07149 F -0.588 C -3.57830 1.46348 1.35364 F 0.072 F -3.49576 0.75841 2.50217 F 0.717 F -4.65734 2.26619 1.44294 C 2.768 F -2.47921 2.23238 1.26461 F 3.923 C -4.62975 -0.69603 0.41274 F 3.022 F -4.02938 -1.58237 1.22044 F 2.358° F -4.02938 -1.58237 1.22044 F 2.358° F -4.95183 -1.33399 -0.73143 F 0.302° F -5.77157 -0.28682 1.00401 COSMO enC -4.21137 1.32054 -1.12504 7238.047617 F -3.67631 2.55530 -1.16685 -1.10043 COSMO ($\varepsilon =$ F -3.86678 0.68730 -2.26686 AI 1.10870 0.01178 1.42279 $[al-f-al]^{-1}$ O 1.25447 -1.49792 2.28898 0 1.28393 1.62862 1.94761 AI -1.188 O 2.91080 -0.17227 0.59274 0 -0.8633 0 -2.8133 C 3.70821 -1.12047 -0.21782 0 -2.8133
C-3.578301.463481.35364F0.072F-3.495760.758412.50217F0.717F-4.657342.266191.44294C2.768F-2.479212.232381.26461F3.923C-4.62975-0.696030.41274F3.022F-4.02938-1.582371.22044F2.358F-4.95183-1.33399-0.73143F0.302F-5.77157-0.286821.00401COSMO enC-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685FF-3.866780.68730-2.26686Image: Cosmo (ε = 0.125447)O1.25447-1.497922.28898Image: Cosmo (ε = 0.125447)O1.283931.628621.94761AlO2.91080-0.172270.59274OO2.91080-0.172270.59274OC3.70821-1.12047-0.21782OC3.200262.585320.21164O
F-3.49576 0.75841 2.50217 F 0.717 F-4.65734 2.26619 1.44294 C 2.768 F-2.47921 2.23238 1.26461 F 3.923 C-4.62975-0.69603 0.41274 F 3.022 F-4.02938-1.58237 1.22044 F 2.358° F-4.95183-1.33399-0.73143F 0.302° F-5.77157-0.28682 1.00401 COSMO enC-4.21137 1.32054 -1.12504 7238.047617 F-3.67631 2.55530 -1.16685F-5.55032 1.44506 -1.10043COSMO ($\varepsilon =$ F-3.86678 0.68730 -2.26686Al 1.10870 0.01178 1.42279 $[al-f-al]^-$ O 1.25447 -1.49792 2.28898 O 1.28393 1.62862 1.94761 Al-1.188O 2.91080 -0.17227 0.59274 O -0.8633 C 3.70821 -1.12047 -0.21782 O -2.8133
F-4.657342.266191.44294C2.768F-2.479212.232381.26461F3.923C-4.62975-0.696030.41274F3.022F-4.02938-1.582371.22044F2.358F-4.95183-1.33399-0.73143F0.302F-5.77157-0.286821.00401COSMO enC-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685F-5.550321.44506-1.10043COSMO ($\varepsilon =$ F-3.866780.68730-2.26686Al1.108700.011781.42279 $[al-f-al]^-$ O1.25447-1.497922.28898O1.283931.628621.94761AlO2.91080-0.172270.59274OC3.70821-1.12047-0.21782OC-2.813-1.2047-0.21782O
F -2.47921 2.23238 1.26461 F 3.923 C -4.62975 -0.69603 0.41274 F 3.022 F -4.02938 -1.58237 1.22044 F 2.358° F -4.95183 -1.33399 -0.73143 F 0.302° F -5.77157 -0.28682 1.00401 COSMO enC -4.21137 1.32054 -1.12504 7238.047617 F -3.67631 2.55530 -1.16685 EF -3.86678 0.68730 -2.26686 $al -f-al]^{-}$ O 1.25447 -1.49792 2.28898 $al -f-al]^{-}$ O 1.28393 1.62862 1.94761 $Al -1.188$ O 2.91080 -0.17227 0.59274 $O -0.8633$ C 3.70821 -1.12047 -0.21782 $O -2.8133$ C 2.20026 2.58532 $O 21164$ $O -2.8133$
C-4.62975-0.696030.41274F 3.022 F-4.02938-1.58237 1.22044 F 2.358 F-4.95183-1.33399-0.73143F 0.302° F-5.77157-0.28682 1.00401 COSMO enC-4.21137 1.32054 -1.12504 7238.047617 F-3.67631 2.55530 -1.16685COSMO ($\epsilon =$ F-5.55032 1.44506 -1.10043COSMO ($\epsilon =$ F-3.86678 0.68730 -2.26686Al1.10870 0.01178 1.42279 $[al-f-al]^-$ O 1.25447 -1.49792 2.28898 O 1.28393 1.62862 1.94761 Al-1.188O 2.91080 -0.17227 0.59274 O -0.8633 C 3.70821 -1.12047 -0.21782 O -2.8133
F-4.02938-1.582371.22044F2.358F-4.95183-1.33399-0.73143F0.302F-5.77157-0.286821.00401COSMO enC-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685F-5.550321.44506-1.10043COSMO ($\epsilon =$ F-3.866780.68730-2.26686Al1.108700.011781.42279 $[al-f-al]^-$ O1.25447-1.497922.28898O1.283931.628621.94761AlO2.91080-0.172270.59274OC3.70821-1.12047-0.21782OC2.200262.585320.21164C
F-4.95183-1.33399-0.73143F0.302F-5.77157-0.286821.00401COSMO enC-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685COSMO ($\epsilon = $ F-5.550321.44506-1.10043COSMO ($\epsilon = $ F-3.866780.68730-2.26686Al1.108700.011781.42279 $[al-f-al]^-$ O1.25447-1.497922.28898O1.283931.628621.94761AlO2.91080-0.172270.59274OC3.70821-1.12047-0.21782OC2.20262.585320.21164C
F-5.77157-0.286821.00401COSMO enC-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685F-5.550321.44506-1.10043COSMO ($\epsilon =$ F-3.866780.68730-2.26686Al1.108700.011781.42279 $[al-f-al]^-$ O1.25447-1.497922.28898O1.283931.628621.94761AlO2.91080-0.172270.59274OC3.70821-1.12047-0.21782OC2.200262.585320.21164C
C-4.211371.32054-1.125047238.047617F-3.676312.55530-1.16685F-5.550321.44506-1.10043COSMO ($\varepsilon =$ F-3.866780.68730-2.26686Al1.108700.011781.42279 $[al-f-al]^-$ O1.25447-1.497922.28898O1.283931.628621.94761AlO2.91080-0.172270.59274OC3.70821-1.12047-0.21782OC2.200262.585320.21164O
F -3.67631 2.55530 -1.16685 F -5.55032 1.44506 -1.10043 COSMO ($\epsilon =$ F -3.86678 0.68730 -2.26686 Al 1.10870 0.01178 1.42279 $[al-f-al]^-$ O 1.25447 -1.49792 2.28898 $al - 1.188$ O 2.91080 -0.17227 0.59274 o -0.863 C 3.70821 -1.12047 -0.21782 o -2.813
F -5.55032 1.44506 -1.10043 COSMO ($\varepsilon =$ F -3.86678 0.68730 -2.26686 [al-f-al] ⁻ O 1.25447 -1.49792 2.28898 [al-f-al] ⁻ O 1.28393 1.62862 1.94761 Al -1.188 O 2.91080 -0.17227 0.59274 O -0.863 C 3.70821 -1.12047 -0.21782 O -2.813
F -3.86678 0.68730 -2.26686 Al 1.10870 0.01178 1.42279 $[al-f-al]^-$ O 1.25447 -1.49792 2.28898 Al -1.188 O 1.28393 1.62862 1.94761 Al -1.188 O 2.91080 -0.17227 0.59274 O -0.863 C 3.70821 -1.12047 -0.21782 O -2.813
Al 1.10870 0.01178 1.42279 $[al-f-al]^-$ O 1.25447 -1.49792 2.28898 O 1.28393 1.62862 1.94761 AlO 2.91080 -0.17227 0.59274 OC 3.70821 -1.12047 -0.21782 OC 2.20026 2.58522 0.21164 O
O 1.25447 -1.49792 2.28898 O 1.28393 1.62862 1.94761 Al -1.188 O 2.91080 -0.17227 0.59274 O -0.863 C 3.70821 -1.12047 -0.21782 O -2.813 C 3.20026 2.58532 0.21164 O -2.813
0 1.28393 1.62862 1.94761 Al -1.188 0 2.91080 -0.17227 0.59274 O -0.863 C 3.70821 -1.12047 -0.21782 O -2.813 C 3.20026 2.58532 0.21164 O -2.813
O 2.91080 -0.17227 0.59274 O -0.863 C 3.70821 -1.12047 -0.21782 O -2.813 C 3.20026 2.58532 0.21164 O -2.813
C 3.70821 -1.12047 -0.21782 O -2.813
-10.88(
F 3.32219 -3.16199 0.98356 C 0.048
F 3.90523 -3.28954 -1.10747 C 1.023
F 1.90361 -2.57671 -0.56801 F 1.352
C 4.09471 -0.56523 -1.61727 F 2.161
F 4.07451 0.77042 -1.61355 F 0.426
С 4.26840 -0.46989 0.99087 С -0.704
F 5.09864 0.54073 0.89517 F -1.273
F 4.40196 -1.10019 2.13049 C 0.870
F 3.24101 -1.01232 -2.54655 F 1.736
F 5.33175 -0.99401 -1.90539 F 0.050
C 1.69335 2.52496 2.89308 F 1.579
C 0.24952 -2.16865 2.94952 F -1.675
C -0.33248 -3.27668 1.99818 F 0.138
F -0.95487 -2.66357 0.96361 C -3.786
F -1.21592 -4.06967 2.62411 C -1.365
F 0.64774 -4.03628 1.49994 C -0.226
C 0.84542 -2.80181 4.25489 F -0.057
F 1.64077 -3.84073 3.95647 F -0.506
F -0.14352 -3.23550 5.06313 F 0.936
F 1.57555 -1.88941 4.91227 C - <u>1.81</u> 9
C -0.89815 -1.15478 3.32667 F -0.753
F -0.84723 -0.14934 2.32253 F -2.594
F -0.68684 -0.52292 4.47410 F -2.523
F -2.11904 -1.65391 3.31068 C -2.601
C 2.33149 1.77755 4.12319 F -2.376
F 1.37730 1.24225 4.90608 F -3.725
F 3.10260 2.57379 4.87298 F -2.828

3.0	9265	0.7	'5116	3.6	6730	
0.4	4604	3.3	35918	3.3	6729	
-0.5	58830	2.5	53563	3.6	0425	
0.0	7272	4.2	3441	2.4	1880	
0.7	'1774	4.0	4349	4.4	9604	
2.7	76824	3.4	17344	2.2	4518	
3.9	2315	2.7	9190	2.0	6606	
3.0	2217	4.5	4271	3.0	1930	
2.3	5895	3.9	0281	1.0	4543	
0.3	0293	-0.0)3900	-0.1	4319	
OSMO	energy	+	OC.	Corr.	=	-
238.0476179385						

.3)/BP86-D3(BJ)/def-SV(P)

2	1.94761	AI	-1.18828	-0.09905	-1.36233	
27	0.59274	0	-0.86308	-1.68623	-2.00805	
7	-0.21782	0	-2.81362	-0.05798	-0.73961	
2	-0.21164	0	-0.88071	1.31518	-2.32464	
9	0.98356	C	0.04810	2.09182	-2.93449	
4	-1.10747	C	1.02370	1.20856	-3.79826	
1	-0.56801	F	1.35289	0.09853	-3.10835	
3	-1.61727	F	2.16119	1.85524	-4.12264	
2	-1.61355	F	0.42699	0.81668	-4.94147	
9	0.99087	С	-0.70418	3.10742	-3.87028	
3	0.89517	F	-1.27380	4.09411	-3.14858	
9	2.13049	С	0.87074	2.88102	-1.85127	
2	-2.54655	F	1.73680	2.04243	-1.24057	
1	-1.90539	F	0.05072	3.37548	-0.91446	
6	2.89308	F	1.57949	3.90132	-2.37960	
5	2.94952	F	-1.67564	2.48379	-4.55211	
8	1.99818	F	0.13820	3.68184	-4.75964	
7	0.96361	С	-3.78664	0.78321	-0.30584	
7	2.62411	С	-1.36538	-2.59563	-2.88343	
8	1.49994	С	-0.22601	-2.97974	-3.90063	
1	4.25489	F	-0.05717	-1.99339	-4.80816	
3	3.95647	F	-0.50675	-4.11795	-4.57487	
0	5.06313	F	0.93648	-3.15016	-3.25807	
1	4.91227	С	-1.81913	-3.88212	-2.09816	
8	3.32667	F	-0.75313	-4.60104	-1.69576	
4	2.32253	F	-2.59405	-4.68704	-2.86225	
2	4.47410	F	-2.52333	-3.53904	-1.00758	
1	3.31068	С	-2.60107	-2.02387	-3.67906	
5	4.12319	F	-2.37607	-0.72600	-3.97669	
5	4.90608	F	-3.72575	-2.07967	-2.94000	
9	4.87298	F	-2.82802	-2.68512	-4.83135	

С	-3.26614	1.63446	0.91043	F	-1.20375	2.91546	3.36640
F	-3.20279	0.88388	2.02599	F	-0.20773	4.36835	2.09117
F	-4.04845	2.70303	1.16929	F	0.17310	4.36270	4.24152
F	-2.02209	2.07764	0.64310	С	2.38172	3.32405	2.36568
С	-5.00035	-0.10673	0.15076	F	3.48499	2.55122	2.45865
F	-4.57094	-1.14918	0.87492	F	2.62401	4.47383	3.03397
F	-5.65792	-0.59429	-0.92300	F	2.19915	3.62567	1.07283
F	-5.88526	0.59155	0.89827	F	-0.03003	-0.04036	0.02171
С	-4.25575	1.75278	-1.45759	COS	MO energy =	-7338.0933	859142
F	-3.39006	2.77647	-1.60786		07		
F	-5.47544	2.28212	-1.20971	[f-a	/]-		
F	-4.31557	1.09077	-2.62348	5	-		
Al	1.16022	0.08231	1.37811	F	-1.28739	-0.67329	2.23954
0	0.96330	-1.36002	2.32566	Al	-0.47067	-0.27458	0.80467
0	0.69546	1.62087	2.05247	0	1.25570	-0.03618	1.09543
0	2.74523	0.14719	0.67187	C	2.14005	0.91060	1.47219
Ċ	3.83188	-0.57922	0.31084	C	3.51667	0.19295	1.73605
C	3.41517	-1.97570	-0.29176	F	3.32851	-0.93952	2.43085
F	3.13206	-2.85947	0.68758	F	4.11316	-0.13565	0.56989
F	4.38552	-2.51279	-1.06214	F	4.37927	0.97088	2,43317
F	2.30985	-1.83336	-1.04244	Ċ	2.33326	1.99086	0.33650
C	4.61216	0.24566	-0.78005	F	1.33607	2.89904	0.35089
F	4.67728	1.53793	-0.43111	F	3.50002	2.67004	0.46872
C	4.76219	-0.80590	1.55960	F	2.33215	1.39835	-0.86727
F	4.02965	-1.17782	2.62237	Ċ	1.66986	1.62885	2,79048
F	5.40839	0.33203	1.88709	F	0.36365	1.94936	2.69824
F	5.69225	-1.76040	1.33225	F	1.80908	0.81183	3.85667
F	3.98118	0.16933	-1.97002	F	2.35950	2,76303	3.04523
F	5 87470	-0 20920	-0.95080	0	-1 08732	1 20759	0.07380
Ċ	1 12756	2 55727	2 93689	C	-2 12976	1 73781	-0 59756
C C	0 10679	-2 25632	2.33003	C C	-2 95854	2 65041	0 38342
C C	-0.80376	-2 87990	1 75436	F	-3 69781	1 88904	1 22255
F	-1 74871	-1 98744	1 38185	F	-3 80237	3 48618	-0 26584
F	-1 42785	-4 00591	2 15655	F	-2 13444	3 39521	1 13655
F	-0.06202	-3 16713	0 67477	, C	-1 56448	2 61320	-1 77785
Ċ	0.96083	-3 38852	3 55400	F	-1 04030	3 76674	-1 31191
F	1 48430	-4 21553	2 62651	F	-0 58961	1 95212	-2 42084
F	0 21412	-4 13590	4 39903	F	-2 52060	2 93559	-2 68240
F	1 97612	-2 85514	4.33305	, C	-3 07752	0.62758	-1 19274
Ċ	-0 79590	-1 55816	3 95867	F	-3 28399	-0 33772	-0 27416
F	-1 21045	-0 36366	3 49891	F	-4 28608	1 11624	-1 55428
F	-0 10075	-1 34055	5.09351	F	-2 52641	0.05069	-2 27783
F	-1 88484	-2 29105	4 27226	0	-0 62428	-1 56065	-0 39717
Ċ	1 52057	1 89156	4.27220	C C	-0.02420	-2 695/13	-0 83024
F	1.32037 0 42661	1 55722	5 01001	c r	0.03043	-3 72726	0.03024
F	2 28506	2 60331	5 07736	с г	-1 10126	- <u>4</u> 7 <u>4</u> 577	0.54512
F	2.20000	0 75567	4 07219	, E	0 92106	- <u>1</u> 76138	0 0357/
Ċ	-0.05114	3 57204	3 16643	F	0.52100	-3 12279	1 43912
<u> </u>	0.00	J.J/ EUT	0.10070		0.00000		

С	1.39075	-2.41012	-1.44139	
F	1.37721	-1.25454	-2.12311	
F	2.32713	-2.31215	-0.47611	
F	1.78880	-3.39188	-2.28887	
С	-0.96331	-3.29905	-1.95277	
F	-2.25064	-3.24939	-1.57627	
F	-0.84377	-2.58937	-3.09575	
F	-0.66219	-4.58888	-2.23477	
COSMO energy = -3719.0169799090				

SO₂-AI(OR^F)₃

S	-1.47391	0.70187	-3.07041
0	-0.40342	-0.15111	-2.37637
Al	-0.03093	-0.05480	-0.49776
0	-0.61243	-1.54752	0.14431
С	-1.72289	-2.23430	0.52813
С	-2.32828	-1.60066	1.83773
F	-3.02183	-0.48048	1.54174
F	-1.33884	-1.25817	2.67717
F	-3.15874	-2.44980	2.47229
С	-1.28079	-3.71901	0.80826
F	-2.34328	-4.54701	0.88856
F	-0.47764	-4.15369	-0.17279
F	-0.59997	-3.79192	1.96806
С	-2.79763	-2.21067	-0.61999
F	-2.41063	-2.97627	-1.65361
F	-4.00685	-2.61533	-0.20931
F	-2.92063	-0.93773	-1.09302
0	-0.99130	1.36483	-0.19065
С	-0.93725	2.64388	0.28250
С	-0.78996	3.61867	-0.94206
F	-0.40656	4.85227	-0.58216
F	0.12517	3.11854	-1.80715
F	-1.95515	3.71079	-1.61611
С	-2.28616	2.93095	1.03937
F	-2.48109	4.25281	1.22479
F	-2.27901	2.33044	2.24585
F	-3.32094	2.44326	0.34010
С	0.27457	2.84215	1.26932
F	0.10135	3.90452	2.07602
F	0.41218	1.74140	2.03446
F	1.42414	3.01772	0.58934
0	1.67045	0.19701	-0.37606
С	2.86618	-0.45779	-0.34149
С	3.99204	0.63635	-0.25466
F	4.03730	1.16498	0.98449
F	3.74030	1.63020	-1.11863

F	5.20736	0.12270	-0.53826		
С	2.94215	-1.40048	0.91973		
F	4.21155	-1.73465	1.22378		
F	2.25143	-2.53953	0.70395		
F	2.39549	-0.78710	1.98233		
С	3.04549	-1.30931	-1.65065		
F	4.04147	-2.20670	-1.54683		
F	1.89873	-1.97553	-1.91227		
F	3.29747	-0.51304	-2.70681		
0	-1.55872	0.42727	-4.50523		
COSMO energy = -4167.4690337173					