
1. Supplementary Information 
 
Computational identification of neoantigens 
 
Neoantigens from the three datasets were inferred using a consistent pipeline 
established at Memorial Sloan Kettering Cancer Center. Raw sequence data reads 
were aligned to the reference human genome (hg19) using the Burrows-Wheeler 
Alignment tool. Base-quality score recalibration, and duplicate-read removal were 
performed, with exclusion of germline variants, annotation of mutations, and indels as 
previously described4. Local realignment and quality score recalibration were conducted 
using the Genome Analysis Toolkit (GATK) according to GATK best practices41,42. For 
sequence alignment and mutation identification, the FASTQ files were processed to 
remove any adapter sequences at the end of the reads using cutadapt (v1.6)43. The files 
were then mapped using the BWA mapper (bwa mem v0.7.12)44, the SAM files sorted, 
and read group tags added using the PICARD tools. After sorting in coordinate order, 
the BAM's were processed with PICARD MarkDuplicates. First realignment was carried 
out using the InDel realigner followed by base quality value recalibration with the Base-
QRecalibrator.  
 
A combination of 4 different mutation callers (Mutect 1.1.4, Somatic Sniper 1.0.4, 
Varscan 2.3.7, and Strelka 1.013) were used to identify single nucleotide variants 
(SNVs)45,46,47. As previously described, SNVs with an allele read count of less than 4 or 
with corresponding normal coverage of less than 7 reads were filtered out48.  
 
The assignment of a somatic mutation to a neoantigen was estimated using a previously 
described bioinformatics tool called NASeek4. Briefly, NASeek is a computational 
algorithm that first translates all mutations in exomes to strings of 17 amino acids, for 
both the wild type and mutated sequences, with the amino acid resulting from the mu-
tation centrally situated. Secondly, it evaluates putative MHC Class I binding for both 
wild type and mutant nonamers using a sliding window method using NetMHC3.419 
(http://www.cbs.dtu.dk/services/NetMHC-3.4/) for patient-specific HLA types, to gene-
rate predicted binding affinities for both peptides. NetMHC3.4 predicts binding of 
peptides to HLA alleles using artificial neural networks. Prediction values are given in 
nM IC50 values and are trained on nonamer peptides like those used in our analysis. 
NASeek finally assesses for similarity between nonamers that predicted to be presented 
by patient-specific MHC Class I. All nonamers with inferred affinities below 500 nM are 
defined as neoantigens.  
 
  



Clonal tree reconstruction 
 
Tumor clones are reconstructed using the PhyloWGS software package 
(https://github.com/morrislab/phylowgs)31. The input data for the algorithm is extracted 
from exome sequencing data: (1) mutation reads obtained with the pipeline described 
above, and (2) allele-specific copy-number variant data, obtained with FACETS v0.5.049. 
Briefly, the package clusters mutations into clones by the frequency of their reads and it 
infers possible nesting of clones (ancestral relations) between pairs of clones. Intuitively, 
an ancestral clone needs to have higher frequency then its derived clone. From this 
information PhyloWGS reconstructs high likelihood tumor geneological trees.  
 
Sequence alignments 
 
For each patient, we perform sequence alignments of IEDB sequences and the patient’s 
neoantigen sequences. We use BLAST and a blastp program with BLOSUM62 matrix 
and a strong gap penalty -11 to prevent gapped alignments. The gap extension cost is 
set to the default value -1. We do not impose any threshold on alignment E-values and 
consider all alignments. Alignment scores for these identified alignments are then 
computed with Biopython Bio.paiwise2 package. 
 
HLA-permutation testing 
 
We randomize patient HLA-types by randomly reshuffling the HLA labels within each 
patient cohort. We then recall neoantigens (using NASeek as described above). HLA 
randomization changes MHC binding properties of neoantigens and their predicted 
dissociation constants. Some peptides identified as neoantigens for the original HLA 
type no longer have inferred affinities below 500 nM; some peptides that did not meet 
this criterion before meet it under randomized HLA assignment. We then repeat the 
fitness model evaluation for each patient, using the consistent set of parameters trained 
on the original cohorts (Extended Data Fig. 3, 𝑎 = 26, 𝑘 = 4.87, 𝜏 = 0.09). We follow 
with survival analysis and evaluate the log-rank test score for patient separation as 
given by the fitness model. For each cohort, we perform 10 iterations of this analysis, 
the result is reported in Extended Data Fig. 6. 
 
Amino acid diversity 
 
We define the amino acid diversity at 𝑖-th position in a neoantigen as 𝑒!! , where 𝐻!   is 
entropy of amino acid usage at this position, i.e. 
 

𝐻! = − 𝑓(𝑎!")  log(𝑓(𝑎!"))!"
!!! , 

 
where 𝑓(𝑎!") is frequency of the 𝑖-th position in all neoantigens in a group. Inferred 
neoantigens are nonamers, so 𝑖  ranges in value from 1 to 9. The diversity of 



neoantigens at a given site were compared to the values found in the human proteome 
in Lehman, et al.23.  
 
To calculate the expected number of words in the proteome we utilize the frequency of 
amino acids from Lehman, et al. We compute the entropy associated with the frequency 
of amino acids in the human genome: 
 

𝐻(𝑎) = − 𝑓(𝑎!)  log(𝑓(𝑎!))!"
!!! , 

 
where 𝑓(𝑎!) is the frequency of the 𝑗-th amino acid in the human genome. The expected 
number of words of length 𝑛 is therefore 𝑒!"(!). This value is compared to the observed 
number of words of length 𝑛 in the reference proteome for GRCh38.p7 using an entropy 
of 2.9023. Finite genome size exhausts word usage between 5 and 6-mers. By 9-mer 
length words the ratio of observed to expected words is approximately 0.000052. 
 
Calculation of TCR discrimination length 
 
There are approximately 108 unique T-cell receptors in a given human50, and, moreover, 
the genome wide entropy of amino acid usage is approximately 2.9023. Therefore, one 
expects the length, 𝐿, of words TCRs can typically discriminate to be given by 10! ≈
𝑒!.!"! on average (as opposed to say 20! if one assumed uniform genome amino acid 
usage). Solving for this length yields 𝐿 ≈ 6.35. 
 
Identification of closest nonamers in human proteome to neoantigens  
 
We have mapped the WT and MT 9-mer peptides to all proteins in the current human 
reference genome (GRCh38.p7) with at least 8 out of 9 matches and no gaps (allowing 
only mismatches). For this we used LAST51 (version 819) with the following 
parameters: 
lastal -f BlastTab -j1 -r2 -q1 -e15 -y2 -m100000000 -l4 -L4 -P0 
(9-mer mapping with at most one mismatch is guaranteed to have a matching 4-mer 
word). 
  
One expects the mutated peptide to only map to the same location as the WT peptide, 
WT mapping exactly (9 matches) and MT mapping with one mismatch (8 matches).     
The expected case is that the WT peptide maps to the proteome exactly and the MT 
peptide maps to the proteome with one mismatch and only to the loci WT peptide maps 
to. 
 
This rule can be violated in the following cases, sorted from the most to the least 
severe: 
1. WT peptide does not map to the proteome exactly. Some possible reasons are:         
a difference in the reference assemblies used for mutation calling and peptide mapping, 



a germline mutation mistakenly identified as somatic, or a difference between the pa-
tient genome and the reference genome used for alignments.  
2. WT peptide maps to the proteome exactly (9 matches), MT peptide maps to the pro-
teome exactly (9 matches) but to a different locus.  
3. WT peptide maps to the proteome exactly, MT peptide maps to the proteome with 
one mismatch; however, MT peptide maps with one mismatch to the subjects WT does 
not map exactly. 
4. WT peptide maps to the proteome exactly, MT peptide maps to the proteome with 
one mismatch; however, MT peptide maps with one mismatch to a different locus on    
the gene WT maps to. 
  
We have examined each peptide for the worst possible scenario. We have gone from 
category 1 to 4 in the list. Category 1 indicates a difference in the reference genome. 
Categories 2-4 typically are due to mutations that occur in repetitive gene families with 
many paralogs. Once we identified that a peptide belongs to any category, we excluded 
it from further considerations. This way the numbers of peptides in each category add 
up to the total number of peptides. Below is a summary for the different datasets utilized 
in this study: 
 
Snyder, et al4.: 
29781 total peptides, (1) 35 WT unmapped, leaving 29746 
27674 expected peptides (92.93%), (2) 361 have 9 matches in MT, (3) 1644 have other 
alignments, (4) 67 have other alignments to the same subject. 
 
Van Allen, et al.5: 
39373 total peptides, (1) 42 WT unmapped, leaving 39331 
36783 expected peptides (93.42%), (2) 387 have 9 matches in MT, (3) 2076 have other 
alignments, (4) 85 have other alignments to the same subject. 
Rizvi, et al.6: 
5581 total peptides, (1) 6 WT unmapped, leaving 5575 
5125 expected peptides (91.83%), (2) 105 have 9 matches in MT, (3) 323 have other 
alignments, (4) 22 have other alignments to the same subject. 
 
Additional supplementary files for each dataset are included as Supplementary Data: 
 
mt-with-9.tsv – list of peptides from category 2 and the subjects each one aligns to. 
 
peptides-with-extra-aln.tsv – peptides from group 3 and the subjects each one aligns to.  
 
peptides-multima,pping-same-subj.tsv – peptides from group 4 and their alignments 
including the start and end coordinates 
 
 
 



 
Set of epitopes used for positive T cell assays  
 
We utilized a set of epitopes from the Immune Epitope Database (IEDB), a repository of 
over 120,000 immune epitopes20. IEDB is a collection of epitope-specific experimental 
assays – the nature of which can be accessed by various fields (www.iedb.org). Every T 
cell assay reflects the binding of an epitope-specific TCR to an experimentally tested 
antigen20. In our cases we restricted our analysis to linear epitopes from human 
infectious diseases studies presented by class I MHC molecules for which there were 
positive T cell assays. For negative controls, we downloaded epitopes associated with 
assays satisfying all of the above fields, except we did not restrict for positive assays. 
We then excluded those for which we assigned positive by IEDB to create a negative 
assay list. As the database changes from time to time, we included both lists as 
Supplementary Data.  
 
Error bars for Kaplan-Meier curves 
 
Error bars on Kaplan-Meier curves were calculated in GraphPad Prism 7. The error bars 
are defined by the standard error of the Kaplan-Meier estimator using Greenwood’s 
formula52.  
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