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SUPPLEMENTAL FIGURE TITLES AND LEGENDS

Figure S1: Myogenic conversion of human fibroblasts; Related to Figure 1.

(A) Top: Potential transition pathways for MYOD1-mediated fibroblast to muscle cell reprogram-
ming. Bottom: Basic gene regulatory circuitry for myogenesis.

(B) Top: The cassette for the myogenic reprogramming lentiviral construct, expressing a fusion
protein with the mouse mER(T) domain (red box) inserted within the human MYOD1 (green
boxes) between amino acids 174 and 175. Middle: Light microscope images of cells without
(left) or with (right) 4-OHT treatment at di↵erentiation day 3. Bottom: RT-PCR validation
of gene expression at day 3. Lanes L1/2/3/6, samples transduced with L-MYOD1; L4, not
transduced; L5, transduced with an empty lentiviral vector; L7, RT-negative control; L8, no
template negative control. Two key MYOD1 downstream genes, MYOG & MYH1 are acti-
vated by the expression of L-MYOD1. GAPDH is used as an internal control, and CDKN1A
(P21) is universally expressed.

(C) Left panels, DAPI; middle panels, representative immunostaining for MYOD1 (top four rows)
and MYH1 (bottom row); right panels, overlay of left and middle panels.

(D) Time-series RNA-seq (solid line) and proteomic (dashed line) quantification of RNA and
protein abundance, respectively, for MYOD1 (blue) and MYOG (red).

Figure S2: Eigenvector centrality refines active and inactive chromatin domains; Re-

lated to Figure 2.

Eigenvector centrality yields a higher correlation with gene expression than conventionally de-
fined chromatin partitioning, determined by the first principal component (PC1) of the spatial
correlation matrix of Hi-C data (Lieberman-Aiden et al., 2009). Chromosomes 3 and 7 are shown
as examples.

Figure S3: Chromatin compartment change appears at boundary regions; Related to

Figure 2.

Over 70% of A/B switched bins are at A/B boundary loci. Chromosomes 1 and 7 are shown as
examples of chromatin compartment switching from 0 to 40 hrs.

Figure S4: Backbone genes in fibroblast and muscle gene module; Related to Figure 3.

(A) Pie charts showing the portion of backbone genes within each gene module. Left : Portion of
genes recognized by form-function TDS during cellular reprogramming. Middle: Portion of
the aforementioned genes that are also active during fibroblast proliferation. Right : Backbone
genes given by the set of genes extracted from reprogramming but excluding those from
proliferation.

(B) Heatmap of form and function TDS for muscle-related backbone genes.



(C) 3D configuration of muscle-related backbone genes in form-function space from 0 to 8 hrs,
highlighting significant form change. The edge represents Hi-C contact between genes. Three
clusters of genes at 0 hr are marked by red, green, and blue, respectively. The 3D ellipsoid
determined by MVE provides the clustering envelope at the current time, where its centroid
is marked by a purple square.

(D) 3D configuration of muscle-related backbone genes in form-function space from 24 to 32 hrs,
highlighting significant function change.

Figure S5: Genomic dynamics of MYOD1 and MYOG; Related to Figure 4A.

Top left or Bottom left : First row depicts Hi-C contact maps of MYOD1 (or MYOG) at base
pair scale, where blue points are contacts, red lines depict gene boundaries, and dashed black
lines depict MboI cut-sites. Middle rows show Hi-C matrices binned by MboI cut sites and
normalized by RPM. Bottom row shows 3D gene models, given by cubic Bézier curves that fits
3D representation of MboI binned contact matrices using Laplacian eigenmaps (Methods). Top
right or Bottom right : Summation of entry-wise di↵erences of Hi-C matrices for MYOD1 (or
MYOG) between time points.

Figure S6: A direct pathway from fibroblasts to myotubes; Related to Figure 4A.

(A) 2D representations of TAD-scale form-function features at time 0, 24, 48 and 80 hrs. The star
marker represents the coordinate of a TAD at the reprogramming time instant. The circle
marker represents the TAD at the stage of fibroblast proliferation (−48 hr). A specified region
of data configuration (top plots) is magnified in bottom plots, where three topologically asso-
ciating domains (TADs) with the 1st, 10th and 20th largest position shift (from proliferation
to reprogramming) are marked.

(B) Heatmap of TADs’ position shift from −48 hr to reprogramming time points.

(C) TADs with top 10% largest position shift. Top left : Locations of the identified TADs over
chromosomes. Bottom left : Example of identified TADs (green color) at Chromosome 12 (100
kb-binned Hi-C) together with gene expression at time 0, 32 and 80 hrs. Right : P values of
gene density and average gene expression.

(D) Position shift of TADs that involve fibroblast, myoblast, myotube, and skeletal muscle related
genes, respectively. Left : Histograms of TADs’ position shift for each gene module of interest.
Right : P value of average position shift for each gene module.

(E) Direct pathway from fibroblasts to myotubes evidenced by gene expression of three myogenic
regulatory factors: MYF5, MYOD1 and MYOG.

Figure S7: Reprogramming E�ciency; Related to Figure 1A.

(A-D) Cytoplasmic MYOD after lentiviral transduction; (E-G) Translocation e�ciency; (H-K)
Percentage of Cells Expressing Myosin Heavy Chain (MYH1), 3 days after the end of 4OHT
treatment. Scale bar: 100 m.

(A) 185 nuclei/cell count.



(B) Original nuclei.

(C) MYOD1 cytoplasmic distribution.

(D) 173 cells expressing cytoplasmic MYOD1, and 12 cells without expression for a 94% trans-
duction e�ciency.

(E) 183 nuclei counted.

(F) Original Nuclei.

(G) Nuclear MYOD1 signal in all nuclei, but varied intensity, with 16 of the cells showing both
cytoplasmic and nuclear staining.

(H) 739 nuclei/cells counted.

(I) Original nuclei.

(J) MYH1 positive cells.

(K) Overlay of nuclei and count of 58 MYH1 positive cells (7.8%).

Figure S8: Balanced vs unbalanced Hi-C analysis; Related to Figure 1B and Figure

2A.

(A) Similarity between analysis performed on balanced vs unbalanced matrices.

(B) Correlation between gene length and the number of restriction enzyme cut sites.



SUPPLEMENTAL TABLES AND TITLES

Table S1
Title: Identified genes at A/B switched loci. Related to Figure 2 and S3.

Table S2
Title: Gene clusters with significant function and form change during time. Related to
Figure 3.

Table S3
Title: Gene modules of interest. Related to Figure 3, 6 and S6.

Table S4
Title: Core myogenic genes that steer cellular reprogramming. Related to Figure S4.

Table S5
Title: List of miRNAs that significantly change expression level over the reprogramming
time course. Related to Figure 5.

Table S6
Title: JTK output for E-box circadian genes. Related to Figure 6B2.

Table S7
Title: Hi-C resolutions used for analysis in the indicated sections and figures. Related to all
main document figures.

Table S8
Title: Number of sequenced and mapped reads for each Hi-C and RNA-seq sample. Related
to all main document figures.



TRANSPARENT METHODS

Generation of a human MYOD1-expressing construct
We generated a lenti-construct (lenti-hMYOD1-mER(T)) expressing the human myogenic
di↵erentiation factor 1 protein (hMYOD1) fused with a tamoxifen-specific binding domain
(mER(T)) derived from mouse estrogen receptor 1 (Kimura et al., 2008). The open reading
frame (ORF) for the fusion protein was synthesized at IDT (Integrated DNA technologies)
as one gBLOCK, and cloned into the NheI/EcoRI sites of a lenti-vector (obtained from
the University of Michigan Vector Core). The expression of the fusion protein is driven by
a CMV promoter. The lenti-viral particles were produced at the University of Michigan
Vector Core facility for transduction of human BJ fibroblasts with normal karyotype (Cat#
CRL2522, ATCC).

Cell culture, lentiviral transduction, and induction of MYOD1 reprogramming
BJ cells were propagated in growth medium (GM) composed of DMEM (Cat# 11960069,
Thermo Fisher Scientific), 10% fetal bovine serum (Cat# 10437028, Thermo Fisher Sci-
entific), 1x non-essential amino acids (Cat#11140050, Thermo Fisher Scientific), and 1x
Glutamax (Cat# 35050061, Thermo Fisher Scientific). The day before viral transductions,
fibroblasts at the 7th passage were plated in 6-well plates or T75 flasks in 13 mL of GM. We
plated 1 × 105 cells per well in 6-well plates for RNA extraction, and 2 × 106 cells per flask
T75 flasks for Hi-C and proteomics sampling. The cells were incubated in an incubator at
37○ C with 5% of CO2.

Lentiviral transduction was performed the next day after plating the cells. We used a
MOI (multiplicity of infection) of 15 to transduce the cells in 8 mL GM plus 4 g/mL of
polybrene (Cat# 107689, Sigma-Aldrich). The transduction incubation was carried out in
an incubator at 37○ C with 5% CO2 for 12 hours. After the incubation, the transduction
medium was removed, and the cells were washed with PBS (Cat# 10010049, Thermo Fisher
Scientific), then fed with 13 mL of fresh GM to continue incubation for 24 hours.

To induce myogenic reprogramming, we treated the cells transduced with lenti-hMYOD1-
mER(T) with (Z)-4-Hydroxytamoxifen (4-OHT) (Cat# H7904, Sigma-Aldrich) to a final
concentration of 1 M in GM for two days. Treatment with 4-OHT induces nuclear translo-
cation of the cytoplasmic hMYOD1-mER(T) protein and initiation of myogenic reprogram-
ming (Kimura et al., 2008). To induce di↵erentiation after 4-OHT treatment, we washed
the cells twice with PBS, and changed to di↵erentiation medium consisting of DMEM sup-
plemented with 2% horse serum (Kimura et al., 2008).

Reprogramming E�ciency
At 48 hours post transduction, we detected MYOD1 expression in the cytoplasm in approx-
imately 94% of the cells using an anti-MYOD1 antibody for immunocytochemistry analysis
(Figures 2A-D). After a 1 M daily addition of 4-OHT for two consecutive days, we ob-
served translocation of MYOD1 from the cytoplasm into the nucleus in 100% of the cells
expressing MYOD1. MYOD1 positive percentage: 93.6% to 96.8% (Figures 2E-G). In these
experiments, we did not evaluate fibroblast markers at single cell resolution (e.g., by im-



munocytochemistry). By 3 days post-4-OHT treatment, we confirmed expression of myosin
heavy chain 1 (MYH1), detected in approximately 8% of the MYOD1 expressing cells (Fig-
ures 2H-K). Certainly heterogeneity is a caveat of all population-level Hi-C or RNA-seq
data, and there is clearly heterogeneity in our reprogramming cell population. Selection
is one way to reduce heterogeneity, but we aimed to minimize time between transduction
and reprogramming, maintain a low and consistent passage number, and also limit external
perturbation as much as possible. Despite these caveats, our goal here was to acquire sig-
natures of reprogramming across the population of cells, and in our data we discerned gene
expression patterns consistent with reprogramming based on discrimination from the known
fibroblast signature.

Crosslinking of cells for Hi-C
At each time point across the time course, cells in T75 flasks were washed with 10 mL PBS,
then incubated with 15 mL of 1% formaldehyde prepared in PBS at room temperature for
10 min. To quench the crosslinking reaction, 2.5 M glycine was added to the flask to a
final concentration of 0.2 M, and incubated for 5 min at room temperature on a rocking
platform, then on ice for at least 15 min to stop crosslinking completely. The cells were
removed from plates by scraping and transferred into 15 mL tubes. The crosslinked cells
were collect by centrifugation at 800 x g for 10 min at 4○ C. Collected cells were washed in 1
mL ice-cold PBS briefly, and centrifuged at 800 x g for 10 min at 4○ C. After centrifugation,
the supernatant was removed completely, and the cells were snap-frozen in liquid nitrogen
and stored at −80○ C for Hi-C library construction.

RNA-seq and small RNA-seq
We used the miRNeasy Mini Kit (Cat# 217004, Qiagen) for total RNA isolation accord-
ing to the manufacturer’s manual. The RNA samples extracted from each sampling time
point were treated with RNase-Free DNAase I (Cat# 79254, Qiagen) to clean up any DNA
contamination.

All RNA-seq and small RNA-seq data were generated at the University of Michigan
Sequencing Core facility. RNA quality control (QC) was performed at the Core. The QC
results from the TapeStation analysis (Agilent, Technologies) showed that the samples’ RNA
integrity number (RIN) was > 9.8. The RNA-seq libraries were prepared according to the
TruSeq RNA Library Prep Kit v2 chemistry (Cat# RS-122-2001, Illumina). The small
RNA-seq libraries were prepared with the NEBNext Small RNA Library Prep Set for
Illumina (Cat# E7330S, New England Biolabs, NEB).

We sequenced the mRNA species for each samples to produce the RNA-seq dataset, and
the small RNA species to obtain the miRNA-seq dataset. Sequence reads were generated
on the Illumina HiSeq 2500 platform with the V4 single end 50-base cycle. We used an in
house pipeline for sequence read QC (FastQC), genome mapping and alignment (Tophat &
Bowtie2), and expression quantification (Cu✏inks). We used edgeR (Robinson et al., 2010)
for di↵erential expression analysis.

Generation of Hi-C libraries for sequencing



We adapted the in situ Hi-C protocols from Rao et al (Rao et al., 2014) with slight modifica-
tions. Briefly, we used 1% formaldehyde for chromatin cross-linking. We used approximately
2.5×106 cells for each Hi-C library construction. The chromatin was digested with restriction
enzyme (RE) MboI (Cat# R0147M, NEB) overnight at 37○ C with rotation. RE fragment
ends were filled in and marked with biotin-14-dATP (Cat# 19524016, Thermo Fisher Scien-
tific), and ligated with T4 DNA ligase (NEB, M0202). After the chromatin decross-linking
and DNA isolation, DNA samples were sheared on a Covaris S2 sonicator to produce frag-
ments ranging in size of 200-400 bp. The biotinylated DNA fragments were directly pulled
down with the MyOne Streptavidin C1 T1 beads (Cat# 65001, Thermo Fisher Scientific).
The ends of pulled down DNA fragments repaired, and ligated to indexed Illumina adaptors.
The DNA fragments were dissociated from the bead by heating at 98○ C for 10 minutes,
separated on the magnet, and transferred to a clean tube.

Final amplification of the library was carried out in multiple polymerase chain reactions
(PCR) using Illumina PCR primers. The reactions were performed in 25 L scale consisting
of 25 ng of DNA, 2 L of 2.5mM dNTPs, 0.35 L of 10 M each primer, 2.5 L of 10X
PfuUltra bu↵er, PfuUltra II Fusion DNA polymerase (Cat# 600670, Agilent). The PCR
cycle conditions were set to 98○ C for 30 seconds as the denaturing step, followed by 14 cycles
of 98○ C 10 seconds, 65○ C for 30 seconds, 72○ C for 30 seconds, then with an extension step
at 72○ C for 7 minutes.

After PCR amplification, the products from the same library were pooled and fragments
ranging in size of 300-500 bp were selected with AMPure XP beads. The size selected
libraries were sequenced to produce paired-end Hi-C reads on the Illumina HiSeq 2500 plat-
form with the V4 of 125 cycles.

Generation of Hi-C matrices
We standardized an in house pipeline to process Hi-C sequence data. With this pipeline,
FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) was used for qual-
ity control of the raw sequence reads. Paired-end reads with excellent quality were mapped
to the reference human genome (HG19) using Bowtie2 (Langmead and Salzberg, 2012) ,
with default parameter settings and the “–very-sensitive-local” preset option, which pro-
duced a SAM formatted file for each member of the read pair (R1 and R2). HOMER was
run with the recommended settings. Uninformative paired-end reads were filtered using the
“makeTagDirectory” program with the “–tbp 1 -removePEbg -restrictionSite GATC -both
-removeSelfLigation -removeSpikes 10000 5” settings. Unnormalized raw Hi-C matrices were
generated with “analyzeHiC” with the “-raw” and “-res 1000000” or “-res 100000” settings
to produce the raw contact matrix at 1 Mb resolution or 100 kb resolution, respectively.

Hi-C Normalization
These Hi-C data were not balanced/iteratively corrected. Balancing our Hi-C matrices
does not change the overall structure of these matrices significantly, and results obtained
from balanced matrices are similar to results obtained on non-balanced matrices. To show
this, we have recreated manuscript Figure 2A for both balanced and unbalanced matrices
(Figures S8A). Centrality measurements that are crucial to our analysis throughout the

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/


paper (eigenvector, degree, and betweenness) are very similar when computed on balanced
matrices. This was performed at 100 kb resolution using the Knight-Ruiz algorithm for
balancing before Toeplitz normalization (Knight and Ruiz, 2013). Furthermore, since we
use a 4-cutter restriction enzyme, MBOI, the number of cuts sites per gene is strongly
correlated with gene length. We have calculated the number of MBOI cut sites vs the length
of each gene to show this correlation (Figures S8B). These measures are highly correlated
(R2 = 0.988), leading us to believe that the number of cut-sites per gene is not skewing our
analysis.

Reverse transcriptional polymerase chain reaction (RT-PCR) analysis
The cDNA templates for RT-PCR were synthesized from 1 g RNA using the SuperScript
III First-Strand Synthesis System (Cat# 18080051, Thermo Fisher Scientific). Targets am-
plicons of corresponding genes were amplified in 20 L reactions using the following settings:
initial denaturation was performed at 95○ C for 5 min, followed by 30 cycles at 95○ C for
15 seconds, 56○ C for 30 seconds, and 72○ C for 20 seconds. The PCR reactions were then
incubated for a final extension step at 72○ C for 5 min. The products were analyzed on 1.5%
agarose gel. The gel image was taken on an imaging station (Universal Hood II, Bio Rad).

Immunocytochemistry analysis
Cells were grown in appropriate media on washed and autoclaved 12mm round 1.5 glass
coverslips placed in 12 well culture plates. At harvest, coverslips were rinsed briefly in
phosphate-bu↵ered saline pH 7.4 (PBS), treated with 4% paraformaldehyde in PBS for 10
min at room temperature, then washed three times in PBS at 5 minutes per wash. Cells
were dehydrated in a series of ice-cold ethanol concentration steps, 50%, 70%, 90% and
100% at 5 minutes per step, and stored at 4○ C until staining. Rehydration reversed the
concentration series, with two washes in cold PBS at the end. Cells were permeabilized
for 10 min in a PBS 0.25% Triton X-100 solution at RT, and then washed in PBS three
times for 5 min per wash. Blocking of non-specific antibody binding was performed with
1% BSA PBST (PBS + 0.1% Tween 20) for 30 minutes, followed by immunostaining using
primary antibody (DSHB anti-MHC MF20 diluted 1:20, and/or Thermofisher anti-MyoD
diluted 1:250) in 1% BSA in PBST in a humidified chamber for 1 hr at room temperature
(RT). The primary solution was removed, cells were washed three times in PBS at 5 min
per wash, and the fluorescent secondary, Alexa Fluor 594 goat anti-mouse IgG in 1% BSA
PBST was applied for 1 hr at RT in the dark. The secondary antibody solution was then
removed and the cells were washed three times with PBS for 5 min each in the dark. Cells
were mounted on slides with Prolong Gold anti-fade reagent with DAPI, and imaged.

QUANTIFICATION AND STATISTICAL ANALYSIS

Scale-adaptive gene expression
Hi-C matrices are commonly created at fixed resolution, or “bins” (e.g., 100kb, 1Mb). How-
ever, RNA-seq data (FPKM) are generated at the gene level and genes have variable length.
For consistent analysis of form and function, we transform the RNA-seq data from gene level



to bin level, namely,

Rbini = �
j∈{genes at bin i}

Lj,bini

Lj

RjLj

1000
= �

j∈{genes at bin i}
RjLj,bini

1000
,

where Lj is the length of gene j in base pairs (bp), Lj

1000 is the length of gene j in kilobases
(kb), Lj,bini is the length of the portion of gene j belonging to bin i, Rj signifies the FPKM
value of gene j, and Rbini denotes the total RNA-seq RPM value at bin i.

Scale-adaptive Hi-C matrix
It is expected that loci that are close together in linear bp distance are more likely to be
ligated together than distant pairs. This makes a Hi-C matrix highly diagonally dominant
and conceals the contact pattern embedded in the matrix. In order to alleviate this e↵ect,
we normalize the counts by their contact probability as a function of the linear distance,
namely, each entry of the matrix is normalized by its expected contact value (expected-
observed method). This is equivalent to normalization of the Hi-C matrix by a Toeplitz
structure whose diagonal constants are the mean values calculated along diagonals of the
observed matrix; see details in (Chen et al., 2015, SI).

Similar to scale-adaptive gene expression, we are also able to construct gene-resolution
Hi-C contact maps by calculating the contact frequency between two genes, which is nor-
malized by the lengths of the genes (Chen et al., 2015). Moreover, to construct TAD-scale
contact matrices, we first normalize both intra- and inter-chromosome Hi-C matrices at
100 kb resolution, and then compute the density of genome contacts between TADs. TAD
boundaries here are defined based on (Dixon et al., 2012). Given TADs i and j, the resulting
contact map T is given by

[T]ij = ∑m∈TADi∑n∈TADj
[H̃]mn

LiLj
,

where H̃ is the normalized Hi-C matrix (100kb-binned Hi-C in our analysis), and Li is the
size of TADi. Since the TAD-scale contact matrix is dense, we apply thresholding to make
the matrix more sparse by retaining only interactions that exceed the 50th-percentile of
Hi-C contacts at the TAD scale.

Network representation of 4DN: graph Laplacian and Fiedler number
Let Gt = (V ,Et) denote a weighted undirected graph at time t, where V is a node set with
cardinality �V � = n, and Et ⊂ {1,2, . . . , n} × {1,2, . . . , n} is an edge set at time t. The Hi-
C matrix Ht can then be interpreted as an adjacency matrix corresponding to Gt, where(i, j) ∈ Et if there exists interactions between node i and j with edge weight [Ht]ij > 0 and[Ht]ij = 0 otherwise. Here nodes represent fixed-size bins, genes or TADs. It is often the
case that a graph/network is represented through the graph Laplacian matrix, Lt =Dt−Ht,
where Dt = diag(Ht1) is the degree matrix of Gt, 1 denotes the vector of all ones, and
diag(x) signifies the diagonal matrix with diagonal vector x. Given Lt, the Fiedler number



and the Fiedler vector are defined by the second smallest eigenvalue and its corresponding
eigenvector. It is known from spectral graph theory (Chung, 1997) that Gt is connected
(namely, there exists a path between every pair of distinct nodes) if and only if the Fiedler
number is nonzero. The entrywise signs of the Fiedler vector encodes information on network
partitioning. For a network with Fiedler number equal to zero, we can extract its largest
connected component (LCC), namely, the largest subgraph with nonzero Fiedler number.

Structural feature extraction via network centrality measures
A network/graph centrality measure is a quantity that evaluates the influence of each node
to the network, and thus provides essential topological characteristics of nodes (Newman,
2010). In what follows, we introduce the key centrality measures used in our analysis and
elaborate on the rationale behind them.● Degree. A nodal degree is defined as the sum of edge weights (namely, Hi-C contacts)
associated with each node,

degree(i, t) = n�
j=1
[Ht]ij, (1)

where degree(i, t) denotes the degree of node i at time t. We remark that degree(i, t) exhibits
the spatial proximity between node i to other nodes.● Eigenvector centrality. The eigenvector centrality is defined as the principal eigenvector
of the adjacency matrix, corresponding to its largest eigenvalue, namely

eig(i, t) = [vt]i = 1

�1(Ht)
n�
j=1
[Ht]ij[vt]j, (2)

where �1(Ht) is the maximum eigenvalue of Ht in magnitude, and vt is the associated
eigenvector, namely �1(Ht)vt = Htvt. It is clear from (2) that the eigenvector centrality
relies on the principle that a node has more influence if it is connected to many nodes which
in turn are also considered to be influential. Di↵erent from degree centrality, the eigenvector
centrality takes the full network topology into account.● Betweenness. Betweenness is the fraction of shortest paths that pass through a node
relative to the total number of shortest paths in the connected network. The betweenness
of node i at time t is defined as

betweenness(i, t) = �
k∈V,k≠i �j∈V

j≠i,j>k

�kj(i, t)
�kj(t) , (3)

where �kj(t) is the total number of shortest paths from node k to j at time t, and �kj(i, t)
is the number of such shortest paths passing through node i. Betweenness characterizes
potential hub nodes in the network, and thus a node with high betweenness has the potential
to disconnect the network if it is removed.



Other centrality measures can also be used, such as clustering coe�cient, closeness and
hop walk statistics, which di↵er in what type of influence is to be emphasized (Newman,
2010).

Integration of form and function
The extracted centrality feature vectors can then be combined with function vector (i.e.,
gene expression) to create a form-function feature matrix Xt ∈ Rn×m, where n is the size of
the Hi-C matrix, m is the number of extracted features, and t is the time step.

Data representation on low-dimensional non-linear manifolds
Information redundancy exists in the data matrix X = [XT

1 , . . . ,X
T
k ]T ∈ Rnk×m, where k

is the length of time horizon (k = 12 in our dataset). For example, the degree centrality
and the eigenvector centrality could be correlated, and the replicates of RNA-seq data are
strongly correlated. Therefore, data points given by rows of X are lying on a manifold with
a smaller intrinsic dimensionality m′ (often m′ �m) that is embedded in the m-dimensional
feature space. The goal of dimensionality reduction is to transform dataset X into Y with
lower dimensionality m′, while retaining the geometry of the data as much as possible (Van
Der Maaten et al., 2009).

Laplacian eigenmap is a non-linear dimensionality reduction technique to find a low-
dimensional data representation by preserving local properties of the underlying manifold.
We remark that the linear dimensionality reduction technique, principal component analysis
(PCA), is also applicable but it cannot adequately handle the nonlinearity embedded in the
dataset. The method of Laplacian eigenmaps contain the following steps

Normalize dataset X = [XT
1 , . . . ,X

T
k ]T to make di↵erent features comparable

Xt(∶, i) =Xt(∶, i)��i, �i =max
t
{�Xt(∶, i)�2}

Xt(∶, i) =Xt(∶, i) − µi1, µi = 1

kn

k�
t=1

n�
j=1

Xt(j, i),
where Xt(∶, i) denotes the ith column of Xt, the first transformation ensures that
di↵erent features are all treated on the same scale, and the second transformation is
to zero out the mean of the data.

Construct a neighborhood graph in which every node is linked with its p nearest
neighbors. The edge weight is computed using the heat kernel function, leading to a
sparse adjacency matrix W with entries

[W]ij = e− �X(i,∶)−X(j,∶)�22� , if there is an edge between i and j,

where � is the heat kernel parameter, and we choose � = 200 in our analysis (Van
Der Maaten et al., 2009).



Compute the graph Laplacian matrix L = D −W, where D = diag(W1). We then
solve the generalized eigenvalue problem

Ly = �Dy (4)

for m′ smallest nonzero eigenvalues. The resulting eigenvectors {yi}m′i=1 form the low-
dimensional data representation Y = [y1, . . . ,ym′].

After dimensionality reduction, we can also evaluate the significance of each feature
that contributes to the low-dimensional data representation Y. Let us consider a linear
approximation Y ≈XQ = [XQ(∶,1), . . .XQ(∶,m′)], and Q ≈ (XTX)−1XTY. It is clear that
there exists a one-to-one correspondence between the columns of Y and the columns of Q,

Y(∶, j) =�
i

X(∶, i)Q(i, j).
Here Q(i, j) signifies the contribution of the ith feature in X to the jth component of
the obtained low-dimensional column-space Y. The feature score (FS) for the ith feature
corresponding to the jth dimension of the subspace is

FS(i, j) = �Q(i, j)�∑i �Q(i, j)� . (5)

Fitting the data: minimum volume ellipsoid
The minimum volume ellipsoid (MVE) estimator is the first high-breakdown robust estima-
tor of multivariate location and scatter (Van Aelst and Rousseeuw, 2009). Geometrically,
the MVE estimator finds the minimum volume ellipsoid covering, or enclosing a given set
of data points. Let X = {xi �xi ∈ Rm, i ∈ {1,2 . . . , n}} denote the dataset of interest, where
n is the number of data points, and m is the number of features (or the dimension of the
intrinsic low-dimensional manifolds). The ellipsoid that fits into X can be parametrized as

WQ,b = {x ∈ Rm � �Qx − b�2 ≤ 1}, (6)

where Q ∈ Rm×m and b ∈ Rm are unknown parameters. The center and the shape of the
ellipsoid EQ,b is given by c ∶=Q−1b, and ⇤ ∶=Q2 since the ellipsoid (6) can be reformulated
as WQ,b = {x ∈ Rm � (x − c)T⇤(x − c)⌃ ≤ 1}. Finding the minimum volume ellipsoid can be
cast as a convex problem

minimize
Q,b

det(Q−1)
subject to �Qxi − b�2 ≤ 1, i ∈ N↵

Q is positive definite,

where N↵ denotes the set of data within a ↵ confidence region, determined by Mahalanobis
distances of data below ↵ = 97.5% quantile of the chi-square distribution with l degrees of



freedom (Van Aelst and Rousseeuw, 2009). The MVE estimates the shape of the uncertainty
ellipsoid for X , which is di↵erent from its sample covariance. The latter is the maximum
likelihood estimate under the assumption of Gaussian distribution.

Temporal di↵erence score (TDS)
TDS is introduced to evaluate the temporal di↵erence of form-function characteristics. Let
Xt ∈ Rn×m denote data matrix associated with n nodes of a network and m features. TDS
of node i at time t is defined as

TDS(i, t) = ∑t′∈Nt
dist(Xt(i, ∶),Xt′(i, ∶))�Nt� , (7)

where Nt defines the time window around t, namely, Nt = {t − 1, t}, and dist(⋅) is a generic
distance function between the ith row of Xt and Xt′ . In our analysis, Xt can represent either
network centrality features from Hi-C data or gene expression.

A/B compartment switching analysis
A/B compartments were identified through methods conceptually similar to those described
in (Lieberman-Aiden et al., 2009). Intra-chromosomal Hi-C matrices H were binned at
the 100-kb level, with unmappable regions and/or regions with no identified contacts re-
moved. Matrices were Toeplitz normalized based on linear genome distance to derive H̃ (See
Scale-adaptive Hi-C matrix). The entrywise sign of the principal component of the spatial
correlation matrix associated with H̃ (PC1) is used to identify A/B compartments. To de-
termine A/B switching with concordant gene expression, we determined 100-kb bins that
switched A/B compartments and whose entry-wise sign change was in the 50th percentile of
total change. This was done to reduce noise in A/B compartment switch identification. All
genes that overlap with defined A/B switch regions were analyzed for di↵erential expression.
Genes that had a mean FPKM value greater than 0.1, and had log2 fold change expression
greater than 1 or less than -1 were kept.

Divergence of datasets and statistical significance
To depict the transition into the myogenic lineage, we studied human fibroblast proliferation
(Chen et al., 2015) and MYOD1-mediated reprogramming of human fibroblasts into the
myogenic lineage, over a 56-hr time course. First, we found an intrinsic low-dimensional (3D)
manifold of centrality-based form-function features under the setting of both proliferation
and reprogramming. This was given by the principal subspace of form-function data at the
first two time points (corresponding to the fibroblast-like stage). Second, we obtained the
3D data representation of form-function features after projection onto the common subspace
for proliferation and reprogramming, and tracked the centroids of the fitted ellipsoids (given
by MVE estimates) over time. The trajectory of the centroids was then smoothed using
the cubic spline. Last, we provided a statistical significance for the deviation in trajectory
of proliferation and reprogramming at the 32 hr bifurcation, where the P value is defined
from the multivariate Hotelling’s T-Square test associated with the null hypothesis that the



centroids of proliferation and reprogramming are identical at a given time point.

Bifurcation identification at single gene level
Hi-C contacts within a ±5 kb window around a gene location are extracted. A {d+1, d+1, t}
tensor Ai,j,t is contructed based on the number of MboI cut-sites (GATC) found, d, within
the region of interest, for each time point sampled, t. Each element i, j, t of A represents
the number of contacts found between cut sites {i− 1, i} and {j − 1, j} at time t, divided by
the total number of contacts found for each time point (RPM). The element-wise di↵erence
between time points is calculated, and the summation of di↵erence (absolute value) between
t and t + 1 is recorded.

Identification of genes of interest
Genes of interest (GOIs) are mainly extracted through Gene Ontology (GO), with a few
GOI subsets curated through other means. GO-extracted lists include myotube, myoblast,
skeletal muscle, fibroblast, and circadian. “Muscle” genes are the union of myoblast, my-
otube, and skeletal muscle genes. Additional circadian related subsets were extracted from
JTK analysis and literature reviews (core circadian), and additional cell cycle subsets were
extracted from literature reviews (Table S3).

Statistical significance of TDS of genes
Given a set of genes, the significance test is made by comparing the average TDS of those
genes with a random background distribution. The background distribution is generated by
the average TDS of randomly selected gene sets (same size) over 1000 trials. The probability
of the right-tailed event is used as P value.

Identification of MYOD/MYOG mediated oscillatory gene expression
Kallisto was used in RNA-seq quantification to obtain TPM (transcripts per million) expres-
sion results (Bray et al., 2016). BioCycle was used to identify oscillating transcripts after
the 32 hr bifurcation point with a P value of 0.1 (Agostinelli et al., 2016). Transcripts found
to be non-oscillatory before the bifurcation point were identified with a reported P value
greater than 0.4. Phase, predicted through a neural network in BioCycle, was used to iden-
tify synchronous oscillating transcripts. Synchronous is defined as oscillating transcripts that
are in-phase or antiphase within +/- 2 hours. MYOD1 and MYOG gene targets were found
by identifying transcription factor binding sites for the respective motifs 10kb upstream or
1kb downstream of transcription start sites (TSS) using MotifMap with a Bayesian Branch
Length Score > 1.0 and an FDR < 0.25 (Daily et al., 2011; Xie et al., 2009).

Super enhancer-promoter region dynamics
SE-P regions for skeletal muscles were downloaded from (Hnisz et al., 2013) (BI Skeletal Muscle).
The Hi-C contacts between the SE and the associated gene TSS (±1kb) were extracted over
time. SE-P contacts were normalized by dividing by the total number of contacts per sample,
then multiplying by 100,000,000 (arbitrary scalar to best show trends). To determine the
top upregulated genes, the linear regression slope of log2(FPKM) over time was calculated



and sorted for each gene, high to low. To determine significance, we first normalized the
contacts by dividing by the total number of contacts for each SE-P region over time (so that
all SE-P regions are on the same relative scale). We then performed a t-test between 16-24
hr and -48,0-8 hr normalized contacts.

DATA AND SOFTWARE AVAILABILITY

The dataset and codes will be reported when the paper is accepted.



REFERENCES

Agostinelli, F., Ceglia, N., Shahbaba, B., Sassone-Corsi, P. and Baldi, P. (2016), ‘What time is it? deep
learning approaches for circadian rhythms’, Bioinformatics 32, i8–i17.

Bray, N. L., Pimentel, H., Melsted, P. and Pachter, L. (2016), ‘Near-optimal probabilistic rna-seq quantifi-
cation’, Nature biotechnology 34(5), 525–527.

Chen, H., Chen, J., Muir, L. A., Ronquist, S., Meixner, W., Ljungman, M., Ried, T., Smale, S. and
Rajapakse, I. (2015), ‘Functional organization of the human 4d nucleome’, Proceedings of the National
Academy of Sciences 112(26), 8002–8007.

Chung, F. R. (1997), Spectral graph theory, Vol. 92, American Mathematical Soc.
Daily, K., Patel, V. R., Rigor, P., Xie, X. and Baldi, P. (2011), ‘Motifmap: integrative genome-wide maps

of regulatory motif sites for model species’, BMC bioinformatics 12(1), 495.
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012),

‘Topological domains in mammalian genomes identified by analysis of chromatin interactions’, Nature
485(7398), 376–380.

Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. A. and Young,
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