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The following Supporting Information is available for this article: 

 

Table S1 Description of poplar clones used in Experiment 2 (“Relationship among the 

Experiment 2 clones”; Excel file). 

 

Table S2 Gene v3 annotation counts associated with their respective probe category subset. For 

each gene, the corresponding probes were localized and then classified as “Promoter”, “Gene 

body” or both if overlapping. Numbers in brackets indicate the number of genes common to both 

Experiments 1 and 2. 

  

Probes designed for 

genes in DMRs 
Promoter Gene body Promoter and Gene body 

Experiment 1 87.4% 41 (9) 3466 (906) 95 (13) 

Experiment 2 86.1% 71 4869 98 

 

Table S3 Differentially Methylated Regions (DMRs) for Experiments 1, 2 and for commonly 

conserved DMRs (“Experiment 1_DMRs Experiment 2_DMRs and 

common_conserved_DMRs”; Excel file). 

 



 

Table S4 Overlap between genes localized in DMRs and DEGs (“DMRs vs DEGs”; Excel file). 

Genes localized in ‘hypo-methylated’ DMRs in Experiment 1 and DEGs; DMRs common to 

Experiments 1 and 2 and DEGs; and DMRs common to the 3 Experiments and DEGs. DEGs 

have been recently reported (Lafon-Placette et al., 2018) and are available on GEO GSE46605).  

 

Table S5 Summary of AGRIGO statistical results with the number of genes, p-values and FDRs 

for major Gene Ontology category of Revigo tree map analyses.  

 

Fig. S1 Methylome description for an additional unfavorable site in Experiment 2, located at 

Guémené (GMN). (A) Genomic features of DNA methylation changes in the shoot apical 

meristem represented by Manhattan plot showing?? a significant false discovery rate (FDR) of 5 

%. The plots show -log10 P-values on the y-axis and the location of the different 50 kb windows 

through the genome with a gap at chromosome locations on the x-axis. Blue dots correspond to 

windows hypo-methylated as compared to the reference mean, red dots to windows hyper-

methylated as compared to the reference mean and grey dots to non-significant windows 

(Methods S1). (B) Characterization of DNA methylation distribution by observing the types of 

loci affected in the DMRs. DMRs were classified as hypo- or hyper-methylated in a given set of 

conditions (lower or higher DNA methylation status, than in the other two sets of conditions). 

BODY: gene body; PROMOTER: 1 kb upstream region; TE: transposable element; BODY+TE: 

TE inserted into a gene body; PROM+TE: TE inserted into a promoter. INTERGENIC: any 

other locus. (C) Revigo Tree map of biological process GO clustering based on the abs log10 p-

value of shoot apical meristem DNA methylation changes among probes affected. DMRs were 

classified as hypo- or hyper-methylated in a given set of conditions (lower or higher DNA 

methylation status, , than in the other two sets of conditions). The representatives of categories 

are combined into ‘superclusters’ of loosely related terms, visualized with different colors. 

Rectangle size is adjusted to reflect the abs log10 p-value of the GO term in the underlying GOA 

database. ‘n’ corresponds to homologous Arabidopsis gene annotations. 

 

Fig. S2 Revigo Tree map of biological process GO clustering based on the abs log10 p-values 

(http://revigo.irb.hr/revigo.jsp) of hypo- and hyper-methylated probes in DMRs located in the 



 

gene body for each condition and Experiment. The representatives are combined into 

‘superclusters’ of loosely related terms, visualized with different colors. Rectangle size is 

adjusted to reflect the abs log10 p-value of the GO term in the underlying GOA database. The 

number (‘n’) of homologous Arabidopsis gene annotations is indicated in brackets. Experiment 1 

conditions are ‘ORLWW’ and ‘ORLWD‘ and Experiment 2 conditions are ‘ECH’ Echigey and 

‘SCV’ Saint-Cyr-en-Val. 

 

Fig. S3 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs in: (A) Experiment 1, (B) Experiment 2. The representatives are combined into 

‘superclusters’ of loosely related terms, visualized with different colors. Rectangle size is 

adjusted to reflect the abs log10 p-value of the GO term in the underlying GOA database. ‘n’ 

corresponds to homologous Arabidopsis gene annotations.  

 

Fig. S4 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs in Experiment 1: (A) Hypomethylated DMRs (B) Hypermethylated DMRs. 1 for 

hypermethylated, 0 for non-significant and -1 for hypomethylated DNA variation. Each rectangle 

is a single cluster representative of TAIR10 corresponding poplar V 3.0 annotation. The 

representatives are combined into ‘superclusters’ of loosely related terms, visualized with 

different colors. Size of the rectangles may be adjusted to reflect the abs log10 p-value of the GO 

term in the underlying GOA database. ‘n’ corresponds to homologous Arabidopsis gene 

annotations. 

 

Fig. S5 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs in Experiment 2: (A) Hypo-methylated DMRs (B) Hyper-methylated DMRs. 1 

for hyper-methylated, 0 for non-significant and -1 for hypo-methylated DNA variations. Each 

rectangle is a single cluster representative of corresponding TAIR10 poplar V 3.0 annotation. 

The representatives are combined into ‘superclusters’ of loosely related terms, visualized with 

different colors. Rectangle size is adjusted to reflect the abs log10 p-value of the GO term in the 

underlying GOA database. ‘n’ corresponds to homologous Arabidopsis gene annotations. 

 



 

Fig. S6 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

DEGs in DMRs in Experiment 1 or 2. DEGs were recently described in Lafon-Placette (2017) 

through transcriptomic array analysis. Each rectangle is a single cluster representative of 

corresponding TAIR10 poplar V 3.0 annotation. The representatives are combined into 

‘superclusters’ of loosely related terms, visualized with different colors. Rectangle size is 

adjusted to reflect the abs log10 p-value of the GO term in the underlying GOA database. ‘n’ 

corresponds to homologous Arabidopsis gene annotations. 

 

Fig. S7 DEG counts relative to DMRs: (A) Down-regulated DEGs, (B) Up-regulated DEGs 

between favorable and unfavorable growth conditions. Hypo- and hyper-methylated DMRs 

between favorable and unfavorable growth conditions are indicated for Experiments 1 and 2 

separately, and 1-2-3 combined (mentioned as ‘all’). DEGs were reported recently (Lafon-

Placette et al., 2018) in SAM under favorable growth conditions (well-watered) and unfavorable 

growth conditions (water deficit or water deficit followed by re-watering). 

 

Fig. S8 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs ‘common’ to Experiments 1 and 3: (A) Experiments 1 and 3 (n= 2,029), (B) 

Hypo-methylated DMRs (C) Hyper-methylated DMRs between favorable and unfavorable 

growth conditions. Scores for DNA variation are indicated as 1 for hyper-methylated, 0 for non-

significant and -1 for hypo-methylated. ‘Common’ DMRs means that the same locus was 

detected as a DMR between favorable and unfavorable growth conditions in Experiment 1 and 

Experiment 3. Each rectangle is a single cluster representative of corresponding TAIR10 poplar 

V 3.0 annotation. The representatives are combined into ‘superclusters’ of loosely related terms, 

visualized with different colors. Rectangle size is adjusted to reflect the abs log10 p-value of the 

GO term in the underlying GOA database. ‘n’ corresponds to homologous Arabidopsis gene 

annotations. 

 

Fig. S9 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs ‘common’ to Experiments 2 and 3: (A) Experiments 2 and 3 (n= 2,900), (B) 

Hypo-methylated DMRs (C) Hyper-methylated DMRs between favorable and unfavorable 

growth conditions. Scores for DNA variation are indicated as 1 for hyper-methylated, 0 for non-



 

significant and -1 for hypo-methylated. ‘Common’ DMRs means that the same locus was 

detected as a DMR between favorable and unfavorable growth conditions in Experiment 2 and 

Experiment 3. Each rectangle is a single cluster representative of the corresponding TAIR10 

poplar V 3.0 annotations. The representatives are joined into ‘superclusters’ of loosely related 

terms, visualized with different colors. Rectangle size is adjusted to reflect the abs log10 p-value 

of the GO term in the underlying GOA database. ‘n’ corresponds to homologous Arabidopsis 

gene annotations. 

 

Fig. S10 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs ‘common’ to Experiments 1 and 2: (A) Experiments 1 and 2 (n= 998), (B) 

Hypo-methylated DMRs (C) Hyper-methylated DMRs between favorable and unfavorable 

growth conditions. Scores for DNA variation are indicated as 1 for hyper-methylated, 0 for non-

significant and -1 for hypo-methylated. ‘Common’ DMRs means that the same locus was 

detected as DMR between favorable and unfavorable growth conditions in Experiment 1 and 

Experiment 2. Each rectangle is a single cluster representative of TAIR10 corresponding to 

poplar V 3.0 annotation. The representatives are joined into ‘superclusters’ of loosely related 

terms, visualized with different colors. Rectangle size is adjusted to reflect the abs log10 p-value 

of the GO term in the underlying GOA database. ‘n’ corresponds to homologous Arabidopsis 

gene annotations. 

 

Fig. S11 Revigo Tree map of biological process GO clustering based on the abs log10 p-value of 

genes in DMRs ‘common’ to Experiments 1 and 2: (A) ‘Common conserved’ variation DMRs 

(B) ‘Common inversed’ variation DMRs between favorable and unfavorable growth conditions. 

Scores for DNA variation are indicated as 1 for hyper-methylated, 0 for non-significant and -1 

for hypo-methylated. ‘Common’ DMRs means that the same locus was detected as DMR 

between favorable and unfavorable growth conditions in Experiment 1 and Experiment 2. 

‘Conserved’ versus ‘inversed’ mean that the direction of variation (hypo- or hyper-methylation) 

of the ‘common’ DMRs between favorable and unfavorable conditions is identical (‘conserved’) 

or different (‘inversed’) between Experiments 1 and 2. Each rectangle is a single cluster 

representative of TAIR10 corresponding to poplar V 3.0 annotation. The representatives are 

joined into ‘superclusters’ of loosely related terms, visualized with different colors. Rectangle 



 

size is adjusted to reflect the abs log10 p-value of the GO term in the underlying GOA database. 

‘n’ corresponds to homologous Arabidopsis gene annotations. 

 

Figure S12: Model for epigenetic environmental memory in the poplar Shoot Apical Meristem 

(SAM). Differentially Methylated Regions (DMRs) described in the active SAM between 

favorable and unfavorable growing conditions during the vegetative period (Lafon-Placette et al., 

2018) could be detected in winter dormant SAM (present study) suggesting mitotic transmission. 

DRMs were shown to preferentially affect genes responding to abiotic stress. Potentially, some 

of the DMRs playing a role in immediate phenotypic plasticity could be maintained during the 

next vegetative period and may contribute to acclimation and stress memory (priming); they may 

also be transmitted to the next generation resulting in trans-generational stress memory and 

adaptive potential. 

 

Methods S1 FDR estimation for Experiments 1 and 2. This document describes the statistical 

study conducted to estimate the False Discovery Rate (FDR) of the multiple tests performed for 

Experiments 1 and 2, as recently reported in Lafon-Placette et al. (2018): (i) estimation of 

reference means calculated with mixture models on a subsample; (ii) multiple tests with FDR 

control per window and scaffold; (iii) mixture-based clustering of window means, to compare 

with results from the FDR procedure; (iv) computation of the Differentially Methylated Regions 

(DMR). A data frame summarizing all the results per window for each scaffold is produced and 

some additional summary plots are displayed. 
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Mixture models and

False Discovery Rate (FDR) estimation

Abstract

This document describes in details the statistical study conducted for estimating the
False Discovery Rate (FDR) of the multiple tests performed for both Experiments 1 and 2:
(i) estimation of reference means based on mixture models on a subsample; (ii) multiple
tests with FDR control per windows and scaffolds; (iii) mixture-based clustering of window
means, for comparisons with results from the FDR procedure; (iv) computation of the
Differentially Methylated Regions (DMR). Some additional summary plots are displayed.

1 Experiment 1: ORLWW and ORLWD

1.1 Determination of reference means from Gaussian mixtures

The purpose of this preliminary step is to obtain “reference means” for each of the conditions
(called treatments), and for all or each scaffold. The two responses for this experiment
are ORLWW and ORLWD (see the main document). Denote µt

0
this reference mean for

treatment t, against which the mean response for each window w, that we denote µw, will be
compared using a statistical test for a null hypothesis such as H0 : µw = µt

0
in the parametric

case, or distribution equality in nonparametric cases (see below). To insure independence
between the mean responses per window and the reference mean (since both need to be
estimated from the data), we first randomly select 20% of the data as a “reference sample”,
n = 61, 439 responses. The remaining dataset (n = 245, 756) is used for building the multiple
test procedure.

We consider the responses for each treatment separately, i.e. univariate models only. The
plots of empirical distributions (histograms in Fig.1) show that 2-component mixture models
are suitable (see McLachlan and Peel, 2000, for references on mixture models). We further
assume here that the responses for each treatment form an iid sample from am = 2 component
univariate Gaussian mixture. Informally, the distribution associated to each treatment t
is given by λt

1
N (µt

1
, vt

1
) + (1 − λt

1
)N (µt

2
, vt

2
), where the statistical model parameters are

component 1 weight λt
1
, component means (µt

1
, µt

2
) and variances (vt

1
, vt

2
), hence 5 scalar

parameters per treatment. Other mixture models, e.g., nonparametric as in Bordes et al.
(2007) or Chauveau et al. (2015) could be tried as well.

For each treatment, the parameters of the model are then estimated using a standard EM
algorithm. We use here the normalmixEM function of the Benaglia et al. (2009) mixtools pack-
age for the R statistical software (R Core Team, 2016). The initialization of the EM algorithm
is data-driven, based on an initial k-means clustering of the data to which we provide initial
centröıd corresponding approximately to the modes visible in the histograms. Alternative
initialization methods have also been checked to insure that the estimates correspond to the
maximum of the loglikelihood of the model for these data.

1



Fig.1 displays the mixture model fits together with the empirical distributions. The es-
timated mean of the leftmost, smallest component mean labeled “1” here and associated to
the larger estimated weight λ̂t

1
, is assumed to be the reference for each treatment “t”. Re-

sults for the reference means µ̂t
0
are indicated on Fig.1 and recalled below together with the

corresponding proportions (weights) of the leftmost component:

ORL_WD ORL_WW

component 1 mean -0.426 -0.435

weight (%) 69.3 72.5

These estimates are computed on the data from all the 19 scaffolds. We have also fit mixture
models for each scaffold separately. Fig.2 shows that, for the 2 treatments, the reference
means of the leftmost component per scaffold are comparable to the global reference.

1.2 Multiple tests on consecutive windows

We assume that the µt
0
’s estimated in Section 1.1 from the 20% reference sample provide

reference mean parameters that are now considered non-random. The next step consists in
building windows of consecutive observations (spots) for some given “nominal” size, and to test
equality of means or distributions between each window and the reference. For a nominal size
set to 50 kb (see the main document), we obtain the configuration of the windows per scaffold
summarized in Fig. 3. More precisely, Fig. 4 illustrates typical responses for one treatment,
ORLWD, Scaffold 1, and the first ten windows w = 1, . . . , 10. This shows that window
responses may vary in dispersion (as e.g., between scaffolds 3 and 5) or/and in localization
(as e.g., between scaffolds 4 and 10), and that the null hypothesis of mean equality may be
accepted even though the spots in a window are not close to the reference mean, because of
averaging.

1.2.1 Statistical tests per window

In view of some boxplots in Fig. 4, distribution within windows often show some skewness
(e.g., window 2), and heavy tails. Hence it seems not reasonnable to assume Gaussian dis-
tributions of responses within each window, so that Student t-tests cannot be used. When
the number of observations per window is large enough (nw ≥ 30 would be typically accept-
able) tests using the asymptotic normality (also known as z-tests) may be used. But in most
windows, depending on the nominal size, there are fewer obervations, so that nonparamet-
ric framework must be used, at least in these cases (for the nominal size 50 kb, about 56%
of the windows have fewer than 30 observations). A standard test for this situation is the
Wilcoxon signed rank test of a null hypothesis that the distribution of the sample from each
window is symmetric about µt

0
. This test can be viewed as a nonparametric version of the

t- or z-tests for localization. However, note that this test may reject (i.e. declare significant)
windows appropriately centered toward the reference mean (i.e. for which µ̂w ≈ µt

0
), in case

of lack of symmetry (skewness). In the sequel, we only apply Wilcoxon signed rank tests on
all windows for simplicity (parametric and nonparametric tests per windows could also be
mixed, depending on the number of observations per window).

1.2.2 FDR control

The purpose of the study is to declare as significant the windows (i.e. the spots within the
windows) for which the null hypotheses have been rejected, according to the p-values of the

2



tests. As stated before, rejection means significant shift (or non symmetry) from the reference
distribution located on µt

0
for each treatment t. For each scaffold, this experiment results in

multiple hypothesis testing problem with hundreds of test responses to consider simultaneously
(see Fig. 3, top, for the number of windows per scaffold; for instance the largest configuration
with windows of size 50 is 965 windows for scaffold 1). Note also that decreasing the nominal
window size (e.g., from 50 kb to 20 kb) results in a larger number of windows per scaffold,
but with less observations per window, resulting in less powerful tests.

In this multiple inference setup, the unguarded use of single-inference procedures may
results in an increased false positive rate among the simultaneous tests. The first criterion
was the FamilyWise Error Rate (FWER), that is the probability of observing at least one
false rejection among the n tests. The historical approach since the early 1950s, called the
Bonferroni approximation procedure (see e.g. Benjamini and Hochberg (1995) and references
therein) consists in applying each test at a level α/n, resulting in a FWER lesser than α.
However, Bonferroni-type procedures appear to be far too conservative when n gets large
because α/n gets too small, leading to too few rejections. Since then, the point of view on
the problem has changed, focusing in the number (or ratio) of erroneous rejections instead
of controlling the FWER. In this vein, the most common concept of error control in such
multiple testing inference is the expected proportion of falsely rejected hypotheses among the
simultaneous tests, or False Discovery Rate (FDR, Benjamini and Hochberg, 1995). Several
statistical algorithms have been proposed in the literature for estimating the FDR, the recent
and unified procedure based on a nonparametric approach from Strimmer (2008) appearing
to be one of the current standard for practitioners. Alternative approaches to FDR esti-
mation consists in viewing the problem as the statistical estimation of the parameters of a
finite mixture model. Parametric mixtures for FDR estimation have been considered in, e.g.,
McLachlan et al. (2006), and semiparametric alternatives have also been proposed (see, e.g.,
Robin et al., 2007; Chauveau et al., 2014).

For simplicity and easy reproducibility, we only apply here FDR control from the most
conservative procedure given by the fdrtool package Strimmer (2008), the local fdr labeled loc

fdr in the figures. Typical results for the first 4 scaffolds are displayed in Fig. 6. The legend
in this Figure also provides the number of cases corresponding to the smallest p-values, that
can be rejected at the FDR level α = 5%. This number correspond to the first “time” the
curve of the adjusted p-values crosses the horizontal line corresponding to α. Running this
procedure on all scaffolds gives the table below, of number of rejected windows per scaffold
and treatment, to be compared with number of windows i.e. of multiple tests.

nb windows FDR_WD FDR_WW

Scaf 1 966 430 418

Scaf 2 471 157 143

Scaf 3 403 161 137

Scaf 4 464 199 189

Scaf 5 513 192 166

Scaf 6 538 209 220

Scaf 7 300 120 107

Scaf 8 377 171 171

Scaf 9 259 81 84

Scaf 10 431 162 163

Scaf 11 378 185 173

Scaf 12 298 128 131

Scaf 13 312 155 132

Scaf 14 354 150 137
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Scaf 15 301 117 109

Scaf 16 283 107 94

Scaf 17 293 158 145

Scaf 18 295 117 99

Scaf 19 320 175 184

1.2.3 Mixture-based clustering of means per window

It is also possible to perform a MAP clustering based on the posterior probabilities obtained by
fitting a Gaussian mixture model on the sample of window empirical means (µ̂w, w = 1, 2, . . .)
up to the number of windows for a scaffold, or the total number of windows, for each treatment.
This information can be added to the results of the multiple tests procedure and FDR control.
Windows leading to significant rejection ofH0 with an empirical window mean µ̂w > µt

0
should

belong to the rightmost component. Fig. 5 gives these EM fits done from the window means
for the 19 scaffolds (7556 windows).

1.3 Output results and DMR statistics for FDR level 5%

The final result is a data frame with 7556 rows (one row per window and per scaffold). The
columns give Start, number of spots, mean responses and p-values per window, columns for
MAP indicators plus a summarizing decision rule in {−1, 0, 1} based on the FDR and the
sign of the mean shift for each treatment. The decision indicator is:

−1 if the FDR lead to significant case (reject) and the sign is negative;

+1 if the FDR lead to significant case (reject) and the sign is positive;

0 if the FDR concludes to non significant case (nosig).

Then the DMR (Differentially Methylated Regions) between the two treatments are computed:
these equal TRUE only if the two treatments decision rules are different. All these statistics are
provided for (and depends upon) the desired FDR level set to 5% here. A summary detailed
for each or all scafflod can be also proposed through “Manhattan-like” plots. Fig. 7 displays
these Manhattan plots for all the scaffolds.

2 Experiment 2: ECH-SCV-GMN

We follow in this Section the method already presented in Section 1. Thus we just present
below the results and specific details.

2.1 Determination of reference means from Gaussian mixtures

We first randomly select 20% of the data as a “reference sample”, n = 47, 651 responses after
removal of the 1961 LOCI in Scaffold 19. The remaining dataset (n = 198, 448) is used later
for building the multiple test procedure. In view of Fig.8, it is reasonable to assume that
the responses for each treatment form an iid sample from a m = 2 components univariate
Gaussian mixture. For each treatment, the parameters of the model are estimated using the
gaussian EM algorithm in the normalmixEM function of the Benaglia et al. (2009) mixtools

package. Fig.8 displays the mixture model fits on top of the empirical distributions. The
estimated mean of the leftmost, smallest component mean labeled “1” here, is assumed to

4



be the reference for each treatment “t”. Results for the reference means µ̂t
0
are indicated on

Fig.8 and given below together with the corresponding proportions (weights) of the leftmost
component:

SCV ECH GMN

component 1 mean -0.431 -0.214 -0.236

weight (%) 73.2 72.5 74.8

These estimates are computed on the data from all the 19 scaffolds. We have also fit
mixture models for each scaffold separately. Fig.9 shows that, for the 3 conditions, the
reference means of the leftmost component per scaffold are comparable to the global result.

2.2 Multiple tests on consecutive windows

We assume that the µt
0
’s estimated in Section 1.1 from the 20% reference sample provide

reference mean parameters that are now considered non-random. We then build windows of
consecutive observations (spots) for the same “nominal” size as before, and test equality of
means or distributions between each window and the reference. The windows configuration
per scaffold is summarized in Fig. 10.

Fig. 11 illustrates typical responses for treatment, SCV, Scaffold 1, and the first windows
w = 1, . . . , 10. This shows that window responses may vary in dispersion or/and in localiza-
tion, and that the null hypothesis of mean equality may be accepted even though the spots
in a window are not close to the reference mean, because of averaging.

2.2.1 Statistical tests per window

As in Experiment 1, it seems not reasonnable to assume Gaussian distributions of responses
within each window, so that Student t-tests cannot be used. In addition, about 71% of
the windows have fewer than 30 observations here so that asymptotic normality cannot be
used either. We use as previously the (non-parametric) Wilcoxon signed rank test of a null
hypothesis that the distribution of the sample from each window is symmetric about µt

0
.

2.2.2 FDR control

We apply as for Experiment 1 the FDR control using the most conservative local fdr procedure
given by the fdrtool package Strimmer (2008). Running this procedure on all scaffolds gives the
table below, of number of rejected (R) windows per scaffold and treatment, to be compared
with number of windows i.e. of multiple tests.

nb windows R_SCV R_ECH R_GMN

Scaf 1 964 359 256 363

Scaf 2 471 154 92 170

Scaf 3 403 121 92 133

Scaf 4 463 190 123 190

Scaf 5 513 164 105 165

Scaf 6 536 165 128 178

Scaf 7 299 107 92 116

Scaf 8 377 150 109 166

Scaf 9 259 76 43 88

Scaf 10 431 185 96 168

Scaf 11 377 157 132 163

Scaf 12 298 115 102 127
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Scaf 13 312 95 76 99

Scaf 14 354 141 112 155

Scaf 15 301 114 67 105

Scaf 16 282 91 77 90

Scaf 17 292 117 88 114

Scaf 18 299 93 67 80

Scaf 19 319 163 157 150

2.2.3 Mixture-based clustering of means per window

We also perform the MAP clustering based on the posterior probabilities obtained by fitting
a Gaussian mixture model on the sample of window empirical means (µ̂w, w = 1, 2, . . .) up
to the total number of windows, for each treatment. Fig. 12 gives these EM fits for the 19
scaffolds (7550 windows).

2.3 Output results and DMR statistics for FDR level 5%

The final result for this experiment is a data frame with 7550 rows (one row per window for
each scaffold). The columns give Start, number of spots, mean responses and p-values per
window, columns for MAP indicators plus a summarizing decision rule in {−1, 0, 1} based on
the FDR and the sign of the mean shift for each treatment, already defined in Section 1.3.

Then the DMR (Differentially Methylated Regions) between treatments two-by-two (resp.
for the 3 treatments) are computed: these equal TRUE only if the two (resp. 3) treatments
decision rules are different. All these statistics are provided for (and depend upon) the desired
FDR level set to 5% here. Note that for these data only a single case returns a TRUE DMR
between the 3 treatments: Scaffold 12, window number 50, Start = 1053390, decision rules
SVC:0, ECH:1, and GMN:-1.

Fig. 13 gives the “Manhattan-like” plot for scaffold 12, the one for which DMR for the
3 treatments has the single true value. Fig. 14 displays these Manhattan plots for all the
scaffolds.
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Figure 1: Experiment 1: EM fits for 2-components Gaussian mixture, for each treatment
(ORLWD, ORLWW ) considered separately, based on the reference sample (20% of the data).
Estimated reference means of leftmost (red) component are indicated.
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Figure 2: Experiment 1: EM for 2-components Gaussian mixture single fits for each treatment
(ORLWD, ORLWW ) and per scaffold, based on the reference sample (20% of the data).
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Figure 3: Experiment 1: Windows configuration for nominal choice 50: Number of windows
per scaffold (top); boxplot distributions of the number of spots per window for each scaffold
(bottom).
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Figure 4: Experiment 1: Responses ORLWD per window ordered by Start, and boxplot
distributions for the 10 first windows, Scaffold 1 (boxplot widths are proportional to number
of responses per window). Colors are relative to windows.
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Figure 5: Experiment 1: Univariate Gaussian EM fits on the mean responses per window, all
scaffolds.
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Figure 6: Experiment 1: FDR control for the first 4 scaffolds. In each case (plot), the FDR
control using local fdr, and the raw p-values are provided for the two treatments: ORLWD

(black), ORLWW (red).
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Figure 7: Experiment 1: Manhattan plots of the p-values for all scaffold, with the color coding
of the decision rule +1(red), −1(blue), 0(grey).
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GMN single EM fit, 20% ref sample
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Figure 8: Experiment 2: EM fits for 2-components Gaussian mixture, for each treatment
(SCV, ECH, GMN) considered separately, based on the reference sample (20% of the data).
Estimated reference means of leftmost (red) component are indicated.
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Figure 9: Experiment 2: EM for 2-components Gaussian mixture single fits for each treatment
(SCV, ECH, GMN) and each scaffold, based on the reference sample (20% of the data) without
the group LOCI for scaffold 19.
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Figure 10: Experiment 2: Windows configuration for nominal choice 50: Number of windows
per scaffold (top); boxplot distributions of the number of spots per window for each scaffold
(bottom).
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Figure 11: Experiment 2: Responses SCV per window ordered by Start, and boxplot distri-
butions for the 10 first windows, Scaffold 1 (boxplot widths are proportional to number of
responses per window). Colors are relative to windows.
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Figure 12: Experiment 2: Univariate Gaussian EM fits on the mean responses per window,
all scaffolds.
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Figure 13: Experiment 2: Manhattan plots of the p-values for scaffold 12, with the color
coding of the decision rule +1(red), −1(blue), 0(grey). This scaffold is the one where DMR
for the 3 treatments has a unique true value.
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Figure 14: Experiment 2: Manhattan plots of the p-values for all scaffold, with the color
coding of the decision rule +1(red), −1(blue), 0(grey).
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