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Supplementary Note 30 

Supplementary Note 1. Identification of outlier samples 31 

For the 3,716 individuals that passed our initial sample-level filters, we summarized the per-sample 32 

distribution of extremely rare variants (ERVs) across 3-mer subtypes and used this information to flag 33 

individuals that showed abnormal patterns of variation indicative of systematic sequencing errors or 34 

batch effects. In brief, we adapted the non-negative matrix factorization (NMF) technique described by 35 

Lawrence et al.1 to deconvolute the 3-mer mutation spectra as a composite of 3 distinct “signatures.” 36 

Assuming the population has been susceptible to the same mutation processes over the timespan in 37 

which ERVs have accumulated, we expect that the relative contribution of the 3 NMF signatures is 38 

stable across individuals. Applying this strategy, we identified 156 individuals where one or more 39 

signatures had a contribution >2 standard deviations away from the mean contribution of that signature 40 

(calculated across all individuals). 41 

These outliers exhibited one of two distinct signatures indicative of error biases. The first signature, 42 

characterized by an unusually high proportion of C>A and G>T singletons, was overrepresented in 112 43 

of these samples, consistent with patterns of oxidative damage that are known to occur during DNA 44 

shearing, likely due to the presence of reactive contaminants2. The second signature, characterized by 45 

depleted rates of C>N and G>N ERVs, was overrepresented in the remaining 44 samples. Further 46 

investigation of the samples carrying this signature showed many had higher GC bias scores (i.e., 47 

systematically lower depth of coverage in GC-rich regions), likely resulting in lower calling rates for C>N 48 

and G>N types. Moreover, 24 of the 44 samples were sequenced in the same batch, and the remaining 49 

20 samples were distributed across only 8 of the 48 other batches, indicating that these coverage 50 

biases and resulting error signatures clustered by batch. To limit the confounding effects of 51 

nonbiological variation present in the data, we excluded the 156 samples displaying either of these 52 

error signatures. Note that doubletons in the pre-filtered sample that would have become singletons in 53 

the post-filtered sample were not included in our analysis. Many of these variants are likely true 54 

doubletons in the BRIDGES sample and hence present in the population at a higher frequency (i.e., 55 
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having arose further in the past) than the average singleton, so retaining these ambiguous variants 56 

might inadvertently affect the distribution of variants. 57 

Supplementary Note 2. Estimation of false discovery rate by Ts/Tv statistics 58 

We estimate the false discovery rate among BRIDGES ERVs using the following method. 59 

(1) Let 𝑇𝑆𝑜 = 𝑇𝑆𝑡 + 𝑇𝑆𝑓 be the number of observed transitions (23,733,766), consisting of both true 60 

positives (𝑇𝑆𝑡), and false positives (𝑇𝑆𝑓)  61 

(2) Let 𝑇𝑉𝑜 = 𝑇𝑉𝑡 + 𝑇𝑉𝑓 be the number of observed transversions (11,840,651).  62 

(3) Based on findings from other large-scale sequencing studies, the true positive Ts/Tv ratio, 63 

𝑇𝑆𝑇𝑉𝑇 =
𝑇𝑆𝑡

𝑇𝑉𝑡
 is expected to be between 2.0 and 2.13. 64 

(4) Because there are 8 possible transversions and 4 possible transitions, if errors have occurred at 65 

random, the Ts/Tv ratio for random false positive errors (𝑇𝑆𝑇𝑉𝜖) should be 0.5, that is, 
𝑇𝑆𝑓

𝑇𝑉𝑓
= 0.5, 66 

assuming no systematic sequencing error biases. 67 

Solving this system of four equations, it follows that 𝑇𝑉𝑓 =
𝑇𝑆𝑇𝑉𝑇×𝑇𝑉𝑜−𝑇𝑆𝑜

𝑇𝑆𝑇𝑉𝑇−0.5
 and 𝑇𝑆𝑓 = 0.5 × 𝑇𝑉𝑓, so the 68 

false discovery rate, 
𝑇𝑆𝑓+𝑇𝑉𝑓

𝑇𝑆𝑜+𝑇𝑉𝑜
, can be estimated as: 69 

𝑇𝑆𝑓 + 𝑇𝑉𝑓

𝑇𝑆𝑜 + 𝑇𝑉𝑜
=
0.5 (

𝑇𝑆𝑇𝑉𝑇 × 𝑇𝑉𝑜 − 𝑇𝑆𝑜
𝑇𝑆𝑇𝑉𝑇 − 0.5

) +
𝑇𝑆𝑇𝑉𝑇 × 𝑇𝑉𝑜 − 𝑇𝑆𝑜

𝑇𝑆𝑇𝑉𝑇 − 0.5

𝑇𝑆𝑜 + 𝑇𝑉𝑜
 70 

Assuming the true Ts/Tv ratio (𝑇𝑆𝑇𝑉𝑇) is between 2.0 and 2.1, by this calculation we estimate a false 71 

discovery rate of 0.1-2.9% among the BRIDGES ERVs. 72 

Supplementary Note 3. Potential sources of bias among ERVs 73 

3.1. Motif-specific error rates 74 

Certain sequence motifs may be more susceptible to sequencing error, which could lead to a non-75 

random distribution of false positive singleton calls and subsequently bias our analyses4,5. Allhoff et al. 76 

(2013)5 reported context-specific errors for the Illumina HiSeq platform, noting that the most common of 77 

these are strand-specific T>N errors at 5’-GGGT-3’ motifs (i.e., there is no evidence of an excess of 78 
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A>N errors at the reverse complement 5’-ACCC-3’ motifs). We reason that if the BRIDGES ERVs are 79 

enriched for such context-specific errors, we should see significantly more T>N ERVs at the 5’-GGGT-80 

3’ motif than A>N ERVs at the 5’-ACCC-3’ and motif. Of the 127,831 ERVs that occur at this motif, 81 

63,861 were 5’-[A>N]CCC-3’ variants, and 63,970 were 5’-GGG[T>N]-3’ variants; this difference was 82 

not significant, indicating there is no evidence for an enrichment of T>N ERVs at this error-prone motif 83 

(exact binomial test; P=0.67). Allhoff et al. remark that the variants called at error-prone positions 84 

tended to have low base quality scores as well as significant strand bias, both of which are detectable 85 

with standard filtering protocols5. We therefore assume that most motif-specific errors are filtered by the 86 

default strand-bias and quality filters used in our variant calling pipeline, and any undetected errors 87 

have a negligible impact on our calculation of relative mutation rates and downstream analyses. 88 

3.2. Mapping error 89 

We expect the majority of ERVs in our data are mapped with high confidence, as the pre-filtering steps 90 

in our variant calling pipeline remove sites occurring on reads with average phred-scaled mapping 91 

quality score (MQ) <20 and/or where more than 10% of reads were ambiguously mapped (MQ0>10). 92 

This filtering strategy is similar to the filters employed by other large-scale sequencing projects that 93 

have demonstrated well-controlled error rates among singleton calls6,7. Because mapping errors are 94 

more likely to occur in highly-repetitive regions, such as centromeric and pericentromeric loci8, including 95 

these regions in our analyses might bias our estimates of motif-specific mutation rates and/or the 96 

impact of genomic features. However, excluding these regions entirely might have detrimental side 97 

effects: dropping ERVs in these regions will reduce the precision of our estimates, and removing hard-98 

to-map regions might preclude our ability to assess mutation patterns unique to these regions, as they 99 

may have many levels of heterogeneous overlap with genomic features. 100 

To determine if excluding repeat-rich regions systematically influenced our inferred rates, we compared 101 

the 7-mer relative mutation rates estimated from the full, unfiltered set of ERVs with 7-mer rates 102 

estimated if we only count ERVs and reference motifs within the 1000 Genomes strict accessibility 103 

mask, which delineates the most uniquely mappable regions of the genome (covering ~72% of non-N 104 
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bases). These two sets of estimates were very well-correlated: within-type correlations were >0.96, 105 

indicating the estimated rates were highly consistent regardless of whether hard-to-map regions were 106 

removed (Supplementary Fig. 6a). Moreover, subtypes with larger differences between the two 107 

estimates tended to have fewer ERVs (Supplementary Fig. 6b), suggesting that most observed 108 

discrepancies might simply be an artifact of reduced precision among rare mutation classes. 109 

When we applied the masked rates to predict the set of de novo mutations, we found these estimates 110 

had worse predictive performance than the unmasked estimates (Table 1). This result leads us to 111 

conclude that aggressively filtering for the highest-confidence call set comes at a cost of substantially 112 

reducing the precision of the relative mutation rate estimates, and potentially causing greater bias by 113 

ignoring the information captured by ERVs in the masked regions. Although we cannot entirely exclude 114 

the possibility of mapping error biases among the unmasked estimates, the benefits of having more 115 

numerous singletons across more contiguous genomic regions in the unmasked data outweigh the 116 

concerns about errors caused by poor mapping quality. 117 

3.3. Mispolarization of ERVs 118 

While most singletons in the BRIDGES sample are the true derived allele, population genetic theory 119 

suggests that <1/N=0.014% of singletons in a sample are the ancestral allele, and hence subject to the 120 

same evolutionary biases we wish to avoid. These mispolarized singletons may be hard to detect, as 121 

we expect ~0.25% of all singletons to carry the same allele in human and chimpanzee due to parallel 122 

mutations that have occurred since splitting from a common ancestor. Intuitively, these parallel 123 

mutations are especially likely to occur in hypermutable loci, so removing the 0.25% “ancestral” alleles 124 

created by parallel mutation may create a bigger bias than including the 0.015% truly ancestral alleles.  125 

To understand the impact of removing all putatively ancestral alleles, we used an ancestral genome 126 

inferred by 6-way primate alignment9 to annotate each allele with the putative ancestral state. We 127 

identified 363,705 singletons (~1% of all singletons) where the alternative allele was the same as the 128 

ancestral allele, and recalculated 7-mer relative mutation rates after removing these putatively 129 

mispolarized singletons. We found that this polarization filter did not strongly affect estimated rates: 130 
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across all types combined as well as within each type, the rates before and after removal of these sites 131 

were nearly perfectly correlated (Spearman’s r>0.999). Further, we found that only 9 of the 24,576 7-132 

mer rates differed significantly after applying this filter, and the re-estimated rates for these 9 subtypes 133 

differed from the original rates by no more than 10%. More importantly, 8 of these 9 subtypes were 134 

hypermutable CpG>TpG subtypes, consistent with our intuition that many putatively mispolarized sites 135 

are in fact parallel mutations in the human and chimpanzee lineages. 136 

As a final analysis of the potential effects of mispolarization on our estimates, we applied these filtered 137 

rates to predict the GoNL/ITMI de novo mutations in the same logistic regression framework used to 138 

compare other estimation strategies. Goodness-of-fit statistics indicated that the filtered rates predicted 139 

de novo mutations better than 7-mer rates estimated without the polarization filter (ΔAIC=298). 140 

However, when comparing goodness-of-fit between type-specific models, these differences largely 141 

disappeared, with seven types showing negligible differences in AIC (ΔAIC < 7), and the unfiltered 142 

rates had lower AIC for three of these (non-CpG C>T, CpG>GpG, and CpG>ApG). Only two types had 143 

differences in AIC greater than 10: A>T types were predicted slightly better by the filtered rates 144 

(ΔAIC=16), but CpG>TpG types were predicted better by the unfiltered rates (ΔAIC=22), suggesting the 145 

accuracy of the filtered rates is particularly affected by parallel mutations at hypermutable CpG sites.  146 

Given this lack of consistent type-specific improvement when applying the polarization filter, we 147 

performed all subsequent analyses using the full set of 35.6 million ERVs. 148 

Supplementary Note 4. Curation of MAC10+-derived mutation rate estimates  149 

A potential concern with comparisons between our ERV-derived mutation rate estimates and 150 

Aggarwala and Voight’s 1000G-based estimates10 is that discrepancies might be partially attributable to 151 

technical differences between the two samples, not necessarily because the 1000G estimates are 152 

based on ancestrally older SNVs. For a more direct comparison, we curated a set of higher-frequency 153 

SNVs found in the BRIDGES data, removing the possibility that the dissimilar estimates are a result of 154 

differences in sequencing platform, variant calling, QC methods, and sampled individuals.  155 
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Aggarwala and Voight’s mutation rate estimates are based on 7,051,667 intergenic variants observed 156 

in N=379 Europeans from the 1000 Genomes Phase I study10. Aggarwala and Voight do not state the 157 

exact site frequency spectrum for the European intergenic variants, but claim 26% of intergenic variants 158 

in the 1000G Phase I African sample are singletons or doubletons10. Thus, it is reasonable to assume 159 

that >80% of European intergenic SNVs in the 1000G data occur at a frequency greater than 160 

1/(379*2)=0.0013 (i.e., the sample MAF of a singleton in the 1000G sample). To obtain SNVs in the 161 

BRIDGES sample in a frequency range comparable to this, we selected all SNVs with a minor allele 162 

count ≥10 (MAF≥0.0014). We identified 12,088,037 MAC10+ variants in our data, from which we 163 

estimated 7-mer relative mutation rates. We compared these estimates to 1) a set of ERV-derived 7-164 

mer estimates calculated after randomly downsampling to an equivalent number (12,088,037 ERVs), 165 

and 2) the 1000G estimates. These comparisons show that the MAC10+ estimates are more closely 166 

correlated with the 1000G estimates (Supplementary Fig. 3) than with the downsampled ERV-derived 167 

estimates (Supplementary Fig. 4). We also used the MAC10+ estimates to predict the GoNL/ITMI de 168 

novo mutations, and found that this model tended to perform comparably to the 1000G model 169 

(Supplementary Table 5).  170 
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Supplementary Figure 1 

High-resolution heatmaps of relative mutation rates for mutation subtypes up to a 7-mer 

resolution, estimated from the BRIDGES ERVs 

(a) estimates for 3-mer mutation subtypes. (b) estimates for 5-mer mutation subtypes. (c) estimates for 

7-mer mutation subtypes. Each cell delineates a subtype defined by the upstream sequence (y-axis) 

and downstream sequence (x-axis) from the central (mutated) nucleotide.  
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Supplementary Figure 2 Density plots comparing the distribution of ratios between the 

1000G and ERV rate estimates 
For each type, we grouped 7-mer subtypes by the number of G:C base pairs in the +/-3 flanking 
sequence, and plotted the distribution of ratios separately for each of these group. Mass to the right of 
the dashed line indicates estimated rates tend to be higher in the 1000G data, while mass to the left 
shows subtypes where estimated rates are higher in the BRIDGES ERV data. 
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a.                                                                b. 
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Supplementary Figure 3 

Comparison of 7-mer relative mutation rates estimated from BRIDGES MAC10+ variants and 
1000G Intergenic SNVs (a) Scatterplot of 7-mer subtype rates estimated from the BRIDGES MAC10+ 
data (x-axis), and 1000G intergenic SNV data (y-axis) (b) Type-specific 2D-density plots, as situated in 
the scatterplot of a. The dashed line indicates an expected least-squares regression line if there is no 
bias present. (c) Heatmap shows ratio between relative mutation rates calculated on MAC10+ variants 
and 1000G variants for each 7-mer mutation subtype. Subtypes with higher 1000G-derived rates 
relative to MAC10+-derived rates are shaded gold, and subtypes with lower 1000G-derived rates 
relative to MAC10+-derived rates are shaded green. 1000G-derived rates shown here are scaled 
relative to the MAC10+-derived rates.  
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a.                                                                 b. 
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Supplementary Figure 4   

Comparison of 7-mer relative mutation rates estimated from BRIDGES ERVs and BRIDGES 
MAC10+ variants (a) Scatterplot of 7-mer subtype rates estimated from the BRIDGES ERV data, after 
randomly downsampling the ERVs to 12,088,037 (x-axis) and the BRIDGES MAC10+ data (y-axis). (b) 
Type-specific 2D-density plots, as situated in the scatterplot of a. The dashed line indicates an 
expected least-squares regression line if there is no bias present. (c) Heatmap shows ratio between 
relative mutation rates calculated on MAC10+ variants and ERVs for each 7-mer mutation subtype. 
Subtypes with higher MAC10+-derived rates relative to ERV-derived rates are shaded gold, and 
subtypes with lower MAC10+-derived rates relative to ERV-derived rates are shaded green.  
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Supplementary Figure 5 

Similar mutation spectra of the GoNL and ITMI data  
Scatterplot shows the 3-mer mutational spectra (i.e., the proportion of all mutations falling within each 
of the 96 3-mer subtypes), calculated among de novo mutations from the ITMI (x-axis) GoNL (y-axis) 
trio sequencing studies. 
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Supplementary Figure 6  

Genome-wide estimates for ERV-based 7-mer subtypes are consistent with estimates from 
ERVs restricted to uniquely-mappable regions 
(a) Relationship between masked and unmasked 7-mer relative mutation rate estimates, separated by 
type. (b) Relationship between number of ERVs per subtype (x axis) and discordance between the 
masked and unmasked rates, measured as the log ratio between the estimates (y axis).  
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Supplementary Figure 7 

Distributions of effect sizes on mutability for 14 genomic features and depth of sequencing 
For each feature, we plotted the empirical distributions of the subtype-specific odds ratios for each 
basic mutation type, as estimated by our logistic regression models. *Replication timing is coded with 
negative values indicating later replicating regions, so an OR<1 means mutation rate increases in late-
replicating regions.   
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b. 

 
Supplementary Figure 8  

Predicted mutation distributions under ERV-based models are more accurate than 1000G model 
(a) Distribution of the GoNL/ITMI de novo mutations across basic mutation types compared to the 
distributions predicted under the 1000G 7-mer model and each of the BRIDGES ERV-based models. 
(b) Difference between model-predicted and observed number of mutations per 3-mer subtype for the 
7-mer+features model (green bars) and 1000G 7-mer model (purple bars). The number of observed 
mutations for each subtype is indicated along the x-axis. In each panel, subtypes are sorted in 
increasing order of differences under the 1000G 7-mers model.  



20 
 

Supplementary Tables 
 

Supplementary Table 1 Quality comparison between filtered partitions  

of BRIDGES singletons  

Partition # 
Singletons 

Ts/Tv 
ratio 

%dbSNP 
(b142) 

% of Full 
Set 

Full Set 35,574,417 2.00 17.4 100 

Filter 2 (MQ>56) 33,550,098 2.01 17.3 94 

Filter 3 (passed 1000G strict mask) 26,810,791  1.97 17.5 75 

All Filters (MQ>56, 1000G strict 
mask) 

16,535,856 2.00 17.6 46 

 
 
Supplementary Table 2  t-tests for differences in mean 1000G/ERV ratio of GC-poor vs. GC-

rich 7-mer motifs 

 

 

 

 

 

 

 

 

 

 

 

For each mutation subtype, we calculated the ratio between 1000G-derived and ERV-derived relative 
mutation rates. Then, for each of the 9 basic types, we grouped 7-mer subtypes into low C/G subtypes 
(≤3 C/G bases in the +/-3 flanking positions) and high C/G subtypes (≥4 C/G bases in the +/-3 flanking 
positions) and performed t-tests for differences in the mean 1000G/ERV ratios of these two groups.  

Type 
Mean 1000G/ERV 

ratio 
(≤3 C/G bases) 

Mean 1000G/ERV 
ratio 

(≥4 C/G bases) 
P-value 

A>C 0.97 1.12 8.00e-30 

A>G 1.00 1.28 2.37e-161 

A>T 0.89 0.89 0.81 

C>A (non-CpG) 0.76 0.72 2.61e-09 

C>G (non-CpG) 0.89 0.93 2.98e-04 

C>T (non-CpG) 0.93 0.85 1.75e-39 

CpG>ApG 1.15 0.96 4.97e-22 

CpG>GpG 1.46 1.33 2.80e-04 

CpG>TpG 1.02 0.98 1.01e-09 
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Supplementary Table 3 Comparison of observed and simulated goodness-of-fit for de novo 

prediction models under different sized non-mutated backgrounds 

Model 
Observed Simulated Background 

size AIC R^2 AIC R^2* 

1-mers 292542 .109 272925 .185 

500,000 

3-mers 284889 .139 241863 .299 

5-mers 282995 .146 239672 .307 

7-mers 282491 .148 238967 .310 

7-mers (BRIDGES MAC10+ SNVs) 283599 .144 240434 .304 

7-mers (1000G intergenic SNVs)  284764 .139 241724 .300 

1-mers 353896 .088 344108 .117 

1,000,000 

3-mers 335319 .118 317322 .197 

5-mers 332861 .124 315400 .202 

7-mers 332321 .126 314760 .204 

7-mers (BRIDGES MAC10+ SNVs) 342886 .103 316791 .198 

7-mers (1000G intergenic SNVs)  344003 .100 317953 .195 

1-mers 416998 .072 414016 .080 

2,000,000 

3-mers 404738 .102 392367 .132 

5-mers 402853 .107 390698 .136 

7-mers 402375 .108 390051 .138 

7-mers (BRIDGES MAC10+ SNVs) 404378 .103 392509 .132 

7-mers (1000G intergenic SNVs)  405523 .100 393741 .129 

1-mers 454267 .066 452950 .069 

3,000,000 

3-mers 441042 .095 434665 .109 

5-mers 439153 .099 433243 .112 

7-mers 438700 .100 432517 .114 

7-mers (BRIDGES MAC10+ SNVs) 441059 .095 435270 .108 

7-mers (1000G intergenic SNVs)  442181 .092 436443 .105 

*The simulated R^2 of the best possible model for each background size, indicated in bold, represents 

the optimal performance we can expect. 

 
Supplementary Table 4 Comparison of model AIC considering only de novo mutations from 

the GoNL or ITMI study 

Model 
GoNL DNMs  

(11,020 mutations) 
ITMI DNMs  

(35,793 mutations) 

1-mers 114945 288707 

3-mers 111952 280025 

5-mers 111507 278542 

7-mers 111381 278201 

7-mers (BRIDGES MAC10+ SNVs) 111913 279580 

7-mers (1000G intergenic SNVs)  112185 280401 

Models fitted to a background of 1 million non-mutated sites, as described previously. Note that the 
difference in AIC between the two datasets is due to the difference in number of DNMs and is not 
comparable between the GoNL and ITMI studies. Goodness of fit statistics for both datasets have the 
same rank order. 
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Supplementary Table 5 Type-specific model fit statistics for mutation rate estimation 

strategies applied to the de novo testing data. Each type is shown in a sub-table, with the 
number of de novo mutations and non-mutated sites used in the partitioned testing data 
indicated in the subheading. 

 
A>C (2920 de novo mutations; 198481 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.002 32831 

5-mers 0.007 32701 

7-mers 0.009 32641 

7-mers+features 0.009 32636 

7-mers (downsampled BRIDGES ERVs) 0.008 32670 

7-mers (BRIDGES MAC10+ SNVs) 0.003 32809 

7-mers (1000G intergenic SNVs)  0.004 32775 

 
A>G (11400 de novo mutations; 198793 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.039 91474 

5-mers 0.065 89455 

7-mers 0.068 89212 

7-mers+features 0.069 89111 

7-mers (downsampled BRIDGES ERVs) 0.064 89505 

7-mers (BRIDGES MAC10+ SNVs) 0.061 89732 

7-mers (1000G intergenic SNVs)  0.061 89746 

 

A>T (2455 de novo mutations; 198320 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.015 28130 

5-mers 0.016 28114 

7-mers 0.016 28106 

7-mers+features 0.016 28105 

7-mers (downsampled BRIDGES ERVs) 0.007 28350 

7-mers (BRIDGES MAC10+ SNVs) 0.001 28498 

7-mers (1000G intergenic SNVs)  0.003 28463 

 
non-CpG C>A (3620 de novo mutations; 128765 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.012 35362 
5-mers 0.022 35039 
7-mers 0.03 34794 
7-mers+features 0.032 34743 
7-mers (downsampled BRIDGES ERVs) 0.029 34823 
7-mers (BRIDGES MAC10+ SNVs) 0.024 35000 
7-mers (1000G intergenic SNVs)  0.027 34892 
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non-CpG C>G (3561 de novo mutations; 128746 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.006 35889 

5-mers 0.018 35490 

7-mers 0.024 35321 

7-mers+features 0.024 35321 

7-mers (downsampled BRIDGES ERVs) 0.023 35350 

7-mers (BRIDGES MAC10+ SNVs) 0.019 35480 

7-mers (1000G intergenic SNVs)  0.018 35489 

 
non-CpG C>T (10321 de novo mutations; 128774 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.005 79879 

5-mers 0.012 79502 

7-mers 0.014 79379 

7-mers+features 0.014 79353 

7-mers (downsampled BRIDGES ERVs) 0.013 79395 

7-mers (BRIDGES MAC10+ SNVs) 0.012 79487 

7-mers (1000G intergenic SNVs)  0.013 79434 

 
CpG>ApG (304 de novo mutations; 6108 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.014 2788 

5-mers 0.024 2767 

7-mers 0.027 2763 

7-mers+features 0.029 2761 

7-mers (downsampled BRIDGES ERVs) 0.025 2763 

7-mers (BRIDGES MAC10+ SNVs) 0.022 2771 

7-mers (1000G intergenic SNVs)  0.025 2762 

 

CpG>GpG (270 de novo mutations; 6292 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.013 2560 

5-mers 0.015 2557 

7-mers 0.022 2545 

7-mers+features 0.026 2538 

7-mers (downsampled BRIDGES ERVs) 0.015 2556 

7-mers (BRIDGES MAC10+ SNVs) 0.015 2556 

7-mers (1000G intergenic SNVs)  0.011 2564 
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CpG>TpG (6960 de novo mutations; 6289 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.011 20321 

5-mers 0.02 20232 

7-mers 0.025 20173 

7-mers+features 0.06 19777 

7-mers (downsampled BRIDGES ERVs) 0.024 20182 

7-mers (BRIDGES MAC10+ SNVs) 0.027 20151 

7-mers (1000G intergenic SNVs)  0.027 20148 

 

Supplementary Table 6  Genomic features used in mutation models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A script to download the exact external data files used in this paper is available at 

https://github.com/carjed/smaug-genetics    

Feature Source Cell Type Resolution 

H3K4me1, H3K4me3, 
H3K9ac, H3K9me3, 
H3K27ac, H3K27me3, 
H3K36me3 

Roadmap Epigenomics 
Project11 

Peripheral Blood 
Mononuclear 
Primary Cells 

1bp (inside vs. outside 
of broad peak) 

Replication timing Koren et al., 201212 Lymphoblastoid 1kb window 

Recombination rate Kong et al., 201013 
(deCODE sex-averaged 
recombination rate map) 

-- 10kb window 

Lamin B1 domains Guelen et al., 200814 Tig3ET normal 
human 
embryonic lung 
fibroblasts 

1bp (inside vs. outside 
of LAD) 

DNase hypersensitivity 
sites 

ENCODE multiple 1bp (inside vs. outside 
of DHS region) 

Exonic site RefSeq gene database -- 1bp (inside vs. outside 
of exon) 

CpG island Wu et al., 201015 -- 1bp (inside vs. outside 
of CpG island) 

% GC content Calculated from 
reference genome 

-- 10kb 

https://github.com/carjed/smaug-genetics
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Supplementary Table 7 Chi-squared tests for enrichment or depletion of de novo mutations 

occurring in feature-associated subtypes 

Feature 
Expected 

direction of 
effect 

de novo relative mutation rate 

p-value 
aInside feature bOutside feature 

H3K9me3† Increased 1.98E-05 1.73E-05 4.87E-05 

High Recombination 
rate (> 2) 

Increased 3.66E-05 3.43E-05 0.18 

H3K27me3† Decreased 5.44E-06 3.14E-06 0.99 

H3K27ac Decreased 1.22E-04 1.23E-04 0.50 

Exons Decreased 1.20E-04 8.66E-05 0.99 

H3K4me1 Decreased 1.10E-04 1.40E-04 1.84E-10 

H3K4me3† Decreased 1.00E-04 1.50E-04 4.92E-23 

H3K9ac† Decreased 1.49E-05 7.49E-06 0.99 

Lamin-associated 
domains 

Increased 6.91E-05 7.46E-05 0.75 

High GC content  
(> 0.55) 

Decreased 1.23E-05 9.74E-06 0.82 

Increased 1.14E-05 4.65E-06 6.61E-04 

H3K36me3 
Decreased 4.73E-06 6.14E-06 2.59E-03 

Increased 1.99E-05 1.51E-05 5.50E-10 

CpG Islands 
Decreased 3.68E-05 1.60E-04 5.00E-117 

Increased 5.39E-06 6.69E-06 0.79 

Late replication timing 
(< -1.25)* 

Increased 6.18E-06 5.48E-06 0.026 

Early replication timing 
(> 1.25)* 

Increased 1.55E-05 8.06E-06 2.25E-02 

DHS 
Decreased 5.03E-05 3.08E-05 0.99 

Increased 1.75E-05 1.21E-05 4.92E-04 

Significant differences that are consistent with the expected direction of effect are indicated by a one-

sided p-value in bold. †Four features had associations in the opposite direction, but these predicted 

effects could not be tested due to a lack of de novo mutations observed within the associated subtypes. 

*Some subtypes showed a significant negative association with replication timing, such that the 

mutation rate would be higher in early- rather than late-replicating regions, so we tested these subtypes 

separately. 


