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Table S1: Experimental data, normalized to the highest signal value

Experiment 1: Input PDBu, control (Fig. S1)
time pDLC1 pPKD
0 min 0.05 0.18 0.00 0.08
5 min 0.60 0.24 0.39 0.47
20 min 0.72 0.29 0.56 0.73
60 min 1 1 1 1

Experiment 2: Input PDBu, kb-NB (Fig. S1)
time pDLC1 pPKD
0 min - - 0.02 0.04
5 min 0.14 0.08 0.09 0.18
20 min 0.17 0.24 0.10 0.27
60 min 0.42 0.28 0.15 0.43

Experiment 3: Input nocodazole, control (Fig. 2A)
time pDLC1 pPKD
0 min 0.32 0.66 0.57 0.36 0.28 1.60 0.52 0.46
10 min 0.72 0.74 0.96 0.85 0.80 1.39 0.89 0.68
30 min 1 1 1 1 1 1 1 1

Experiment 4: Input nocodazole, kb-NB (Fig. 2A)
time pDLC1 pPKD
10 min 0.26 0.50 0.54 0.79 0.57 0.92 0.69 0.75
30 min 0.96 0.72 0.78 0.83 0.98 0.97 0.80 1.06

Experiment 5: Input nocodazole, Gö-6976 (Fig. 2A)
time pDLC1 pPKD
10 min 0.11 0.44 0.46 0.49 0.33 0.20 0.71 0.59
30 min 0.09 0.16 0.54 0.47 0.64 0.65 0.77 0.57

Experiment 6: pPKD and pDLC1, control (Fig. 1B)
pDLC1 pPKD

0.14 0.86 0.80 0.53 0.31 0.41
Experiment 7: pPKD and pDLC1, Rho ca (Fig. 1B)

pDLC1 pPKD
1 1 1 1 1 1

1 Positive feedback model (model 1): Data pre-processing

1.1 Additional experimental data

Fig. S1 shows PKD and DLC1 phosphorylation time courses after stimulation with the phorbol ester
PDBu, in the absence or presence of the PKD inhibitor kb-NB.

1.2 Normalization of experimental data

Western blot data are usually normalized in a multi-step procedure, including background corrections
and normalization to a loading control to diminish spurious signals resulting from loading differences.
Further normalization is required to enable a comparison across different replicates. For this purpose,
normalization to a control experiment is a commonly applied standard procedure, which we also use
in this study. Normalization is an important data pre-processing step, which also affects the statistical
properties of the normalized data [8,10] and therefore has an impact on state estimation and hypothesis
testing. In accordance with [3], we re-normalized experimental data to the highest signal value to avoid
normalization to values with low signal-to-noise ratios. Respective data is shown in Table S1.
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Fig S1: (A) Expression of GFP-DLC1 in Flp-In GFP-DLC1 was induced with doxycycline. The next
day, cells were treated with the PKD inhibitor kb NB 142-70 for 2 h, followed by PDBu treatment
for the times indicated. Cells lysates were analyzed by immunoblotting. (B) Band intensities from four
independent experiments were quantified and normalized to the loading control and control sample (mean
± SEM).
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1.3 Significance test for the effect of inhibitors kb-NB and Gö-6976

Significance of the effect of the inhibitors kb-NB and Gö-6076 was investigated by setting up a parametrized
dynamic model and using an F-test. For this, we defined and compared two nested parametrized model
variants for each inhibitor. In the null hypothesis H0, the inhibitor does not act significantly and hence
the data can be described with a single parametrized hyperbolic curve,

H0 : ϕ(t) = ϕ0 + 1− exp(−λt), (1)

with parameters ϕ0 and λ. The alternative hypothesis H1 assumes a significant influence of the inhibitor
under investigation on the pPKD and pDLC1 time courses. Therefore, two curves ϕc(t) and ϕi(t) were
defined for the control and inhibition experiment, respectively:

H1 : ϕc(t) = ϕc0 + 1− exp(−λct) (2a)

ϕi(t) = ϕi0 + bi(1− exp(−λit)), (2b)

with parameters ϕc0, λ
c, ϕi0, b

i and λi, where superscripts c and i symbolize the control and the inhibition
experiments, respectively.

For model calibration we chose the method of least squares with normalized data taken from Table S1.
The normalization point at t = 30 min was taken into account by a constraint on ϕ0,

ϕ(30 min) = 1 = ϕ0 + 1− exp(−λ · 30 min), (3)

leading to ϕ0 = exp(−λ · 30 min). Analogously, we set ϕc0 = exp(−λc · 30 min) for H1. We define ycj,l(tk)

and yij,l(tk) as measurement outputs for the control and inhibition experiment, respectively. Thus, the
residual sum of squares for H0 was specified as

RSS1,j =
∑
tk

4∑
l=1

[
(ycj,l(tk)− ϕ(tk))2 + (yij(tk)− ϕ(tk))2

]
(4)

and respectively for H1

RSS2,j =
∑
tk

4∑
l=1

[
(ycj,l(tk)− ϕc(tk))2 + (yij,l(tk)− ϕi(tk))2

]
, (5)

where j ∈ {pPKD, pDLC1}, k = 1, . . . , 3 and l = 1, . . . , 4 denote outputs, the time points with tk ∈
{0, 10, 30}min and the number of replicates per experimental condition. For parameter estimation the
residual sum of squares was minimized separately for both measurement outputs using the fmincon

algorithm in Matlab 2016b (64 bit). All optimizer options were set to default with parameter boundaries
from 0 to 5 on a linear scale. A multistart optimization using 1000 starting points was performed for all
model variants and measurement outputs.

The F -value for the F-test was calculated via

F =

RSS1 −RSS2

p2 − p1

RSS2

ndata − p2

, (6)

with

RSS1 = RSS1,pPKD +RSS1,pDLC1 (7a)

RSS2 = RSS2,pPKD +RSS2,pDLC1. (7b)

The constants p1 = 2 and p2 = 8 denote the numbers of parameters for H0 and H1, respectively. The
total number of data points including pPKD and pDLC1 time course data was ndata = 32. In order to
test H0, we consider the tails of the F-distribution with (p2 − p1, ndata − p2) degrees of freedom. An
α = 5% level of significance corresponds to a critical value Fα = 2.51, and H0 is rejected if the observed
F value exceeds Fα. Results of this testing procedure are shown in Fig. 2B of the main manuscript.
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1.4 Selection of an error model

For model calibration we exploit maximum-likelihood estimation, which requires the choice of an appro-
priate error model for observed outputs. Additive normally distributed error models or multiplicative
log-normal error models are most frequently used for this purpose. In Kreutz et al. [8] it was argued
that the main source of biological variability and experimental noise is multiplicative and log-normally
distributed, which suggests a log-transformation of the data to obtain approximately normally distributed
data. The mixed error model from which additive and multiplicative effects are deduced in [8] is, however,
not applicable in our setting due to low numbers of replicates per condition. Here we decided to select
an error model as a data-driven pre-processing step on the normalized data. Such an a priori analysis
is computationally more attractive than integrating the selection of an error model directly into model
calibration and allows for a much more comprehensive comparison of different error models. We used
additive normal and multiplicative log-normal error models, in combination with maximum-likelihood es-
timators for the means and the variances. Since the maximum-likelihood variance estimator is biased, we
additionally included also unbiased variance estimators. Moreover, we compared independent standard
deviation estimation for each condition and each time point with the estimation of partly pooled stan-
dard deviations. The first pooling version averages the standard deviation of each experimental condition
separately for each output, resulting in 12 standard deviation parameters. For the second pooling the
standard deviations were further averaged per Western blot according to Fig. 1A, 2A and S1A. We com-
pared all model variants by using different information criteria. Results are shown in Table S2. Shown
are the likelihood values L, the Akaike information criterion (AIC), the corrected Akaike information
criterion (AICc), the Bayesian information criterion (BIC) and Akaike weights, i.e.

∆i = AICci −min(AICc)

AWi =
exp(−∆i/2)∑R
r=1 exp(−∆r/2)

.

For each case, the three superior ones are color marked. The AIC agrees with the likelihood values in
the choice of the best model. Both select the most complex model. This selection is, however, different
from that of AICc, BIC and AW, all of which also agree in the choice of the best error model. Overall,
these results reflect that the later penalize complexity more than the AIC. It should be noted here
that both AIC and BIC are approximations that assume a large sample size compared to the number
of parameters [1, 9], which is not given here. Thus we judge AICc, which corrects for finite sample
sizes [2], and Akaike weights the more suitable criteria here, which also completely agree in their ranking.
Hence we decided to select the most plausible error model according to these two criteria. According to
the evidence Table in [7], AICc records positive evidence between the best and the second best model.
Based on these results, we decided to use an additive normal error model and six standard deviation
for the following modeling study. The six standard deviation pools are represented by six parameters
σij , i = 1, 2, 3, j ∈ {pPKD, pDLC1} depicting the standard deviation for each experiment and output
pooled as described above. Table S3 shows the composition of experiments that were used for pooling.

2 Model 1: Modeling and model calibration

In the following we provide details on the positive feedback modeling approach and calibration to exper-
imental data.

2.1 Modeling approach and normalization

According to Fig. 1E, we built up a simplified two state variable model,

˙pPKD = k(DLC1, θ)PKD− θ1pPKD (8a)

˙pDLC1 = θ2pPKD ·DLC1− θ3pDLC1, (8b)

with model parameters θ. For simplicity and because the ratio of substrate and kinase molecules are
unknown we used mass action kinetics wherever applicable. The PKD phosphorylation rate k(DLC1, θ)
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Table S2: Error model selection procedure based on information criteria. In total N = 80 measurements
were used. Standard deviations were either estimated individually for each condition and time point (σi),
or by pooling over time series and outputs (σ̄12) or over experiments and outputs (σ̄6). The three superior
models are marked in green (top), orange (second top) and yellow (third top).

Error model # parameters L AIC AICc BIC AW
N , unbiased, σi 54 1.0e25 -7.19 230.41 121.44 3.5e-41

N , unbiased, σ̄12 39 1.4e20 -14.73 63.27 78.17 6.9e-05

N , unbiased, σ̄6 33 1.7e15 -4.14 44.64 74.46 0.7662

N , biased, σi 54 3.9e26 -14.45 223.15 114.18 1.3e-39

N , biased, σ̄12 39 4.9e20 -17.30 60.70 75.60 0.0002

N , biased, σ̄6 33 5.2e14 -1.75 47.03 76.85 0.2317

log N , unbiased, σi 54 7.6e25 -11.18 226.42 117.45 2.6e-40
log N , unbiased, σ̄12 39 1.9e18 -6.21 71.79 86.69 9.7e-07

log N , unbiased, σ̄6 33 3.6e12 8.19 56.97 86.79 0.0016

log N , biased, σi 54 2.7e27 -18.44 219.16 110.19 9.7e-39
log N , biased, σ̄12 39 2.1e18 -6.41 71.59 86.49 1.1e-06
log N , biased, σ̄6 33 1.9e11 14.08 62.86 92.69 8.4e-05

Table S3: Experiments and states used for calculation of the six standard deviation pools depending on
the experimental conditions given in Table S1.

variance parameter pooled experiments (state variable)
σ1

PKD 1,2 (pPKD)
σ2

PKD 3,4,5 (pPKD)
σ3

PKD 6 (pPKD)
σ1

DLC1 1,2 (pDLC1)
σ2

DLC1 3,4,5 (pDLC1)
σ3

DLC1 6 (pDLC1)
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Table S4: PKD phosphorylation rate k(DLC1, θ) depending on the experimental setup and on DLC1

Treatment (u, α) k(DLC1, θ) Remark

−
{
θ0(1− θ6DLC1) θ6DLC1 ∈ [0, 1]
0 otherwise

unphosphorylated DLC1 decreases the
basal PKD phosphorylation rate

PDBu k + θ4 PDBu triggers PKD phosphorylation
Noc k + θ5 nocodazole triggers PKD phosphoryla-

tion

kb-NB

{
k(1− θ8) θ8 ∈ [0, 1]
0 otherwise

kb-NB decreases the overall PKD phos-
phorylation rate

Gö-6976

{
k(1− θ7) θ7 ∈ [0, 1]
0 otherwise

Gö-6976 acts similar to kb-NB

Rho ca k + θ9 constitutively active Rho increases PKD
phosphorylation

depends on DLC1 via Rho and on the experimental treatment of the cell culture and is specified in
Table S4 for the different treatments used for model calibration.

We eliminated PKD and DLC1 by assuming mass conservation of respective total amounts,

PKDtot = PKD + pPKD (9a)

DLC1tot = DLC1 + pDLC1. (9b)

Normalization of both state variables to total concentrations,

x1 =
pDLC1

DLC1tot
(10a)

x2 =
pPKD

PKDtot
(10b)

leads to

ẋ1 = (θ0(1− θ̃6(1− x2)) + θ4u1 + θ5u2 + α3θ9)(1− α1θ7 − α2θ8)(1− x1)− θ1x1 (11a)

ẋ2 = θ̃2(1− x2)x1 − θ3x2 (11b)

where θ̃6 = θ6DLC1tot, θ̃2 = θ2DLC1tot and ui, αi are Boolean variables that are used to indicate the
treatment. For the sake of simplicity the parameters θ̃6 and θ̃2 will be called θ6 and θ2 in the following.
Together with the standard deviations of the error model, the vector of unknown parameters is given by

θ = (θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, σ
1
PKD, σ

2
PKD, σ

3
PKD, σ

1
DLC1, σ

2
DLC1, σ

3
DLC1) ∈ R16

+ .

2.2 Likelihood function

For model calibration we used maximum-likelihood estimation with the previously chosen error model.
We also included the pooled standard deviations as optimization parameters in order to be more flexible
with data points that cannot properly be fitted. We use yijl(tk) to denote measurement outputs. The
indices i = 1, . . . , 7, j = 1, 2, k = 1, . . . , 6 and l = 1, . . . , 4 denote different experimental conditions,
enumeration of the outputs, the time points with tk ∈ {0, 5, 10, 20, 30, 60}min and the number of replicates
per experimental condition, respectively. According to the error model, we assume

Yij(tk) ∼ N (zij(θ, tk), σ2
ij), (12)

where zij denotes the normalized output according to Table S1,

zij(θ, tk) =
xij(θ, tk)

xctrl,j(θ, tctrl)
, (13)
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where xctrl, j is the value of the simulated substrate j under the conditions of the experimental data used
for normalizing yij and tctrl is the normalization time point.

The likelihood function then reads

L(θ) = p(y|θ) =

7∏
i=1

2∏
j=1

∏
tk

4∏
l=1

1

σij
√

2π
exp

[
−1

2

(
yijl(tk)− zij(θ, tk)

σij

)2
]
. (14)

We used the negative log-likelihood function for optimization,

max
θ∈Θ
L(θ) = min

θ∈Θ
− logL(θ) = Jopt, (15)

where Θ is the set of acceptable parameters and Jopt is called the objective function value.

2.3 Optimization details

In order to evaluate the likelihood function (14), all simulations of the model (11) were performed via
Matlab 2016b (64 bit). For model handling we used the SBTOOLBOX2 and SBPD toolboxes, which make
use of the CVODE solver from SUNDIALS for integration. Integrator options were set to options.abstol

= 1e-10 and options.reltol = 1e-10.

The optimization problem (15) was solved with the Pattern Search algorithm, which gave most reliable
results in several tests for our setting. Pattern Search was introduced by [6] and uses a mesh in the
parameter space in order to move step-wise to the minimum of the objective function. During a parameter
poll a decrease in the objective function value is called a success and leads to an increase of the mesh
size, whereas in case that the objective function value cannot be decreased the mesh size is reduced.

For implementation in Matlab we used the internal algorithm patternsearch with the following options:

• OptionsPatternsearch.Cache = ’off’,

• OptionsPatternsearch.CompletePoll = ’off’,

• OptionsPatternsearch.MeshAccelerator = ’on’,

• OptionsPatternsearch.ScaleMesh = ’on’,

• OptionsPatternsearch.MaxFunEvals = 9000p,

• OptionsPatternsearch.MaxIter = 300p,

where p = 16 is the number of unknown parameters.

As further options we set boundaries for these parameters. We used a logarithmic scale for the reaction
rate parameters θ0, . . . , θ9, which allows to cover many orders of magnitude. Our boundaries comprise
four orders of magnitude and were adjusted through several optimization runs, such that the optima that
were found do not lie on one of the boundaries. Boundaries for the parameters θ7 and θ8, the efficiencies
of the two PKD inhibitors, were set to [0, 1] according to (11). For the standard deviations σij we used

the empirical estimates σemp to set reasonable boundaries, which were finally set to σij ∈
[

2
3σemp,

3
2σemp

]
.

Optimization was performed with 1000 latin hypercube samples as starting values. The initial conditions
x1(0) and x2(0) were under steady state assumption calculated according to the conditions specified for
each experiment. Fig. S2 shows the resulting objective function values for 951 converged parameter sets1,
929 of which form a nice plateau.

Figs. S3 and S4 show parameter scatterplots. The parameters θ2, θ3, θ4, θ5, θ7 and θ8 are clearly identi-
fiable from the experiments. It is also plausible that θ5 > θ4, since kb-NB is able to abolish the signal
almost completely in case of stimulation with PDBu, while PKD is still considerably activated in case of
stimulation with nocodazole. Similarly, θ7 is close to the maximal value 1 and larger than the influence

1ensuring that the magnitude of the mesh size is less than the specified tolerance and constraint violation is less than
those specified in options.ConstraintTolerance.
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Fig S2: Sorted objective function values of converged parameter sets for model 1.
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Fig S3: Scatterplot matrix for 929 parameter sets extracted from Figure S2.

of the inhibitor kb-NB, which also reflects experimental observations. The basal PKD phosphorylation
and dephosphorylation rates θ0 and θ1, respectively, have a much larger uncertainty. This is also true for
the parameter θ9, which characterizes the effect of RhoA on PKD that also showed a high variance in the
experiments. Surprisingly at first glance, these three parameters are almost perfectly correlated. Having
a closer look at the parameters, this can easily be explained in the following way: The optimizer assigns
quite small values to the parameter θ6, which is a measure for the influence of DLC1 on PKD. Given this,
PKD dynamics is hardly affected by DLC1. In this case, the strong correlations directly follow from a
steady state analysis of decoupled PKD. The correlation between θ0 and θ1 follows from the steady state
conditions in the control case, while the correlation of θ9 with both parameters results from the observed
steady state ratio conditions in the Rho ca experiments.

We used the 929 parameter sets from the plateau in Fig. S2 to evaluate the model fit and to have an
estimate of the resulting uncertainty due to non-identifiable parameters. In addition to the dynamic
response of the system to nocodazole treatment with and without PKD inhibitors, which are shown in
Fig. 2C in the main manuscript, Fig. S5 shows the model fit after treatment with PDBu with and without
inhibitor and steady state fold changes in PKD and DLC1 phosphorylation in the Rho ca experiments.
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Fig S4: Scatterplot matrix of 929 standard deviations σ (black) in comparison with unbiased empirical
estimates (red).

Overall, the response of the system is very well described. Experimental data and model trajectories
agree well for pPKD and pDLC1 in the control case and in case cells were treated with the inhibitor
kb-NB prior to PDBu treatment. Also the fold changes in pPKD and pDLC1 induced by constitutively
active Rho are well captured by our model, though the variance in the data is quite large here, especially
for pDLC1.

2.4 Model validation via bootstrapping

Plausibility of the model was tested with a parametric bootstrapping approach (see e.g. [4]), in which we
generated many datasets from the inferred stochastic model, which were subsequently used to estimate a
distribution of likelihood function values J (Fig. 2D). For this purpose, we resampled Di, i = 1, . . . , 10000
datasets that mimic experimental data used in the study (i.e. same number of replicates, same conditions

etc.). Then we calculated p(Di|θ̂) with σij from θ̂ and used these values to estimate a probability density

p(Jopt) = p(Di|θ̂) via kernel density estimation, which was compared to p(y|θ̂), the likelihood value for
the real experimental data.

2.5 Profile likelihood analysis

The profile likelihood shown in Fig. 3B was obtained by setting the feedback parameter θ6 to the indicated
value and re-optimizing all other parameters. For computational efficiency, we did not initialize all
parameters from scratch in each of these optimization runs, but used the results from the previous run
as a starting point for the next run.

3 Negative feedback model (model 2): Data pre-processing

3.1 Normalization of experimental data

For model calibration we used the normalization from Table S1. Additional experiments were normalized
analogously, which is indicated in Table S5.
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A

B

Fig S5: Fit for model 1. (A) Dots indicate re-normalized experimental data from Fig. S1, with
normalization points indicated by diamonds, together with 929 estimated model trajectories that lie all
on top of each other.

Table S5: Experimental data, normalized to the highest signal value

Experiment 8: -Dox (Fig. 4A)
pPKD

0.38 1.08 0.89
Experiment 9: +Dox (Fig. 4A)

pPKD
1 1 1

Experiment 10: Input nocodazole, siNT (Fig. 4B)
time pPKD
0 min 0.28 0.46 0.50
10 min 0.76 0.54 0.55
30 min 1 1 1
Experiment 11: Input nocodazole, siDLC1 (Fig. 4B)
time pPKD
0 min 0.09 0.13 0.17
10 min 0.45 0.37 0.54
30 min 0.72 0.53 0.82

Experiment 12: siNT, -H1152 (Fig. 4D)
pPKD

1 1 1
Experiment 13: siDLC1, -H1152 (Fig. 4D)

pPKD
0.26 0.53 0.37

Experiment 14: siDLC1, +H1152 (Fig. 4D)
pPKD

0.76 0.71 0.45
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Table S6: Error model selection procedure based on information criteria. In total N = 104 measurements
were used. Standard deviations were either estimated individually for each condition (σi), or by pooling
over time series and outputs (σ̄17) or over experiments and outputs (σ̄9). Color encoding was chosen
equivalent to Table S2.

Error model # parameters L AIC AICc BIC AW
N , unbiased, σi 70 3.7e33 -14.61 286.60 170.49 2.2e-52

N , unbiased, σ̄17 52 7.7e27 -24.42 83.65 113.08 2.6e-08

N , unbiased, σ̄9 44 8.3e22 -17.56 49.56 98.79 0.6560

N , biased, σi 70 3.4e35 -23.61 277.61 161.50 2.0e-50

N , biased, σ̄17 52 4.7e28 -28.05 80.03 109.46 1.6e-07

N , biased, σ̄9 44 4.3e22 -16.25 50.87 100.10 0.3407

log N , unbiased, σi 70 1.6e34 -17.56 283.65 167.55 9.6e-52
log N , unbiased, σ̄17 52 2.1e26 -17.26 90.82 120.25 7.2e-10

log N , unbiased, σ̄9 44 3.7e20 -6.72 60.40 109.63 0.0029

log N , biased, σi 70 1.5e36 -26.55 274.66 158.55 8.6e-50
log N , biased, σ̄17 52 4.9e26 -18.92 89.16 118.59 1.7e-09
log N , biased, σ̄9 44 4.0e19 -2.26 64.86 114.09 0.0003

Table S7: Description of the three additional variance pools used for the modeling study, depending on
the experimental conditions given in Table S5.

variance parameter pooled experiments (state variable)
σ4

PKD 8 (pPKD)
σ5

PKD 10,11 (pPKD)
σ6

PKD 13,14 (pPKD)

3.2 Selection of an error model

Analogous to model 1 we compared 12 different error models for the model 2 (Table S6). As before,
AICc, BIC and Akaike weights agree on the choice of the best model, which is also with the additional
experiments a normally distributed error model with standard deviations pooled over experiments and
outputs. This results in 9 different standard deviations, six of which are the same as in Table S3, the
other three ones are listed in Table S7.

4 Model 2: Modeling and model calibration

In the following we provide details on the negative feedback modeling approach and calibration to exper-
imental data.

4.1 Modeling approach and normalization

Similar to model 1, we eliminated PKD and DLC1 by assuming mass conservation of respective total
amounts

PKDtot = PKD + pPKD (16a)

DLC1tot(1 + α5θ12 − α6θ13) = DLC1 + pDLC1. (16b)
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Table S8: Effect of different experimental treatments on the PKD phosphorylation rate k(DLC1, θ) and
on total DLC1 amounts

Treatment (u, α) Effect on k(DLC1, θ) or DLC1 Remark

− k =

{
θ0(1 + θ6DLC1) θ6DLC1 ∈ (0, 1]
0 otherwise

unphosphorylated DLC1 increases
the basal PKD phosphorylation rate

doxycycline DLC1 + pDLC1 = DLC1tot(1 + θ12) doxycycline induces DLC1 expres-
sion and thus increases DLC1tot

siDLC1 DLC1 + pDLC1 = DLC1tot(1− θ13) siDLC1 reduces DLC1 expression
Rho ca k + θ9 constitutively active Rho increases

PKD phosphorylation
θ0(1 + θ6DLC1(1− θ10)) feedback via Rock is negative

H1152 θ0(1 + θ6DLC1(1 + θ11)) H1152 inhibits Rock activity and
thus increases the overall PKD phos-
phorylation rate

Normalization of both state variables to total concentrations,

x1 =
pDLC1

DLC1tot(1 + α5θ12 − α6θ13)
(17a)

x2 =
pPKD

PKDtot
(17b)

leads to

ẋ1 = (θ0(1 + θ̃6(1 + α5θ12 − α6θ13)(1− x2)(1− α4θ10)(1 + α4θ11))

+ θ4u1 + θ5u2 + α3θ9)(1− α1θ7 − α2θ8)(1− x1)− θ1x1 (18a)

ẋ2 = θ̃2(1− x2)x1 − θ3x2 (18b)

where θ̃2 = θ2DLC1tot and θ̃6 = θ6DLC1tot. Analogously to the first part, θ̃2 and θ̃6 will be called θ2 and
θ6 in the following.

Changes in the DLC1 mediated PKD phosphorylation rate and the total DLC1 amount compared to
model 1 are listed in Table S8. We note here that all experiments were conducted with doxycycline for
model 1, while this is not the case for some of the additional experiments, such that we introduced an
additional parameter to describe the effect of doxycycline addition on DLC1 total amounts.

4.2 Likelihood function

As before, the likelihood function for model 2 is given by

L(θ) = p(y|θ) =

14∏
i=1

2∏
j=1

∏
tk

4∏
l=1

1

σij
√

2π
exp

[
−1

2

(
yijl(tk)− zij(θ, tk)

σij

)2
]

(19)

with unknown parameter vector

θ = (θ0, . . . , θ13, σ
1
PKD, . . . , σ

6
PKD, σ

1
DLC1, . . . , σ

3
DLC1) ∈ R23.

4.3 Optimization details

For optimization we used again Matlab 2016b (64 bit) and the toolboxes SBPD and SBTOOLBOX2 and
the internal Matlab solver ode15i for integration with options set to options.abstol = 1e-10 and
options.reltol = 1e-10. Optimization was performed with the gradient-based optimizer fmincon
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Fig S6: Sorted objective function values of converged parameter sets for model 2

with the interior point method and settings OptionsFmincon.TolFun = 1e-6, OptionsFmincon.TolCon
= 1e-6 and OptionsFmincon.MaxFunEvals = 5000.

As for model 1 we used a logarithmic scale for the parameters θ0, . . . , θ13. The final boundaries of
four orders of magnitude for these parameters were set after several optimization runs in order to avoid
results on the boundaries. Following (18) the boundaries for θ7, θ8, θ10 and θ13, the efficiencies of the
two PKD inhibitors, Rho ca in the feedback and the silencing RNA for the total DLC1, were set to
[0, 1] without using a log-scale. Boundaries for the standard deviations σij were set around the empirical

estimates,
[

1
2σemp, 2σemp

]
. Optimization was performed with 1000 starting values from a latin hypercube

sample. For all experiments the initial conditions x1(0) and x2(0) were assumed to be in a steady state
and calculated accordingly. 908 starting points converged according to the step size criterion2 for the
parameter vector θ. As before, we evaluated the results according to the sorted Jopt values and took the
first 150 values as a reasonable estimate for the global optimum, see Fig. S6.

A comparison of experimental data and model fits which are not shown in the main manuscript can be
seen in Fig. S7. Shown are the time courses of pPKD and pDLC1 after stimulation with PDBu in the
control case and with the PKD inhibitor kb-NB as well as the fold change in both variables induced
by constitutively active Rho. The dynamic response of both variables is well captured in the control
experiments, while the effect of the PKD inhibitor is underestimated, which is the opposite to the time
series experiments after stimulation with nocodazole (Fig. 5) and thus a compromise model fit with
respect to the efficiency of the inhibitor. The effect of Rho ca on both output variables is well captured.
Compared to the model fit of model 1 trajectories show a larger variability.

Fig. S8 shows the parameter scatterplots for model 2. Compared to that of model 1 parameters are more
spread and less correlated. The parameters θ1, θ7, θ8 and θ12 are well identifiable. These are the PKD
dephosphorylation rate, the effects of the two PKD inhibitors and the influence of doxycycline addition
onto DLC1 total amounts. In contrast, the parameters θ2 and θ3, phosphorylation and dephosphorylation
rates of DLC1, have a broad distribution. Some of the parameters also show correlations such as θ4, θ5

and θ9, which are the influence of PDBu, nocodazole and RhoA on PKD phosphorylation.

Fig. S9 shows that all standard deviations are well identifiable within the given bounds about the empirical
values.

2ensuring that the change in the parameter vector is less than the specified step size tolerance and constraint violation
is less than those specified in options.ConstraintTolerance
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A

B

Fig S7: Fit for model 2. (A) Dots indicate re-normalized experimental data from Figs. 1 and S1,
with normalization points indicated by diamonds, together with 150 estimated model trajectories.
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Fig S8: Scatterplot matrix for 929 parameter sets extracted from Fig. S6 of model 2.
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Fig S9: Scatterplot matrix of 150 estimated standard deviations σij (black) of model hypothesis 2 in
comparison to unbiased empirical estimates σemp (red).

4.4 Model prediction

It is known that strong negative feedback can cause robustness of activity states to variations in total
protein amounts for proteins in the feedback loop [5]. However, in our case it is unclear how to define
the strength of the feedback loop. One possibility is to investigate the strengths of the individual links
between the two components in our model. Thus, we simulated pDLC1 and pPKD fold changes implied
by variations in PKD and DLC1 total amounts, respectively (top row in Fig. S10). pDLC1 increases in a
perfect linear way with the PKD amount due to mass action kinetics for PKD mediated phosphorylation
of DLC1. Similarly, pPKD is a linear function of the DLC1 amount, with an offset that corresponds to
the basal and DLC1 independent PKD phosphorylation rate. Together, these results suggest that pPKD
is highly influenced by DLC1 and vice versa. However, the conclusion that the overall feedback makes
the system robust is not true in this case, as can be seen in Fig. S10 (bottom row). Using mass action
kinetics for a single molecule that is reversibly phosphorylated and not subject to feedback regulation,
the phosphorylated protein amount is a linear function of the total amount. At the PKD level the system
behaves exactly as such a decoupled system (left). This is different for DLC1 phosphorylation, were the
effect of the negative feedback is visible in the deviation from the diagonal line (right). Thus, although
we have strong influences between both output variables, this does not result in an overall strong effect of
the negative feedback. An explanation for this paradigm is shown in Fig. S10. When pPKD and pDLC1
fractions are small, fold changes in pDLC1 implied by variations in PKD amounts might be large, but at
the same time, the fold change in unphosphorylated DLC1, which feeds back to PKD, is so small that
the effect of changes in PKD amounts are not propagated by the feedback.

5 Additional experiments

Fig. S11 shows that DLC1 depletion by independent siRNAs reduces PKD activation in HEK293T cells
and endogenous DLC1 localizes to focal adhesions in U20S cells.
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Fig S11: (A) HEK293T cells were transfected with the indicated siRNAs. After 3 days, cells were
lysed and lysates were analyzed by immunoblotting. (B) Two days after transfection with the indicated
siRNAs, HEK293T cells were transfected with the construct encoding the Golgi PKD activity reporter.
The next day, cells were lysed and lysates analyzed by immunoblotting. (C) U2OS cells were transfected
with the indicated siRNAs. After 3 days, cells were fixed and stained with DLC1 and paxillin specific
antibodies, followed by fluorescently labeled secondary antibodies. Nuclei were counterstained with DAPI.
The images shown are representative maximum intensity projections of several confocal sections.
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