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Figure S1: Comparison of Lorentzian and Gaussian PSF models applied to the microtubule data shown
in figure 2. (A, B, C) MSE averaged over all profiles of NEP fit as a function of PSF FWHM when the
NEP fitting model function is derived for a Gaussian (blue) or Lorentzian (orange) PSF model. STED
laser powers were 110.6 mW, 55.6 mW, and 27.7 mW for (A), (B) and (C), respectively. The Lorentzian is a
better model for our PSF as shown by the average MSE being consistently smaller compared to the Gaussian
model for all tested STED laser powers. The difference is most notable (about a factor of 2) for 110.6 mW,
which matches that used in our live-cell imaging. Approximating the depletion donut as a parabola with
pulsed excitation, pulsed depletion and time-gated detection should produce a Gaussian-shaped effective
PSF (1). Our experimental observation of a more Lorentzian-shaped effective PSF might be explained by
the preferential excitation and depletion of certain dipole orientations of the fluorophore, which can have a
significant impact on PSF shape.

2



0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Background / Amplitude

0

50

100

150

200

250

Tu
b

u
le

 D
ia

m
e
te

r 
[n

m
]

E

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Background / Amplitude

0

50

100

150

200

250

Tu
b

u
le

 D
ia

m
e
te

r 
[n

m
]

J

240
260
280
300
320
340
360
380

0 200 400 600 800

Position [nm]

A
m

p
lit

u
d

e
 [

A
.U

.] Model
Sim. Data

#
 o

f P
ro
fi
le

s
0 50 100 150 200

Tubule Diameter [nm]

0

3
B

a
ck

g
ro

u
n
d

 /
 A

m
p

lit
u
d

e

0

79

DC

260

280

300

320

340

360

0 200 400 600 800

Position [nm]

A
m

p
lit

u
d

e
 [

A
.U

.] Model
Sim. Data

0 50 100 150 200

Tubule Diameter [nm]

0

3

B
a
ck

g
ro

u
n
d

 /
 A

m
p

lit
u
d

e

0

45

#
 o

f P
ro
fi
le

s

IH

0 200 400 600 800

Position [nm]

0

20

40

60

80

100

120

A
m

p
lit

u
d

e
 [

A
.U

.] Model
Sim. Data

80

100

120

140

160

180

200

0 200 400 600 800

Position [nm]

A
m

p
lit

u
d

e
 [

A
.U

.] Model
Sim. Data

BA

0

20

40

60

80

100

0 200 400 600 800

Position [nm]

A
m

p
lit

u
d

e
 [

A
.U

.] Model
Sim. Data

80

100

120

140

160

180

0 200 400 600 800

Position [nm]

A
m

p
lit

u
d

e
 [

A
.U

.] Model
Sim. Data

F G

Fit PSF FWHM [nm]

Fit PSF FWHM [nm]

Figure S2: Effect of noise on ER tubule diameter and PSF fitting. (A, B, C) Simulated surface-labeled ER
tubules with background to amplitude ratios of 0 (A), 0.9 (B), and 2.7 (C ). (D) Heatmap of fitted diameters
from NEP fits of simulated surface-labeled ER tubule profiles with varied background to amplitude ratios,
and therefore varied signal-to-noise ratios. (E) Fitted diameters from NEP fits of simulated surface-labeled
ER tubules with different background to amplitude ratios. The NEP-fit PSF width is plotted in black.
N=100 simulated tubules for each ratio. (F, G, H) Simulated label-filled ER tubules with background to
amplitude ratios of 0 (F ), 0.9 (G), and 2.7 (H ). (I) Heatmap of fitted diameters from NEP fits of simulated
profiles of label-filled ER tubules with varied background to amplitude ratios, and therefore signal-to-noise
ratios. (J) Fitted diameters from NEP fits of simulated label-filled ER tubules with different background
to amplitude ratios. The NEP-fit PSF width is also plotted in black. N=100 simulated tubules for each
ratio. The whiskers of boxplots represent the 10th and 90th percentiles of each distribution, the colored
boxes cover the interquartile range, and the center line in each box denotes the median.
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Figure S3: Both estimated tubule diameters and PSF FWHMs are independant of initial parameter
guesses. (A) Example of a simulated 115 nm-diameter label-filled ER tubule convolved with a 50 nm FWHM
Lorentzian PSF, with added Poisson noise. (B) NEP-fit PSF FWHM as a function of initial guesses for the
fit parameters (including the PSF width). The initial guesses for fit parameters are calculated automatically,
and then multiplied by a guess multiplier (abscissa) with the exception of the center position guess, which
was shifted by one PSF FWHM (50 nm). The NEP-fit PSF width is plotted in black, the ground truth is
represented by the dashed red line. While there is a small systematic error in the 1-nm range, the NEP-fit
PSF width results are independent of the initial guesses for fit parameters. (C) The NEP-fit tubule diameters
resulting from a guess multiplier of 1 (i.e. default automated guesses with the center position shifted by 50
nm) were subtracted from the NEP-fit tubule diameters resulting from the altered initial guesses. Notably,
the effect of altering the initial guesses by a factor of two in either direction is very small, resulting in changes
on the picometer-range, while the standard deviation of tubule diameters is roughly 10,000 times larger at
12.26 nm. N=100 simulated tubules for each guess multiplier. The whiskers of boxplots in (B) and (C )
represent the 10th and 90th percentiles of each distribution, the boxes cover the interquartile range, and the
center line in each box denotes the median.
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Figure S4: NEP-fitted tubule diameter measurements are robust to ±1 radian Zernike aberrations. A
Gaussian (rather than Lorentzian) NEP-fitting model was used as the simulated steady-state STED process
has a Gaussian-shaped PSF (2), which differs from our pulsed excitation, pulsed emission, time-gated detec-
tion physical implementation (see Methods Section below). The effective STED PSF is shown for ±1 radian
aberrations for the 4th-8th Zernike modes, which are x astigmatism (A, B), y astigmatism (E, F), x coma (I,
J), y coma (M, N), and spherical (Q, R). To the right of these PSFs are plots of the NEP-fitted diameters
vs. the ground-truth diameters after fitting simulated label-filled (C, G, K, O, S) and surface-labeled (D,
H, L, P, T) tubules. The color of the plotted points represents the magnitude of the respective aberration,
in radians.
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Figure S5: NEP-fitted PSF FWHM estimates are robust to ±1 radian Zernike aberrations. (A) Zoom in
of unaberrated steady-state STED effective PSF (Gaussian profile (2), see Methods Section below), whose
profile is fit in (D). (B, E) Fluorophore distributions for 160-nm diameter label-filled (B) and surface-labeled
(E) tubules. (C, F) Tubules from (B) and (E), respectively, after being convolved with the unaberrated
PSF shown in (A). (G, I) NEP-fitted PSF FWHM as a function of Zernike-mode aberration coefficient
for 5 different Zernike modes (colored points) performed on label-filled (G) and surface-labeled (I) tubules
ranging from 50 - 160 nm diameter. The lines represent the effective ground-truth, which is determined by
fitting a Gaussian to a profile of the PSF itself, as shown in (D). (H, J) NEP-fitted PSF FWHM minus
the ground-truth PSF FWHM as a function of aberration strength for both label-filled (H) and surface-
labeled (J) tubules ranging from 50 - 160 nm diameter. Perfect agreement is denoted with a black line at
∆PSF FWHM = 0. Notably, agreement is within 3 nm and 1 nm for label-filled and surface-labeled tubules,
respectively. As expected, the agreement is better for the surface-labeled tubules. The color of each point in
(G, H, I J) represent the 4th-8th Zernike-modes describing the aberrations which correspond to x astigmatism
(4), y astigmatism (5), x coma (6), y coma (7), and spherical (8).
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Figure S6: A (cropped) NEP-fitting report. 22 profiles were selected from the provided anti-tubulin image
(see supplementary data) and then NEP-fitting was performed using the Lorentzian-convolved antibody-
coated tubule model, as shown. Reports are automatically generated when calling fitting, NEP-fitting, or
test ensemble values functions from the GUI. Reports are saved as html pages and can be opened with
standard web browsers.
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Figure S7: Variance of diameter fits for simulated 115-nm diameter tubules. (A, B) Plots of simulated
profiles of a label-filled (A) and surface-labeled (B) tubule with 115-nm diameter, convolved with a 50-nm
FWHM Lorentzian PSF, the expected PSF of our STED microscope. (C, D) Histograms of fitted tubule
diameters for simulated 115-nm diameter label-filled (C ) and surface-labeled (D) tubules. NEP fit diameters
for the label-filled tubule profiles had a mean of 116 ± 12 nm (mean ± SD), and the NEP fit PSF width
was 47.5 nm for these profiles. NEP fit diameters for the surface-labeled tubule profiles had a mean of 115
± 5 nm (mean ± SD), and the NEP fit PSF width was 49.3 nm for these profiles. N=100 simulated profiles
for both label-filled and surface-labeled models.
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Materials and Methods

Tubule Model Functions

The model functions used in ensemble PSF fitting were derived by taking the projection of the fluorescence
labeling geometry onto the xy-plane and then convolving this projection with a model of the microscope PSF.
In this work we chose a Lorentzian PSF model since it resembled our experimental PSF profiles well (see
Fig. S1). Derivation of the functions used was carried out in Mathematica (Wolfram Research, Champaign,
IL).

Principle

Inherent to the imaging process is the convolution of the Point-Spread Function (PSF) with the structure
being imaged.

I(x, y, z) = h(x, y, z)⊗ s(x, y, z) (1)

where I is the resulting image, h is the PSF, and s is the fluorophore distribution. We only consider tubule
cross sections because the profile of the tubule is uniform along its long-axis (y), and can therefore write the
convolution as

Ics(x, z) =

∫ ∞
−∞

∫ ∞
−∞

h(τ1, τ2)s(x− τ1, z − τ2)dτ1dτ2, (2)

where Ics is the cross section of the 3D image of the tubule.
For standard STED microscopy, the full-width at half-maximum (FWHM) of the PSF along the axial

dimension is significantly larger than the tubular structures we consider, such that the convolution along the
axial dimension reduces to a sum. We can now write

P (x) =

∫ ∞
−∞

h(τ)p(x− τ)dτ, (3)

where P is the line profile cross section, p is the projection of s (summed over z), and h is the 1D lateral
profile of the PSF.

Annulus fluorophore distribution

The cross section of a surface-labeled tubule can be taken to be an annulus, where we assume that the
fluorophores are uniformly distributed between the inner and the outer radius. Again, due to the large axial
FWHM of the STED PSF, the convolution along the axial dimension reduces to a sum. We calculate this
sum by considering half of an annulus, and subtracting the z position of the inner radius edge, zi(x), from
the outer radius edge, zo(x),

zi(x) = r sin (θi) , (4)

and
zo(x) = R sin (θo) , (5)

respectively, where R is the outer radius of the annulus, r is the inner radius, θo = arccos
(
x
R

)
, and θi =

arccos
(
x
r

)
. Note that outside of the inner or outer radius, respectively, zi(x) and zo(x) switch from purely

real-valued to purely imaginary, which can be easily accounted for later, since the PSF they will be multiplied
by in the convolution is purely real-valued. We can now write the projection of the annulus simply as

pannulus(x) =
2 (zo(x)− zi(x))

π (R2 − r2)
, (6)

where the factor of two accounts for the top and bottom halves of the annulus, and we have sum-normalized
pannulus(x). The Lorentzian function in 1D is given by

L(x) =
1

2π

γ

x2 +
(
γ
2

)2 , (7)

9



where γ is the FWHM. Substituting L(x) for the 1D PSF, we can determine the line profile intensity of an
annulus structure imaged with a Lorentzian PSF by evaluating

Pannulus(x) =

∫ ∞
−∞

L(τ)pannulus(x− τ)dτ. (8)

The integral in equation 8 can be evaluated using Cauchy’s residue theorem,∮
C

f(τ)dτ = 2πi
∑
j

Resj , (9)

where C is a closed contour and Resj are the residues of the poles within C. Our integrand, L(τ)pannulus(x−
τ), has simple poles at τ = ±iγ/2. We therefore choose C to be the semicircular contour shown in figure S8,
where we integrate along the real axis from τ = −∞ to τ =∞, and then around the arc of τ = limR′→∞R′eiθ

from θ = 0 to θ = π, which encloses the pole at τ = iγ/2.

x

y

R
iγ/2

Figure S8: The contour C chosen to integrate over in the application of equation 9.

Equation 9 can now be expanded to∮
C

L(τ)pannulus(x− τ)dτ = 2πi
∑
j

Resj (10)

=

∫ ∞
−∞

L(τ)pannulus(x− τ)dτ + lim
R′→∞

∫ π

0

L(R′eiθ)pannulus(x−R′eiθ)dθ (11)

= Pannulus(x) +

∫ π

0

L(R′eiθ)pannulus(x−R′eiθ)dθ (12)

= 2πiResτ=iγ/2. (13)

Conveniently, limR′→∞ L(R′eiθ)pannulus(x−R′eiθ) = 0, so Pannulus(x) = 2πiResτ=iγ/2 . The residue Resτ =

iγ/2 can be calculated as g(τ)
h′(τ)

∣∣∣∣
τ=iγ/2

where g is the numerator of L(τ)pannulus(x−τ), and h′ is the derivative

of the denominator with respect to τ (3). This yields

Pannulus(x) =
1

π (r2 −R2)

[
4
√

16x2γ2 + (4r2 − 4x2 + γ2)2 cos

(
1

2
arctan

(
4r2 − 4x2 + γ2, 4xγ

))
(14)

− 4
√

16x2γ2 + (4R2 − 4x2 + γ2)2 cos

(
1

2
arctan

(
4R2 − 4x2 + γ2, 4xγ

))]
, (15)

where arctan(x, y) is the quadrant-respecting inverse tangent function (referred to as arctan 2 in several
programming languages). Note that we only consider the real part of Pannulus(x), as the imaginary component
was introduced by not defining pannulus(x) as a piecewise function. We verified this approach by performing
the convolution in Mathematica using a piecewise-defined pannulus(x), which achieved the same result.
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Label-filled Model Function

In order to derive a label-filled model function, which can be used to model a lumen-labeled ER tubule, we
have two options. The first approach would be to follow the same steps as above using the projection of a
circle, which is a semi-circle

pcircle(x) =
√

(R− x)(R+ x), (16)

where R is the radius. However, we can also simply take the limit as the inner radius of the annulus model
function goes to zero, which yields

Pcircle(x) =

∫ ∞
−∞

L(τ)pcircle(x− τ)dτ (17)

= lim
r→0

Pannulus(x) (18)

=
1

πR2

[
− 4

√
(4x2 + γ2)

2
cos

(
1

2
arctan

(
γ2 − 4x2, 4xγ

))
(19)

+
4

√
16x2γ2 + (4R2 − 4x2 + γ2)

2
cos

(
1

2
arctan

(
4R2 − 4x2 + γ2, 4xγ

))]
. (20)

Gaussian-Convolved Model Functions

Confocal PSFs and PSFs for some STED modalities are better approximated by a Gaussian rather than a
Lorentzian (1). While this is not the case for our experimental data, our steady-state STED simulations
yield a Gaussian PSF (see Fig. S5D), as expected (2).

The (normalized) Gaussian function in 1D is given by

G (x) =
exp

(
− x2

2σ2

)
√

2πσ
. (21)

We can then write the model function for a label-filled tubule convolved with a Gaussian PSF as

P̃circle(x) =

∫ ∞
−∞

G(x− τ)pcircle(τ)dτ, (22)

where the tilde has been introduced to denote the Gaussian PSF model. We expanded the semicircle with
a Fourier cosine series, which is given by

pcircle(x) = R

π
2

+
∑
n

(−1)nJ1(nπ) cos
(
πn(x−R)

R

)
n

 , (23)

where J1 is a Bessel function of the first kind (4) and we have not yet made any approximations.
Fortunately, convolutions are linear operators, so we can split up our convolution integral into an integral

for each term in the expansion,

P̃circle(x,R) =

∫ R

−R
G(x− τ)R

π
2

+
∑
n

(−1)nJ1(nπ) cos
(
πn(τ−R)

R

)
n

 dτ (24)

=

∫ R

−R
G(x− τ)

πR

2
dτ +

∑
n

∫ R

−R
G(x− τ)

R(−1)nJ1(nπ) cos
(
πn(τ−R)

R

)
n

dτ

 (25)

= Λ◦ +
∑
n

Λn, (26)

where

Λ◦ =
1

4
πR

(
erf

(
R+ x√

2σ

)
− erf

(
x−R√

2σ

))
, (27)

11



and

Λn =
R(−1)nJ1(nπ)e−

πn(πnσ2+2iR(R+x))
2R2

4n
× (28)[

erf

(
λ+R2 −Rx√

2Rσ

)
+ erf

(
R(R+ x)− λ√

2Rσ

)
+ e

2iπnx
R

(
erf

(
−λ+R2 −Rx√

2Rσ

)
+ erf

(
R(R+ x) + λ√

2Rσ

))]
.

Where erf is the Gauss error function and we have introduced λ = iπnσ2. Again leveraging the linear nature
of convolutions, we can easily define the Gaussian-convolved annulus model function by subtracting two
Gaussian-convolved circles where the circles have different radii.

P̃annulus(x) = P̃circle(x,R)− P̃circle(x, r), (29)

where r < R.
We then approximate P̃circ(x), and P̃annulus(x) by truncating each series after n = 5. Our approximation

matches the numerical convolution quite well, but is advantageous as it avoids discrete sampling issues.

Deriving New Model Functions

Similar model functions can be derived for other target structures and PSF model functions, with the caveat
that they might not be as simple as the tubule models above. Tubules and other linear structures represent
an easy class of structure to model because the cross-section is relatively uniform along the long-axis of the
tubule, allowing the convolution to be ignored along that direction, and the model function to be generated
only considering a single dimension. Other geometries do not allow this reduction in dimensionality, and
the convolution integrals must be performed in 2 or 3D. This makes analytic model functions for STED
microscopy, in particular, difficult, as 2D Lorentzians cannot be analytically normalized. In the absence of a
closed analytic form, NEP fitting can be performed using numeric model functions albeit with significantly
poorer computational speed.

Microtubule Simulations

Microtubule line profiles were simulated using a Lorentzian-convolved annulus model function, where the
annulus had an inner diameter of 25 nm and outer diameter of 60 nm to account for a dense primary-
and secondary-antibody coat (5). The center position of each microtubule was randomly varied at the
sub-pixel level to avoid aliasing, and the values generated from the model were then used as expectation
values in generating and sampling Poisson distributions to add shot noise to the model. The amplitude and
background levels were chosen such that the signal-to-noise ratio is comparable to our fixed-cell microtubule
images. The FWHM of the Lorentzian-shaped PSF was varied between 20 and 100 nm, and 50 microtubule
line profiles were simulated with each PSF width.

ER Tubule Simulations

ER tubule line profiles were simulated using both label-filled and surface-labeled tubule model functions,
where the model function describes the expected shape of a line profile drawn perpendicular to the long axis
of a straight region of tubule. The fluorophore distribution for the surface label was taken to be an annulus
of 115 nm inner diameter projected onto a line, with outer diameter 124 nm, where the 4.5 nm thickness is to
account for the SNAP-tag and organic dye molecule, which were both assumed to be globular in estimating
their diameters (6). The label-filled fluorophore distribution was modeled as a circle of 115 nm diameter
projected onto a line. The fluorophore distributions for each model were convolved with a Lorentzian of 50
nm FWHM to emulate the microscope resolution. First, 100 profiles of each model were simulated, with their
center positions randomly varied at the sub-pixel level to avoid aliasing. The intensity values generated by
each model were used as expected values in generating and sampling Poisson distributions to add shot noise
levels comparable to the SNAP-KDEL and SNAP-Sec61β live-cell images contained in this work. Ensemble
fitting was then performed on the tubules corresponding to each model, and the fitted diameters were plotted
in histograms (Fig. S1). Second, we simulated profiles at various signal-to-noise levels. The profiles were
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generated in the same way, except that the pre-shot-noise background was varied from 0 to 300, while the
amplitude was kept constant at 100. Due to the nature of Poisson statistics, this generates tubules with
substantially different noise levels. 100 line profiles were simulated at each noise level.

Fitting

Fitting was performed in PYME using the Scipy package, specifically the Levenberg-Marquardt and Nelder-
Mead minimization algorithms. For standard, non-NEP fitting, profile fits were performed with the Scipy
package Levenberg-Marquardt implementation. All initial parameter guesses were automatically estimated.
The background (offset from zero) was estimated to be the minimum intensity value of the profile, the
amplitude of the profile was estimated to be the maximum intensity value minus the background, and
the center position was estimated to be the position of the maximum intensity value. The FWHM of the
Gaussian and Lorentzian functions, and the tubule diameter and PSF FWHM of the Lorentzian-convolved
model functions were all estimated to be the FWHM of the profile, which was determined by counting the
number of pixels with intensity values above the background plus half of the amplitude.

For NEP fitting, which was only applied using the Lorentzian-convolved model functions, the inner loop
fitting was performed similarly to the standard fitting, with the only difference being that the inner loop did
not try to optimize the PSF FWHM, and instead took this value as an input parameter parsed by the outer
loop. The inner loop returned the mean of the mean squared errors (mean MSE) taken over each of the
individual tubules fits, and this value was minimized in the outer loop fit using a Nelder-Mead minimization,
where the only parameter directly controlled by the Nelder-Mead minimization was the PSF FWHM. In order
to estimate the uncertainty of the PSF FWHM fit, the result from the Nelder-Mead minimization was passed
as an initial guess to a Levenberg-Marquardt minimization to approximate the variance of the estimate. We
used the Nelder-Mead algorithm for the primary parameter estimation because we found it to converge
faster. In order to facilitate the estimation of the variance, the inner loop passed the Levenberg-Marquardt
minimization an array of the residuals appended from each of the tubule profile fits. The variance estimate is
calculated by multiplying the residual variance by the jacobian about the fit result.The standard deviation,
however, is often below 1 nm for NEP fitting, which we take to be an underestimate of the uncertainty in
the measurement.

Initial Guess Simulations

The simulations testing whether the fitting is robust to poor initial guesses used label-filled tubules, as the
PSF width and tubule diameter are more highly coupled than for the surface-labeled tubules (see Fig. 3E,
F, Fig. S7C, D, and Fig. S2D, E, I, J), suggesting that label-filled tubules would be more susceptible to poor
initial guesses. The initial guesses for the fitting parameters were calculated as described above, however
they were modified by a multiplicative factor we refer to as the ‘guess multiplier’. The exception was the
center position fit parameter, which was not affected by the guess multiplier, but instead was shifted from its
initial calculation by one PSF FWHM (50 nm) for all simulated profiles. N=100 tubules of 115 nm diameter
were simulated for each guess multiplier, using a PSF FWHM of 50 nm. Poisson noise was added to each
profile, an example of which is shown in figure S3A.

Aberration Simulations

To simulate the effects of aberrations on NEP-fitting measurements, we simulated aberrated STED PSFs as
follows. We used a vectorial, Fourier optics based, propagation strategy to generate 3D excitation, depletion,
and detection PSFs from an arbitrary pupil function and took the in-focus slice as a 2D PSF which was
convolved with a 2D projection of the target structures. PSFs were simulated using a 1.4 NA objective, with
650 nm excitation, 775 nm depletion, detection after a 1 Airy unit pinhole, and a steady-state exponential
saturation model with a saturation factor of I/Isat = 25. We assumed the depletion donut was slightly
imperfect, and that the “zero” at the center was therefore 1% of the depletion profile maximum. This
normalization was then

dnorm(x, y) = (1− δ) d(x, y)− d(0, 0)

max d(x, y)− d(0, 0)
+ δ, (30)
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where (x, y) = (0, 0) is the center of the depletion profile d(x, y) and we chose a δ of 0.01. The effective
STED PSF was then calculated as

h(x, y) = hexcitation(x, y)hdetection(x, y)e−dnorm(x,y)I/Isat . (31)

Aberrations were applied to the excitation and depletion PSFs, as well as the detection PSF (before being
convolved with the pinhole). The aberrations were applied independently so each effective PSF corresponds
to a single Zernike mode aberration of a given amplitude ranging from −1 rad to 1 rad. These PSFs were
simulated over 4 µm x 4 µm areas with 5 nm pixel sizes. They fit nicely to a Gaussian profile, as expected
for the steady-state continuous-wave assumption implicit in equation 31.

The fluorophore distribution of the label-filled and surface-labeled tubules were generated for 12 tubules
evenly spaced in diameters from 50 nm to 160 nm. The thickness of the annulus for the surface-labeled tubules
was set to be 4.5 nm to represent SNAP-tag labeling, and both surface-labeled and label-filled tubules were
simulated with 5 nm pixel sizes over a 4 µm x 4 µm. For each aberrated PSF tested, these 12 tubules were
convolved with the PSF, then a profile orthogonal to the long axis was extracted. These 12 profiles then
constituted the ensemble of profiles for NEP-fitting for that PSF.

The aberrated PSFs were additionally fit separate of any tubule convolution in order to determine the
ground-truth to compare the NEP-fitting results against. The 2D PSF was summed along the same dimension
as the long-axis of the tubule to generate the 1D profile which was then fit to a 1D Gaussian. The sum was
performed rather than a slicing operation in order to account for the two-dimensional convolution.

Cell Culture

COS-7 (ATCC, CRL-1651) cells were grown in a standard mammalian cell incubator with 5% CO2 environ-
ment using phenol red free DMEM (Thermo Fisher Gibco) or DMEM/F-12 (Thermo Fisher Gibco) media
supplemented with 10% FBS (Thermo Fisher Gibco). Cells were transfected by electroporation using a
Super Electroporator NEPA21 Type II (Nepa Gene). Electroporation cuvettes with a 2 mm gap were loaded
with 106 cells suspended in Opti-MEM (Thermo Fisher Gibco) and 2.5-10 µg DNA, depending on the desired
expression level. Transfected cells were imaged 12-48 hours after electroporation.

Microtubule Samples

Microtubule samples were prepared using the method described by Huang et al (2016) (7). Briefly, COS-7
cells were grown on coverglass and pre-extracted using saponin before fixation with 3% paraformaldehyde +
0.1% glutaraldehyde. Mouse anti-α-tubulin antibody (Sigma-Aldrich, T5168) was used to label microtubules.
A goat anti-Mouse antibody labeled with Atto647N (Sigma-Aldrich) was used as a secondary antibody.
Samples were mounted in Prolong Diamond Antifade Mountant (Thermo Fisher Scientific) and imaged at
room temperature.

ER Samples

The SNAP-Sec61β images used are a subset of images from a broader study on ER morphology (8). COS-
7 cells were electroporated with either SNAP-Sec61β (9) or SNAP-KDEL (8) and plated in glass-bottom
dishes (MatTek, 35 mm, no. 1.5). SNAP-tagged proteins were labeled immediately before imaging with
1 µM SNAP-Cell 647-SiR (New England Biolabs, S9102S) according to manufacturer’s instructions. Living
cells were imaged with 5% CO2, in Live Cell Imaging Solution (Thermo Fisher Scientific) supplemented with
15 mM D-glucose, and at 37 C using a stage incubator and objective heater.

STED Microscopy

Images were acquired using a Leica SP8 STED 3X equipped with a Onefive Katana-08HP pulsed laser as a
depletion light source (775 nm wavelength) and a SuperK Extreme EXW-12 (NLT Photonics) pulsed white
light laser as an excitation source. All images were acquired using a HC PL APO 100x 1.40 NA Oil CS2
objective. For living cells, imaging was performed with 8000 Hz line-scan speed and the cells were kept at
37 C with 5% CO2. Fixed cells were imaged with a 1000 Hz line-scan speed, at room temperature. Images
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were acquired using 16 line averages. All samples were imaged with 633 nm excitation and 775 nm depletion
wavelengths, with depletion laser power of 110.6 mW for all images of ER. Emission light between 650-750
nm was collected using a detection gate set to 0.3-6 ns, on a HyD hybrid detector. The pinhole was set to 1
Airy unit.

Depletion Power Measurements

STED laser powers on the Leica SP8 STED 3X were measured using a microscope slide power meter sensor
head (ThorLabs, S170C) with a digital handheld optical power meter console (ThorLabs, PM100D). Laser
power at 775 nm depletion wavelength was measured using microscope settings to slowly scan a very small
region with minimal beam blanking, which allowed us to detect the depletion laser light as a point rather
than a scanned line. A 8192 x 8192 pixel region was scanned with 10 Hz line-scan speed, at minimum pixel
size, and using bidirectional scanning at room temperature. These settings effectively scanned a 2.42 x
2.42 µm region with 295.68 pm sized pixels and 3.05 µs pixel dwell time. Laser power detected with these
setting is equivalent to using the ‘bleachpoint tool’, as measured for an pulsed excitation laser (SuperK
Extreme EXW-12, NKT Photonics) set at 660 nm wavelength. The depletion laser powers used in this work,
27.7 mW, 55.6 mW, and 110.6 mW, correspond to AOTF settings in the Leica software of 10%, 20%, and
40%, respectively.

Box Plots

The whiskers of all box plots represent the 10th and 90th percentiles of each distribution, the colored boxes
cover the interquartile range, and the center line in each box denotes the median. Box plots and swarm plots
were generated using the Seaborn Python package.

Software User Guide

Installation

NEP-fitting has flexible installation routes, but it is recommended to begin by installing the anaconda Python
2.7 distribution. Afterwards, the NEP-fitting plug-in and PYME can be installed by either using Ana-
conda Navigator (completely GUI-based) or by entering conda config --add channels david_baddeley

followed by conda install -c barentine nep-fitting to the terminal. To install using Anaconda Navi-
gator, open Navigator, add the channel by clicking the ‘Add’ button and entering ‘barentine’. Do the same
for the channel ‘david baddeley’. Now, click the ‘environments’ tab, search nep-fitting, select it, and click
‘add’. Installation for these routes can be verified by running STEDFitter on the terminal/command prompt.

For contributing to or modifying the NEP-fitting plug-in, it is recommended to install using setuptools.
Instructions for this are available at github.com/bewersdorflab/nep-fitting. If you install via setuptools,
you will need to manually load the NEP-fitting plug-in after opening dh5view rather than simply calling
STEDFitter; in this case, run dh5view, select an image to load, and select ‘sted psf fitting’ from the ‘modules’
drop-down menu.

Extracting Profiles

Extracting profiles begins by opening an image by STEDFitter in the terminal/command prompt. Click the
square button with a diagonal line through it (1) to begin selecting line profiles. Click the starting point of
the line, hold down, and release when the mouse is over the desired end-point. Press ‘Add’ (2). You should
now see the line in the profile list at left. You can toggle the visibility of any line profile(s) by selecting it
in the profile list, and clicking ‘Show/Hide’ (3). Similarly, one can remove a profile by selecting it in the list
and clicking ‘Delete’ (4). The number of pixels to average the profile over (perpendicular to the line) can be
set by typing a value into the ‘Line width’ box (5) and pressing enter (or clicking else-where). This updates
the width for all profiles.

Once you have extracted the desired line profiles, you can save your profiles by clicking ‘Save’ (6). If you
would like to analyze profiles from multiple images simultaneously, as is done in this work, you may append
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line profiles to the same file by clicking ‘Save’ and selecting the same file to save to. In this case, you will
have to acknowledge a prompt which checks if you in fact would like to append to the previously written file.

Fitting Profiles

Line profiles can be extracted, as described above, or loaded using the ‘Load’ button (7) and selecting the
HDF or JSON file containing the profiles in the resulting dialogue. After this is performed, standard, non-
ensemble fits can be carried out by clicking ‘Fit Profiles’(8), and NEP-fitting can be performed by clicking
‘Ensemble Fit Profiles’ (9). Each of these will open dialog boxes, asking which model to use during fitting,
and potentially an initial guess for the PSF width. Upon completion of these fits, you will be prompted to
save the fit results, after which a report will automatically be generated in HTML and opened as a new tab
in your web browser.

The procedure for manually testing various PSF widths is quite similar to performing the fits, and is
instead accomplished by clicking ‘Test Ensemble Values’ (10). You will be asked to enter the test values in
a dialogue box, after which the values will be tested, and you will be prompted to save the report. After
saving the report, it will again open as a new tab in your web browser.

Fitting, NEP-fitting, and ensemble testing can additionally be performed using the PYME bakeshop.
The bakeshop can be opened by running bakeshop, and a recipe can be constructed either by adding recipe
tiles manually, adding them using the ‘Add Module’ button, loading a saved recipe, or copying the text
similar to the following (adjusted for the desired fit model, etc) into the box at right:

- nep_fits.EnsembleFitProfiles:
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7

9
10

ensemble_parameter_guess: 50.0

fit_type: STEDTubule_Lumen

hold_ensemble_parameter_constant: false

inputName: line_profiles

outputName: fit_results

- output.HDFOutput:

filePattern: '{output_dir}/{file_stub}.hdf'

inputVariables:

fit_results: fitResults

scheme: File

The input file(s) can be selected using filename patterns and clicking ‘Get Matches’. Finally, select the
output folder by manual entry or through the ‘Browse’ dialogue, and click ‘Bake’.
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