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Phenomenological model equations 

Ca concentration equations 

To model the dynamics of Ca we divide the cell interior into compartments that represent various intracellular spaces.  

These spaces are illustrated in Figure 1D and described in detail in the main text.   The total Ca concentration in each 

compartment obeys the Ca flux equations: 

𝑣𝑏

𝑑𝑐𝑏
𝑇

𝑑𝑡
= 𝐽𝑟

𝑏 − 𝐽𝑢𝑝
𝑏 − 𝐽𝐶𝑎 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑏𝑖, (1) 

𝑣𝑠𝑟𝑏

𝑑𝑐𝑠𝑟𝑏
𝑇

𝑑𝑡
= −𝐽𝑟

𝑏 + 𝐽𝑢𝑝
𝑏 − 𝐽𝑏𝑠𝑟, (2) 

𝑣𝑖

𝑑𝑐𝑖
𝑇

𝑑𝑡
= 𝐽𝑟

𝑖 − 𝐽𝑢𝑝
𝑖 + 𝐽𝑏𝑖, (3) 

𝑣𝑗𝑠𝑟

𝑑𝑐𝑗𝑠𝑟
𝑇

𝑑𝑡
= −𝐽𝑟

𝑖 + 𝐽𝑛𝑖, (4) 

𝑣𝑛𝑠𝑟

𝑑𝑐𝑛𝑠𝑟
𝑇

𝑑𝑡
= 𝐽𝑢𝑝

𝑖 − 𝐽𝑛𝑖 + 𝐽𝑏𝑠𝑟  . (5) 

 

The definition of each of these currents is given in Table 1 in the main text.  For convenience we rescale the boundary 

and interior currents to the volume of the respective cytosol and make the replacements: 

𝐽𝑟
𝑏

𝑣𝑏
→ 𝐽𝑟

𝑏  ,      
𝐽𝑢𝑝

𝑏

𝑣𝑏
→ 𝐽𝑢𝑝

𝑏 ,      
𝐽𝑁𝑎𝐶𝑎

𝑣𝑏
→ 𝐽𝑁𝑎𝐶𝑎 ,      

𝐽𝐶𝑎

𝑣𝑏
→ 𝐽𝐶𝑎 ,

𝐽𝑏𝑖

𝑣𝑏
→ 𝐽𝑏𝑖 (6) 

 

𝐽𝑟
𝑖

𝑣𝑖
→ 𝐽𝑟

𝑖  ,      
𝐽𝑢𝑝

𝑖

𝑣𝑖
→ 𝐽𝑢𝑝

𝑖   .  (7) 

The equations are now written with the rescaled currents as 

𝑑𝑐𝑏
𝑇

𝑑𝑡
= 𝐽𝑟

𝑏 − 𝐽𝑢𝑝
𝑏 − 𝐽𝐶𝑎 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑏𝑖, (8) 

𝑑𝑐𝑠𝑟𝑏
𝑇

𝑑𝑡
= (

𝑣𝑏

𝑣𝑠𝑟𝑏
) (−𝐽𝑟

𝑏 + 𝐽𝑢𝑝
𝑏 ) − (

1

𝑣𝑠𝑟𝑏
) 𝐽𝑏𝑠𝑟, (9)  

𝑑𝑐𝑖
𝑇

𝑑𝑡
= 𝐽𝑟

𝑖 − 𝐽𝑢𝑝
𝑖 + (

𝑣𝑏

𝑣𝑖
) 𝐽𝑏𝑖  , (10) 

𝑑𝑐𝑗𝑠𝑟
𝑇

𝑑𝑡
= (

𝑣𝑖

𝑣𝑗𝑠𝑟
) (−𝐽𝑟

𝑖 ) + (
1

𝑣𝑗𝑠𝑟
) 𝐽𝑛𝑖  , (11) 
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𝑑𝑐𝑛𝑠𝑟
𝑇

𝑑𝑡
= (

𝑣𝑖

𝑣𝑛𝑠𝑟
) 𝐽𝑢𝑝

𝑖 − (
1

𝑣𝑛𝑠𝑟
) 𝐽𝑛𝑖 + (

1

𝑣𝑛𝑠𝑟
) 𝐽𝑏𝑠𝑟 . (12) 

Note here that all current fluxes are now in units of 𝜇𝑀/𝑚𝑠.       It is also convenient to rescale the diffusive currents   

𝐽𝑏𝑠𝑟

𝑣𝑠𝑟𝑏
→ 𝐽𝑏𝑠𝑟  ,   

𝐽𝑛𝑖

𝑣𝑗𝑠𝑟
→ 𝐽𝑛𝑖  . (13) 

So we can write the final equations as 

𝑑𝑐𝑏
𝑇

𝑑𝑡
= 𝐽𝑟

𝑏 − 𝐽𝑢𝑝
𝑏 − 𝐽𝐶𝑎 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑏𝑖, (14) 

𝑑𝑐𝑠𝑟𝑏
𝑇

𝑑𝑡
= (

𝑣𝑏

𝑣𝑠𝑟𝑏
) (−𝐽𝑟

𝑏 + 𝐽𝑢𝑝
𝑏 ) − 𝐽𝑏𝑠𝑟, (15) 

𝑑𝑐𝑖
𝑇

𝑑𝑡
= 𝐽𝑟

𝑖 − 𝐽𝑢𝑝
𝑖 + (

𝑣𝑏

𝑣𝑖
) 𝐽𝑏𝑖 , (16) 

𝑑𝑐𝑗𝑠𝑟
𝑇

𝑑𝑡
= (

𝑣𝑖

𝑣𝑗𝑠𝑟
) (−𝐽𝑟

𝑖 ) + 𝐽𝑛𝑖 , (17) 

𝑑𝑐𝑛𝑠𝑟

𝑑𝑡
= (

𝑣𝑖

𝑣𝑛𝑠𝑟
) 𝐽𝑢𝑝

𝑖 − (
𝑣𝑗𝑠𝑟

𝑣𝑛𝑠𝑟
) 𝐽𝑛𝑖 + (

𝑣𝑠𝑟𝑏

𝑣𝑛𝑠𝑟
) 𝐽𝑏𝑠𝑟   . (18) 

The diffusive fluxes between compartments are given by 

𝐽𝑏𝑖 =
𝑐𝑏 − 𝑐𝑖

𝜏𝑏𝑖
 , (19) 

𝐽𝑏𝑠𝑟 =
𝑐𝑠𝑟𝑏 − 𝑐𝑛𝑠𝑟

𝜏𝑠𝑏𝑖
, (20) 

𝐽𝑛𝑖 =
𝑐𝑛𝑠𝑟 − 𝑐𝑗𝑠𝑟

𝜏𝑠𝑖
, (21) 

where 𝜏𝑏𝑖  is the diffusion time scale linking the boundary and interior cytosol, 𝜏𝑠𝑏𝑖  is the time scale governing 

diffusion from the internal to boundary SR volumes, and 𝜏𝑠𝑖 is the diffusional delay from interior NSR to JSR.   

 

Buffers 

If 𝑐𝑥
𝑇 denotes the total Ca concentration in compartment 𝑥, 𝑐𝑥 denotes the free concentration, 𝐵 is the total buffer 

concentration, and [𝐶𝑎𝐵] is the concentration of bound buffers then: 

𝑑[𝐶𝑎𝐵]

𝑑𝑡
= 𝑘𝑜𝑛𝑐𝑥(𝐵 − [𝐶𝑎𝐵]) − 𝑘𝑜𝑓𝑓[𝐶𝑎𝐵], (22) 

where 𝑘𝑜𝑛  and 𝑘𝑜𝑓𝑓  is the binding and dissociation rate respectively.   For simplicity we assume instantaneous 

buffering so that the bound Ca is at steady state is 

[𝐶𝑎𝐵] =
𝐵𝑐𝑥

𝑐𝑥 +  𝐾
 , (23) 
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where 𝐾 = 𝑘𝑜𝑛/𝑘𝑜𝑓𝑓.    Therefore, given the presence of multiple buffers with total concentration 𝐵𝑖 and kinetics 𝐾𝑖, 

the total Ca in the cell is given by 

𝑐𝑥
𝑇 = 𝑐𝑥 +  ∑

𝐵𝑖𝑐𝑥

𝐾𝑖 + 𝑐𝑥
𝑖

  . (24) 

In this study we will apply two instantaneous cytosolic buffers.  These are Calmodulin buffers with 𝐵𝐶𝑎𝑀 = 24.0𝜇𝑀 

and 𝐾𝐶𝑎𝑀 = 7.0, and SR buffers with 𝐵𝑆𝑅 = 47.0𝜇𝑀 and 𝐾𝑆𝑅 = 0.6.  An advantage of solving directly for the total 

Ca concentrations (Eqs.  14-18) is that all internal Ca fluxes cancel exactly.   Previous approaches to instantaneous 

buffering did not enforce this exact cancellation and can lead to unphysical fluxes which violate ion conservation.   

However, to apply these equations it is necessary to compute the free from total Ca concentration.   To do this it is 

necessary to invert Eq. (24).     However, since Eq. (24) is nonlinear we will first fit the curve to a simpler  function 

of the form 

𝑐𝑥
𝑇 = 𝑎1𝑐𝑥 +

𝑎2𝑐𝑥

𝑎3 + 𝑐𝑥
   . (25) 

Fitting the buffers for concentrations in the physiological range 0.1𝜇𝑀 ≤ 𝑐𝑥 ≤ 5𝜇𝑀  gives a solution 𝑎1 =

2.23895, 𝑎2 = 52.0344, 𝑎3 = 0.666509.     Inverting Eq. (25) yields the free concentration 

𝑐𝑥 =
1

2𝑎
(−𝑎2 − 𝑎1𝑎3 + 𝑐𝑥

𝑇 + √(𝑎2 + 𝑎1𝑎3 − 𝑐𝑥
𝑇)2 + 4𝑎1𝑎3𝑐𝑥

𝑇)  . (26) 

Therefore, at each time step we use Eq. (26) to compute the free Ca concentration that regulates the Ca fluxes. 

 

The volume factors 

In order to solve the Ca flux equations it is necessary to determine the volume ratios given in Eqs (14-18).  To estimate 

these factors we first note that an atrial myocyte has an approximate volume of 𝑉𝐶𝑒𝑙𝑙 ∼ 15𝜇𝑚 × 15𝜇𝑚 × 60𝜇𝑚.  The 

boundary region will have a thickness of roughly 1.0𝜇𝑚 , so that the  volume of the interior 𝑉𝑖 ∼

13𝜇𝑚 × 13𝜇𝑚 × 58𝜇𝑚, which gives a ratio of boundary to interior of roughly  (𝑉𝑐𝑒𝑙𝑙 − 𝑉𝑖) 𝑉𝑖⁄ ∼ 0.4.    Thus, the 

ratio of cytosolic volumes between the boundary and interior should be approximately in the range ∼ 0.1 − 0.6.   In 

this study we will use a ratio 𝑣𝑏 𝑣𝑖 = 0.3⁄ .      To determine volume ratios with the SR we follow Restrepo et al. (1) 

who estimated that in ventricular myocytes the SR volume is roughly 30 times smaller than the cytosol.    We assume 

that this also applies in atrial myocytes at both the boundary and the interior  spaces so that 𝑣𝑏 𝑣𝑠𝑟𝑏⁄ = 30, and 

𝑣𝑖 𝑣𝑛𝑠𝑟 = 30⁄ .    Also, we assume that the NSR and JSR are roughly the same volume so that 𝑣𝑗𝑠𝑟 𝑣𝑛𝑠𝑟 = 1⁄ , and 

𝑣𝑖/𝑣𝑗𝑠𝑟 = 30. Finally, we set 𝑣𝑠𝑟𝑏 𝑣𝑛𝑠𝑟⁄ = 0.3, since the volume ratio of the boundary and interior SR should 

proportional to the ratio of total available volume.  
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The number of RyR clusters available 

To estimate the number of available RyR clusters we treat the cell as an approximately 3D rectangular grid.  Assuming 

a ∼ 1𝜇𝑚 spacing we estimate that there are roughly ∼ 5000 boundary sites and ∼ 10000 interior sites.   However, 

since we expect that RyR clusters are non-uniform we expect a lesser number of junctional and non-junctional sites.  

In this study we will use 𝑁𝑏 = 2500 and 𝑁𝑖 = 4000.     

 

Spark rate parameters 

The boundary spark recruitment rate is given by 

𝛼𝑏 = 𝑎𝑏𝑃𝑂|𝑖𝐶𝑎|Φ(𝑐𝑠𝑟𝑏) (27) 

where 𝑎𝑏 is a constant, 𝑃𝑂 is the proability of beingin the state 𝑂, 𝑖𝐶𝑎 is the current through the LCC channel, and  

Φ(𝑐𝑠𝑟𝑏) =
1

1 + (
𝑐𝑠𝑟𝑏

∗

𝑐𝑠𝑟𝑏
)

𝛾1
  . (28)

 

The interior spark rate is  

𝛼𝑖 = (𝑎𝑖  𝐹(𝑝𝑏) + 𝑏𝑖 𝐺(𝑝𝑖))𝜙(𝑐𝑗𝑠𝑟), (29) 

where 

𝜙(𝑐𝑗𝑠𝑟) =
1

1 + (
𝑐𝑗𝑠𝑟

∗

𝑐𝑗𝑠𝑟
)

𝛾2
 , (30)

 

𝐹(𝑝𝑏) =
1

1 + (
𝑝𝑏

∗

𝑝𝑏
)

𝛾𝑏
, (31)

 

𝐺(𝑝𝑖) =
1

1 + (
𝑝𝑖

∗

𝑝𝑖
)

𝛾𝑖
  . (32)

 

All parameters used in the model are given in Table (3). 

 

The sodium-calcium exchange current 

In this study we use a standard formulation of 𝐼𝑁𝑎𝐶𝑎 (2).    

𝐼𝑁𝑎𝐶𝑎 = 𝐴𝑁𝑎𝐶𝑎 (
𝑁𝑎𝑖

3𝐶𝑎𝑜 exp(0.35𝑧) − 𝑁𝑎𝑜
3𝑐𝑏 exp((−0.65𝑧))

(1 + 0.2 exp(−0.65𝑧))𝑈
) (33) 

where 𝑧 = 𝑉𝐹/𝑅𝑇, and where  

𝐴𝑁𝑎𝐶𝐴 =
1

1 + (
0.3
𝑐𝑏

)
3   , (34)
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𝑈 = 𝐾𝑚,𝐶𝑎𝑜𝑁𝑎𝑖
3 + 𝐾𝑚,𝑁𝑎𝑜

3 𝑐𝑏 + 𝐾𝑚,𝑁𝑎𝑖
3 𝐶𝑎𝑜 (1 +

𝑐𝑏

𝐾𝑚,𝐶𝑎𝑖
  )

+𝐾𝑚,𝐶𝑎𝑖𝑁𝑎𝑜
3 (1 + (

𝑁𝑎𝑖

𝐾𝑚,𝑁𝑎𝑖 
)

3

) + 𝑁𝑎𝑖
3𝐶𝑎𝑜 + 𝑁𝑎𝑜

3𝑐𝑏 . (35)

 

Model parameters used are: 𝐾𝑚,𝐶𝑎𝑜 = 1.3𝑚𝑀, 𝐾𝑚,𝐶𝑎𝑖 = 0.0036𝑚𝑀, 𝐾𝑚,𝑁𝑎𝑖 = 12.3𝑚𝑀, 𝐾𝑚,𝑁𝑎𝑜 = 87.5𝑚𝑀.  

Concentration parameters are given in Table 4. 

 

The L-type Ca current 

We use a standard formulation of the LCC current.  The driving force is given by 

𝑖𝐶𝑎 = 4𝑃𝐶𝑎𝑧𝐹
𝑐𝑏 exp(2𝑧) − 0.341𝐶𝑎𝑜

exp(2𝑧) − 1
 , (36) 

where 𝑧 = 𝑉𝐹 𝑅𝑇⁄ .  The open probability is governed my the Markov state diagram shown in Figure (3) which is 

solved in the deterministic limit.     The Ca independent transition rates are given by: 

𝛼 =
1

1 + exp (−
𝑉
4

)
  , (37) 

𝛽 = 1 − 𝛼, (38) 𝑟1 = 0.3 , (39) 

𝑟2 = 3.0, (40) 

𝑘1 = 0.00224, (41) 

𝑃3 =
1

1 + exp (−
𝑉 + 40

3
)

, (42) 

𝑘3 =
1 − 𝑃3

3
, (43) 

𝑃𝑟 = 1 −
1

1 + exp (−
𝑉 + 40

4 )
  , (44) 

𝑅 = 10 + 4954 exp (
𝑉

15.6
) , (45) 

𝜏𝐵𝑎 = (𝑅 − 450)𝑃𝑟 + 450 , (46) 

𝑃 =
1

1 + exp (−
(𝑉 + 40)

10 )
 , (47)

 

𝑘6 =
𝑃

𝜏𝐵𝑎
, (48) 

𝑘5 =
1 − 𝑃

𝜏𝐵𝑎
  . (49) 

The Ca dependent transition rates are 
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𝑠1 = 0.00195 + 0.06𝑓𝐶𝑎, (50) 

𝑘2 = 0.00413 + 0.06𝑓𝐶𝑎, (51) 

where the Ca dependence is given by 

𝑓𝐶𝑎 =
1

1 + (
𝑐′

𝑐𝑏
)

2    , (52)
 

and where 𝑐′ = 0.2𝜇𝑀 is the diastolic Ca concentration.     All transition rates between states facing a Ca spark are 

identical with the exception of the Ca transition rates, for which we set 𝑓𝑐𝑎 = 1.   This is because the Ca concentration 

in the vicinity of LCC channels during a Ca should be ∼ 100𝜇𝑀, which will saturate the Ca dependence of the LCC 

channel.      The total open probability is given by the two components 

𝑃𝑡 = 𝑃𝑜 + 𝑃𝑜𝑠 , (53) 

so that we can write the total LCC current as 𝐼𝐶𝑎 = 𝑃𝑡  ⋅ 𝑖𝐶𝑎.   

 

Sodium concentration 

To model the changes in internal sodium concentration we use a function 𝑁𝑎𝑖(𝑇) giving sodium concentration as a 

function of the pacing period 𝑇.    In this study we use a simple linear depenence so that 𝑁𝑎𝑖 = 12𝑚𝑀 at a pacing 

period of 𝑇 = 500𝑚𝑠, and 𝑁𝑎𝑖 = 14𝑚𝑀 at faster pacing rates of  𝑇 = 250𝑚𝑠.    This gives a functional form 

𝑁𝑎𝑖(𝑇) = 16𝑚𝑀 −
𝑇

125 𝑚𝑠
   . (54) 

Ca cycling fluxes 

The explicit Ca cycling fluxes used in Eqs (14-18) are given bellow: 

𝐽𝑟
𝑏 = 𝑔𝑏𝑐𝑠𝑟𝑏𝑝𝑏 , (55) 

 𝐽𝑟
𝑖 = 𝑔𝑖𝑐𝑠𝑟𝑖𝑝𝑖 , (56) 

𝐽𝑢𝑝
𝑏 =

𝑔𝑢𝑝
𝑏 𝑐𝑏

3

𝑐𝑏
3 + 𝑐𝑏

∗3 , (57) 

𝐽𝑢𝑝
𝑖 =

𝑔𝑢𝑝
𝑖 𝑐𝑖

3

𝑐𝑖
3 + 𝑐𝑖

∗3 , (58) 

𝐽𝐶𝑎 = 𝑔𝐶𝑎𝐼𝐶𝑎, (59) 

𝐽𝑁𝑎𝐶𝑎 = 𝑔𝑁𝑎𝐶𝑎𝐼𝑁𝑎𝐶𝑎  . (60) 

Explicit parameters used for each current are  given in Table (1).   

 

Computer simulation times 

We have coupled our Ca cycling model with the major ion currents in the Grandi human action potential model (3).  

The full model consists of 27 differential equations which we solve using a time step of Δ𝑡 = 0.05𝑚𝑠.  Simulations 
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of a single cell paced at 𝐶𝐿 = 250𝑚𝑠 for 100 beats requires 0.4𝑠 of simulation time using a single processor (Intel 

Xeon E5-2667 v3 3.20GHz).    Simulation of 100 beats at the same rate on a 400 cell cable requires 4 minutes of 

simulation time.      

 

Detailed 3D cell model simulations 

In this study we develop a phenomenological Ca cycling model in atrial myocytes.   To justify the various functional 

forms used for the spark recruitment rate we rely on a spatially distributed model of atrial myocytes developed 

previously by the authors(4).    This model is based on a model due to Restrepo et al. (1, 5) in which the cardiac 

myocyte is represented as a 3D array of subcellular compartments that are diffusively coupled.   Full details of the 

model framework and parameters have been given in our previous study (4).  In the simulations performed in Figure 

2A-D our cardiac cell model consists of 60 planes representing Z-planes, where each plane contains an array of 

20 × 20 regularly spaced compartments.   All sites at the boundary of the cell are designated as junctional CRUs, 

while all other sites are non-junctional CRUs.     In this study we consider the dynamics of Ca cycling when the cell 

is paced with an AP clamp.  Our AP clamp is taken to have the functional form (6) given by 

 

𝑉(𝑡) = {
𝑉𝑚𝑖𝑛 + (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)√1 − ((𝑡 − 𝑚𝐶𝐿) 𝑥𝐶𝐿⁄ )2                   𝑚𝐶𝐿 ≤ 𝑡 ≤ 𝑚𝐶𝐿 + 𝑥𝐶𝐿

𝑉𝑚𝑖𝑛                                                                                        𝑚𝐶𝐿 + 𝑥𝐶𝐿 < 𝑡 < (𝑚 + 1)𝐶𝐿
    

   (61) 

 

which mimics a typical AP wave form.   Here, the variable 𝐶𝐿 denotes the pacing cycle length, 𝑚 is an integer 

denoting the 𝑚𝑡ℎ paced beat, and 𝑥 = 𝐴𝑃𝐷/𝐶𝐿.    Following previous studies (6) we let this ratio vary with pacing 

rate according to the functional form 𝑥 = 𝑎/(𝑎 + 𝐶𝐿) where 𝑎 = 2/3.     

 

In Figure S1 we show an example of Ca transient alternans in our 3D computational cell model.   In this case we have 

paced the cell to steady state at 𝐶𝐿 = 250𝑚𝑠.  The top trace shows the total average Ca concentration in the cell 

showing an alternating release pattern.   Figures (a-d) show two dimensional cross sections of the cell at the beats 

indicated by the red arrows.   Here, we see that during alternans the cell exhibits a pattern of triggered wave 

propagation on alternate beats.   In this case we find that the small Ca transient corresponds to a boundary Ca release, 

while the large Ca transient corresponds to triggered waves that originates at multiple sites on the cell boundary.   In 

Figure S2 we show line scan images of triggered wave alternans in an isolated atrial myocyte from a failing dog heart.   

An expanded line scan image of the 5Hz pacing regime shows that Ca release occurs only on alternate beats.  In this 

case we find that the linescan image of the released beat exhibits a standard U-shape release pattern.  This indicates 

that there are multiple release sites on the cell boundary so that Ca propagates inward as a centripetal wave.  Thus, 

the line ends are activated first followed by the center of the cell, which leads to the observed activation pattern.     
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Full details of the experimental methods are given in Aistrup et al. (7).    A more detailed analysis of this dynamical 

pattern will be presented in a future publication.   
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Figures 

Figure S1.  Triggered wave alternans observed in our 3D computational cell model of an atrial myocyte.  Top trace 

shows the global average Ca concentration in the cell.   Bottom figures show two dimensional cross sections at (a) 

20ms after the 3rd beat.  (b) 100ms after the beginning of the 4th beat.  (c) 20ms after the 5th beat.  (d)  100ms after 

the 6th beat.   Model parameters are taken from Shiferaw et al.(4). 

 

Figure S2.    Example of triggered wave alternans in an isolated atrial myocyte from failing dog heart. During 2Hz 

pacing, individual subcellular triggered waves begin to develop, whereupon 3.3Hz pacing manifest across the entire 

length of the cell, and upon 5Hz pacing become essentially severe concordant ‘whole-cell’ Ca alternans (although, 

individual triggered waves are still apparent therein).  Bottom figure shows an expanded view of the 5Hz pacing 

interval.   Vertical dashed lines indicate 5Hz cycle markers.    

 

Tables 

 

1.  Ca cycling flux parameters 

Parameter Description Value 

𝑔𝑏 Strength of boundary release. 0.004 (𝑚𝑠)−1 

𝑔𝑖 Strength of release from interior sites RyR clusters 0.015 (𝑚𝑠)−1 

𝑔𝑢𝑝
𝑏  Boundary uptake strength 0.3𝜇𝑀/𝑚𝑠 

𝑔𝑢𝑝
𝑖  Internal uptake strength 0.1𝜇𝑀/𝑚𝑠 

𝑐𝑏
∗ Boundary uptake threshold 0.3𝜇𝑀 

𝑐𝑖
∗ Internal uptake threshold 0.3𝜇𝑀 

𝑔𝐶𝑎 L-type Ca current flux amplitude 224𝜇𝑀(𝑚𝑠)−1(𝑝𝐴)−1 

𝑔𝑁𝑎𝐶𝑎 Sodium-Calcium exchanger flux amplitude  2 𝜇𝑀(𝑚𝑠)−1(𝑝𝐴)−1  
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2.  Diffusion time scales 

Parameter Description Value 

𝜏𝑏𝑖 Diffusion time between boundary and internal cytosol 10𝑚𝑠 

𝜏𝑠𝑏𝑖 Diffusion time between boundary NSR and internal NSR 10𝑚𝑠 

𝜏𝑠𝑖 Diffusion time between internal NSR and JSR 50𝑚𝑠 

 

 

 

3.  Spark rate parameters 

Parameter Description Value 

𝑎𝑏 Boundary spark rate constant 100𝑠𝑝𝑎𝑟𝑘𝑠/(𝑚𝑠 ⋅ 𝑝𝐴) 

𝛾1 Hill coefficient for SR load dependence of boundary spark rate 6 

𝑐𝑠𝑟𝑏
∗  Threshold for spark activation at junctional sites 900𝜇𝑀 

𝛾2 Hill coefficient for SR load dependence of internal spark rate 4 

𝑐𝑗𝑠𝑟
∗  Threshold for spark activation at non-junctional sites 900𝜇𝑀 

𝑎𝑖 Constant that determines contribution of junctional sites to internal  

spark rate 

0.01𝑠𝑝𝑎𝑟𝑘𝑠/𝑚𝑠 

𝑏𝑖 Constant that determines strength of spark generation due to Ca waves 0.2 𝑠𝑝𝑎𝑟𝑘𝑠/𝑚𝑠 

𝑝𝑏
∗  Threshold for boundary activation of interior sparks 0.5 

𝛾𝑏 Hill coefficient for boundary spark activation of interior Ca sparks 8 

𝑝𝑖
∗ Threshold for internal Ca sparks  0.05 

𝛾𝑖 Hill coefficient describing Ca wave nucleation 5 

𝛽𝑏 Spark extinction rate at the cell boundary 1/20 𝑚𝑠 

𝛽𝑖  Spark extinction rate in the cell interior 1/50𝑚𝑠 

 

4.  Constant parameters 

Parameter Description Value 

𝑁𝑎𝑜  External sodium concentration 136𝑚𝑀 

𝐶𝑎𝑜 External Ca concentration 1.8𝑚𝑀 

𝐾𝑜 External potassium concentration 5.4𝑚𝑀 

𝐾𝑖 Internal potassium concentration 140𝑚𝑀 

𝑇 Temperature 308𝐾 

𝐹 Faraday's constant 96.485𝐶/𝑚𝑚𝑜𝑙 
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𝑅 Universal gas constant 8.315𝐽(𝑚𝑜𝑙 𝐾)−1 

𝑃𝐶𝑎  LCC Permeability constant 5.4 × 10−4 𝑐𝑚/𝑠 
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