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ABSTRACT When an atrial cell is paced rapidly, calcium (Ca) waves can form on the cell boundary and propagate to the cell
interior. These waves are referred to as ‘‘triggered waves’’ because they are initiated by Ca influx from the L-type Ca channel and
occur during the action potential. However, the consequences of triggered waves in atrial tissue are not known. Here, we
develop a phenomenological model of Ca cycling in atrial myocytes that accounts for the formation of triggered waves. Using
this model, we show that a fundamental requirement for triggered waves to induce abnormal electrical activity in tissue is
that these waves must be synchronized over large populations of cells. This is partly because triggered waves induce a long
action potential duration (APD) followed by a short APD. Thus, if these events are not synchronized between cells, then they
will on average cancel and have minimal effects on the APD in tissue. Using our computational model, we identify two distinct
mechanisms for triggered wave synchronization. The first relies on cycle length (CL) variability, which can prolong the CL at a
given beat. In cardiac tissue, we show that CL prolongation leads to a substantial amplification of APD because of the synchro-
nization of triggered waves. A second synchronization mechanism applies in a parameter regime in which the cell exhibits sto-
chastic alternans in which a triggered wave fires, on average, only every other beat. In this scenario, we identify a slow
synchronization mechanism that relies on the bidirectional feedback between the APD in tissue and triggered wave initiation.
On large cables, this synchronization mechanism leads to spatially discordant APD alternans with spatial variations on a scale
of hundreds of cells. We argue that these spatial patterns can potentially serve as an arrhythmogenic substrate for the initiation
of atrial fibrillation.
INTRODUCTION
The beating of the heart requires the coordination between
electrical activity across the cell membrane and mechanical
contraction (1). This process is mediated by voltage-sensi-
tive calcium (Ca) channels that open in response to an ac-
tion potential (AP). The Ca that enters the cell through
these channels then diffuses and binds to ryanodine recep-
tors (RyRs), which themselves open in a Ca-dependent
manner. RyR channels are arranged in tight clusters of
10–100 channels that release Ca into the cytosol from Ca
stored in the sarcoplasmic reticulum (SR). The released
Ca then diffuses and signals mechanical contraction at
the myofilaments, after which it is pumped back into the
SR via the SR Ca2þ-ATPase (SERCA) uptake channel al-
lowing the process to repeat again on the next beat. It is
this Ca cycling processes that mediates the coupling be-
tween electrical activity at the cell membrane and mechan-
ical contraction of the cell.
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Recently, there has been a great deal of work implicating
Ca cycling as a possible player in the initiation and mainte-
nance of atrial fibrillation (AF) (2–4). Optical mapping of
AF in a range of animal models reveals the presence of trig-
gered activity that is likely caused by a disruption in the Ca
cycling system (5). In particular, it is generally believed that
spontaneous Ca waves within atrial cells can induce mem-
brane depolarization, which can evolve into an ectopic exci-
tation (4,6). These ectopic sources are arrhythmogenic
because they can initiate an ill-timed beat with a high pro-
pensity for wave break. Alternatively, an ectopic region
will disrupt repolarization and therefore induce repolariza-
tion heterogeneities, which can induce wave break of the
following paced beat. Thus, unstable Ca cycling is a poten-
tial candidate for the aperiodic electrical activity that under-
lies AF.

In a recent study, we (7) demonstrated that atrial myo-
cytes from the dog heart are prone to a particular type of
Ca wave. We found that when an atrial myocyte is rapidly
paced then Ca waves propagate inside the cell between
paced beats. These waves are referred to as triggered waves
because they occurred during the AP, in sharp contrast to
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spontaneous Ca waves, which are typically observed after a
pause longer than the pacing period (8) and during Ca over-
load conditions. Shiferaw et al. (9) applied computational
modeling to show that triggered waves are fundamentally
due to the unique spatial architecture of atrial myocytes.
In particular, these cells lack a well-developed transverse tu-
bule (TT) structure, and therefore, the bulk of Ca signaling
between L-type Ca channel (LCC) and RyR channels occurs
at the cell boundary (10,11). Thus, under normal conditions,
Ca is released because of Ca sparks that occur at the cell
boundary, which then diffuse to the cell interior. However,
under rapid pacing conditions, RyR clusters in the cell inte-
rior become more sensitized so that sparks at the cell bound-
ary can nucleate Ca waves that propagate to the cell interior.
These triggered Ca waves are likely highly arrhythmogenic
because they occur during pacing and can therefore induce
triggered activity, which may have a higher likelihood of
producing wave break because of the short coupling inter-
vals between paced beats. Also, triggered waves disrupt
the process of Ca cycling and can therefore lead to aperiodic
Ca responses that will feed back on the AP duration (APD)
to induce heterogeneities that can form a substrate for
arrhythmia.

The goal of this study is to develop a phenomenological
model of an atrial cell, which can be used to model voltage
and Ca in cardiac tissue simulations. This model will ac-
count for the experimentally observed triggered waves
while being computationally tractable for simulations of
hundreds of thousands of electrotonically coupled cells
that are paced for many beats. A fully detailed three-dimen-
sional (3D) model of Ca cycling (12–14), which reproduces
triggered Ca waves, requires the simulation of roughly 105

ion channels, which makes it computationally demanding
to simulate cardiac tissue. Here, we apply a population-
based approach that keeps track only of key variables such
as the number of Ca sparks and the global average Ca con-
centration within various compartments in the cell. This
model accounts for the stochastic properties of triggered
and spontaneous Ca waves and can be used to explore
how Ca waves can induce excitations in cardiac tissue. Us-
ing this model, we will address the fundamental question of
how stochastic triggered waves can induce arrhythmogenic
electrical activity in tissue. Our main finding is that voltage
perturbations in tissue depend crucially on the synchroniza-
tion of triggered waves. This synchronization can occur via
two distinct mechanisms. In the first case, we show that a
modest increase in cycle length (CL) at one beat can lead
to an elevated SR load on the next beat, which in turn will
tend to synchronize triggered waves on that beat. Based
on this mechanism, we show that variability in CL can sub-
stantially amplify the effect of triggered waves on the APD
in cardiac tissue. The reason for this is that a triggered wave
typically prolongs the APD on the same beat but then
shortens the APD on the next because the previous diastolic
interval (DI) is shorter. If triggered waves are not synchro-
nized, then spatial averaging due to electrotonic coupling
leads to a cancelation between the long and short APD.
However, even a small degree of synchronization between
cells can negate this cancelation effect and amplify APD
variations in tissue. In the second case, we show that upon
rapid pacing, triggered Ca waves can enter an ‘‘alternans’’
mode in which a triggered wave occurs, with high likeli-
hood, only on every other beat. This response is consistent
with our previous experimental findings in which alternans
of this form are readily observed in the presence of isopro-
terenol and caffeine (7). When these triggered wave alter-
nans occur, gradual feedback between the Ca transient and
APD leads to a synchronization process that forces the trig-
gered waves to occur in phase i.e., at the same beat. This
mechanism leads to tissue scale patches of synchronized
triggered waves that form spatially discordant APD alter-
nans. Using our computational model, we explore these syn-
chronization mechanisms and comment on their role in the
initiation of AF.
METHODS

Population-based model of spark activation

Atrial myocytes lack a well-defined TT system so that the bulk of Ca

signaling between RyR and LCCs occurs at the cell boundary. Thus, we

can divide the RyR clusters in the cell in to the following two groups: 1)

a population of RyR clusters, referred to as junctional clusters (Fig. 1 A),

where LCCs are in close proximity (�10 nm) and which are mostly located

near the cell boundary (Fig. 1 C); and 2) nonjunctional RyR clusters (Fig. 1

B) in the cell interior, which are far from LCCs. Nonjunctional clusters have

a minimal spacing in the range of�100–500 nm (15,16) and therefore sense

Ca that has to diffuse a distance longer than this scale. In this study, we will

denote the total number of junctional and nonjunctional clusters to be Nb

and Ni respectively. To model Ca release, we will denote niðtÞ to be the

number of nonjunctional clusters at which Ca is being released because

of a Ca spark at time t. Similarly, we will keep track of the number of sparks

at junctional clusters denoted as nbðtÞ. The total number of sparks in the cell

is then given by nðtÞ ¼ nbðtÞ þ niðtÞ: Ca sparks are formed and extin-

guished in their respective volumes according to the reaction scheme

0

ai

#
bi

1 ; 0
ab

#
bb

1 ; (1)

where 0 denotes an ‘‘off’’ cluster that is shut, and 1 denotes an ‘‘on’’ cluster

at which Ca is being released because of a spark. The rate at which Ca

sparks are activated at nonjunctional and junctional clusters is given by

ai and ab, respectively, and with corresponding extinction rates bi and bb.

To model subcellular Ca dynamics, we will simulate the time evolution

of the number of sparks using a phenomenological approach. To do this,

we first pick a sufficiently small time step interval Dt such that the reaction

rates are effectively constant during this interval. Then, if we have ni sparks

in the cell interior and Ni � ni cluster sites at which a Ca spark can occur,

the number of new sparks in the cell interior will be the number of successes

in Ni � ni trials given a success probability p ¼ aiDt. Similarly, the number

of sparks that extinguish will be the number of success in ni trials with prob-

ability p ¼ biDt. Therefore, the number of Ca sparks in the cell interior will

evolve according to

niðt þ DtÞ ¼ niðtÞ þ Dnþi � Dn�i ; (2)
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FIGURE 1 An illustration of the spatial architec-

ture of Ca signaling in an atrial myocyte. (A) Junc-

tional RyR clusters are in close proximity to LCCs

on the cell membrane. The JSR protrudes from the

NSR and forms synapse-like regions where Ca

signaling takes place. The NaCa exchanger

(NCX) regulates intracellular Ca by pumping out

the Ca that enters the cell via the LCC. (B) A non-

junctional RyR cluster that is found in the cell

interior is shown. (C) The spatial distribution of

junctional and nonjunctional RyR clusters in a 3D

atrial myocyte model is shown. (D) A reduced

compartment model of the atrial cell architecture

is shown. We divide the boundary of the cell into

the total SR volume ðvsrbÞ, which is the sum of

the total JSR and NSR volumes. The average Ca

concentration in this volume is denoted by csrb.

The total cytosol on the cell boundary has volume

vb and concentration cb. The currents linking these

two spaces are the Ca release Jbr due to a population
of sparks on the boundary and the uptake pump cur-

rent Jbup, which replenishes the boundary SR. The

cell interior is divided into the total NSR, JSR,

and cytosolic volumes, with concentrations cnsr;

cjsr , and ci respectively. Ca release from the JSR

to the cytosol is due to the interior sparks with total

current Jir , whereas J
i
up denotes the total uptake cur-

rent. The currents Jbsr , Jbi, and Jni are diffusive cur-

rents proportional to the concentration difference

between adjoining compartments. To see this figure

in color, go online.
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where

Dnþi ¼ BðaiDt;Ni � niÞ; (3)

Dn� ¼ BðbiDt; niÞ; (4)
i

and where Bðp; nÞ is a random number picked from a binomial distribution

with a success probability p and number of trails n. In a similar fashion, we
canmodel the timeevolution of boundary sparks by simply replacing the spark

transition rates and the total number of clusters. This approach captures the

stochasticity of spark recruitment and extinction by modeling these events

as independent probabilistic events. To describe correlations between transi-

tion events, the spark activation rates, ai and ab, are taken to be a nonlinear

function of the state of the system, i.e., the Ca concentrations and the number

of active sparks in the interior ðniÞ and boundary ðnbÞ. In this manner, we can

model the complex spatiotemporal dynamics of Ca cycling using a phenome-

nological approach that describes only the number of sparks in the cell.
Cell compartmentalization and Ca cycling

To model Ca dynamics, we apply a phenomenological approach in which

the spark rates described above are dependent on the internal Ca concentra-

tions in the cell. To proceed, we divide the cell into an interior region in

which the bulk of RyR clusters are nonjunctional and a boundary region

composed of junctional RyR clusters (Fig. 1 C). Furthermore, we divide

the cell interior and boundary into distinct volumes, which are illustrated

in Fig. 1 D. Here, each volume corresponds to the total volume of a given

compartment in the cell. In particular, the cell interior will be divided into

the network SR (NSR) with volume ðvnsrÞ, which is the total volume of the

NSR in the cell, the total junctional SR (JSR) volume ðvjsrÞ, and the total

bulk cytosol volume ðviÞ. For example, if there are njsr JSR compartments

in the cell then vjsr ¼ Pnjsr
i¼1

vijsr , where vijsr is the volume of the ith JSR
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compartment in the cell. To track concentrations in these volumes, we denote

cTx to be the average total Ca concentration in volume x, and cx will denote the

corresponding average free concentration. Thus, we let ci be average free Ca
concentration in the volume vi, and cjsrðcnsrÞ are the average free concentra-
tions in volume vjsrðvnsrÞ. Similarly, the boundary region will be divided

accordingly into a cytosolic volumewith average free concentration cb and to-

tal volume vb and the SRwith average concentration csrb and total volume vsrb.

For convenience, we will lump JSR and NSR and refer to the total volume of

this space as the SR. We do this because the Ca released at the boundary is

tightly controlled by the LCC current, and the diffusional delay between the

NSR and JSR regions does not play an important role in the dynamics. The

total Ca concentrations then obey the following Ca flux equations:

vb
dcTb
dt

¼ Jbr � Jbup � JCa þ JNaCa � Jbi; (5)

dcT

vsrb

srb

dt
¼ �Jbr þ Jbup � Jbsr; (6)

dcT i i
vi
i

dt
¼ Jr � Jup þ Jbi; (7)

dcT

vjsr

jsr

dt
¼ �Jir þ Jni; (8)

and

vnsr
dcTnsr
dt

¼ Jiup � Jni þ Jbsr ; (9)



Synchronization of Triggered Waves
where the definitions and descriptions of the fluxes are given in Table 1. For

clarity, we note here that each flux refers to the total flux because of the

thousands of channels connected to the indicated subcellular volume. For

example, Jiup ¼ P
k

Jup;k , where Jup;k is the flux because of the kth SERCA

pump residing in the cell interior. Also, release from the SR into the bound-

ary volume will have the form

Jbr ¼ gbcsrbpbðtÞ ; (10)

where pbðtÞ ¼ nbðtÞ=Nb is the fraction of boundary clusters with an active

spark and where gb is a constant representing the aggregate current flux.

Similarly, release from the JSR into the interior cytosol will have the form

Jir ¼ gicjsrpiðtÞ ; (11)

where piðtÞ ¼ niðtÞ=Ni and where gi is a proportionality constant. Details of

the model equations after suitable rescaling of volume factors, along with a

treatment of the relevant Ca buffers, is given in the Supporting Materials

and Methods.
FIGURE 2 Markovian model of the LCC current. Markov states in the

dashed box (spark off) represent channels facing low Ca (0.1 mM), whereas

channels outside the box (spark on) face a Ca spark with high local Ca

(100 mM). Red lines indicate Ca-dependent rates. To see this figure in color,

go online.
A population-based model of the LCC Markov
model

To model the LCC current, we develop a Markovian model based on that

introduced by Mahajan et al. (17). A challenge of applying a Markovian

approach is that the Ca sensed by LCCs is highly nonuniform in the cell

because some channels are in the vicinity of Ca sparks and others are

not. To solve this problem, we split our population of LCCs into two groups

of Markov states. The first group, which we will refer to as the ‘‘spark off’’

group, is shown inside the dashed box (Fig. 2) and represents LCCs that are

far from active sparks. The Markov states describing these channels

consist of two closed states ðC1;C2Þ, one open state ðOÞ, and two inactive

states ðI1; I2Þ, with red arrows denoting Ca-dependent rates. Because these

channels are not in the vicinity of a Ca spark, their Ca-dependent transition

rates depend only on the diastolic Ca concentration in the cell, which will be

set at [Ca] ¼ 0.1 mM. On the other hand, LCCs that are in the same junc-

tional space of an active sparks (‘‘spark on’’) are described by Markov states

ðCS1;CS2;OS; IS1; IS2Þwhich are regulated by a local Ca concentration that
is substantially larger [Ca] ¼ 100 mM. These channels undergo much faster

Ca-induced inactivation. The transition rates between groups of channels is

then easily modeled by letting open LCCs in the ‘‘spark off’’ group transi-

tion to the ‘‘spark on’’ group at a rate that is simply the spark recruitment

rate ab. Similarly, the reverse transition will be set to the rate that sparks

extinguish bb. This approach accounts for the known relationship between

the inactivation of the whole cell LCC current and the amount of Ca

released into the cell (1). Here, this coupling is modeled by keeping track

of the population of LCCs that are regulated by a high or low local Ca con-
TABLE 1 Description of Ca fluxes in the Phenomenological

Model

Flux Description

Jbr Total RyR flux from the boundary SR to the boundary

cytosolic space.

Jbup Total uptake flux from cytosol to SR on the boundary.

Jir Total RyR flux from JSR to cytosolic space in the

cell interior.

Jiup Total uptake flux from cytosol into the bulk NSR

in the cell interior.

Jbi Total diffusive flux from boundary to interior cytosol.

Jbsr Total diffusive flux from boundary to interior NSR.

Jni Total diffusive flux from NSR to JSR in cell interior.

JCa Total LCC current at cell boundary.

JNaCa Total NaCa exchanger current at the cell boundary.
centration due to local Ca sparks. Detailed model parameters describing the

channel transitions rates are given in the Supporting Materials andMethods.
The rate of spark recruitment at junctional
clusters

In this section, we develop a phenomenological model of the spark recruit-

ment and extinction rates. To guide in the model construction, we will rely

on a physiologically based atrial cell model developed previously by Shi-

feraw et al. (9). In this model, which is based on a ventricular cell model

attributable to Restrepo et al. (12,13), Ca cycling is described by stochastic

simulation of thousands of individual ion channels, which are distributed in

a 3D grid representing the cell. Here, we will apply this model to develop a

simplified model of the spark recruitment rate. As a starting point, we will

first consider the rate of spark recruitment at junctional sites near the cell

boundary. To assess the dependence of the spark rate on system parameters,

we consider the response of the cell to a rectangular AP clamp from

Vmin ¼ �85 mV to Vmax. We apply this voltage clamp and measure the

peak number of Ca sparks that are recruited at the cell boundary during a

200-ms duration at Vmax: In Fig. 3 A, we plot peak ICa and the peak number

of sparks recruited in the cell ðnmaxÞ as a function of Vmax . We find that the

maximal number of sparks mirrors the peak Ca entry into the cell. This rela-

tionship is well known in the experimental literature and is referred to as

graded release (1). To model this effect, we will take the spark recruitment

rate to be proportional to the Ca influx due to open LCCs that are not facing

an active Ca spark. Thus, we let abfPO � iCa, where PO is the fraction of

LCCs in the open state O (see Fig. 2), and iCa is the current through an open

LCC. To complete our phenomenological model, we note that spark recruit-

ment should be highly sensitive to the SR Ca load. This is because the SR

load dictates the gradient of Ca across RyR channels and therefore sensi-

tizes the channel to Ca. Furthermore, RyR channels themselves are directly

sensitive to luminal Ca concentration in the SR. To analyze this effect, we

again apply our 3D computational model to determine the relationship be-

tween spark recruitment and SR load. In Fig. 3 B, we plot the maximal num-

ber of Ca sparks at junctional sites that are elicited in response to our

rectangular voltage clamp. Indeed, we find that spark recruitment at junc-

tional sites is small for SR loads below a threshold c�srb�800 mM and

then increases substantially as the SR load is increased above threshold.
Biophysical Journal 115, 1130–1141, September 18, 2018 1133



FIGURE 3 Dependence of boundary Ca release

on system parameters. (A) The red line shows

peak ICa in response to a rectangular voltage clamp

from Vmin ¼ �85 mV to the indicated Vmax. Here,

the current is normalized to its maximal value.

The black line indicates the maximal number of

Ca sparks evoked at junctional sites ðnmaxÞ, normal-

ized to the maximal number of sparks recruited.

The initial SR load is set to 1000 mMwith a voltage

held at Vmin for 10 ms, after which the voltage is

raised to Vmax for 200 ms. The spark number nmax
is the maximal number of sparks recruited in the

200 ms duration at Vmax . A plot of spark number

represents the average of 10 independent simula-

tions. (B) The maximal number of Ca sparks

evoked at junctional sites in response to a rectan-

gular voltage clamp to Vmax ¼ 0 mV, plotted as a

function of the initial SR concentration is shown.

Here, we have normalized the y axis to the maximal

number of sparks recruited at an SR load of 1200

mM. Plots represent the average of 10 independent

simulations. (C) A plot of the maximal number of

Ca sparks at nonjunctional sites in response to an

AP clamp is shown. Each point shown is the

average over 100 independent simulations at the

given initial SR load. (D) A plot of pwave versus the maximal number of boundary sparks recruited. To vary the number of sparks recruited, we scale ICa
from 10 to 150%. At a fixed ICa strength, we compute pwave using 100 independent simulations. To see this figure in color, go online.
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To capture these relationships phenomenologically, we will take a junc-

tional spark rate of the form

ab ¼ ab POjiCa jFðcsrbÞ ; (12)

where ab is a proportionality constant such that ab is in units of sparks/ms.

To model the SR load dependence, we use a sigmoid function of the form

FðcsrbÞ ¼ 1

1þ
�
c�
srb

csrb

�g1
; (13)

so that the spark rate is negligible for JSR loads smaller than c�srb and in-

creases in a nonlinear fashion, dictated by the Hill coefficient g1. Finally,

we will take our extinction rate to be bs ¼ 1=ts, where ts is roughly the

average spark lifetime (�20–50 ms).
The rate of spark recruitment at nonjunctional
clusters

To model spark recruitment at nonjunctional clusters, we develop a

phenomenological model that accounts for Ca wave activation in the

cell interior. Our experimental observations and computational modeling

of the 3D cell model reveal that, during pacing, Ca waves can propagate

from the boundary into the cell interior (9). This typically occurs under

rapid pacing in which the Ca content of the SR is large so that RyR clus-

ters are sufficiently sensitized to support a propagating wave. Under these

conditions, Ca waves are nucleated at the cell boundary because of Ca

sparks that occur at junctional sites. To gain further insight into this nucle-

ation process, we apply our detailed model to determine how propagating

waves in the interior depend on model parameters. To determine these re-

lationships, we drive our 3D cell model with a standard AP clamp wave-

form (Eq. S61). We then measure the relationship between Ca sparks

recruited at the cell boundary and the interior. In Fig. 3 C, we plot the

maximal number of interior Ca sparks recruited as a function of the SR

load. Indeed, we find that for low SR loads, Ca waves do not propagate
1134 Biophysical Journal 115, 1130–1141, September 18, 2018
in the cell interior, and there is a negligible number of Ca sparks in the

cell. However, for SR loads above �1000 mM, we find that Ca waves

begin to propagate in the cell interior, and the number of Ca sparks in-

creases substantially with increasing load. Similarly, in Fig. 3 D, we

plot the probability that a Ca wave propagates in the cell, denoted as

pwave, as a function of the maximal number of Ca sparks recruited at

the cell boundary. To vary Ca spark recruitment at the boundary, we

vary the ICa conductance from 10 to 150%. If the number of nonjunctional

sparks exceeded 500 after the AP upstroke, then we say that a Ca wave

propagated in the cell interior. Empirically, we found that 500 sparks re-

sulted in a convenient threshold to distinguish between fluctuations due

to spontaneous Ca sparks and a full Ca wave that propagated in the

cell. We then compute pwave as the number of simulation runs a wave

occurred divided by the total number of simulations. In this case, we

compute pwave from 100 independent runs at varying ICa conductances.

In Fig. 3 D, we plot pwave as a function of the maximal number of bound-

ary sparks recruited. Indeed, we find that pwave increases with the number

of Ca sparks recruited at junctional sites. This result demonstrates that the

probability of wave nucleation in the cell interior is tightly controlled by

Ca release at the boundary.

To model the essential features of this process using our simplified spark-

rate approach, we note that 1) the spark rate ai must couple to the number of

Ca sparks recruited at the cell boundary such that an increase of nb will pro-

mote the nucleation of a wave that activates interior sites; 2) once a suffi-

cient amount of nonjunctional sparks are triggered, the number of sparks

will then increase further as a propagating wave proceeds to activate

more sparks; and 3) finally, as indicated by Fig. 3 C, spark recruitment in

the interior should also have a nonlinear threshold dependence on the SR

load. To capture these features, we will model the nonjunctional spark

rate using a phenomenological function of the form

ai ¼ ðaiFðpbÞ þ biGðpiÞÞf
�
cjsr

�
: (14)
Here, the coupling between the fraction of active boundary sites pb and
the rate of spark recruitment in the interior is governed by a function of

the form



FIGURE 4 Cytosolic Ca transient in the cell interior ðciÞ and boundary

ðcbÞ as a function of time. Here, the cell is paced for 100 beats to reach a

steady state, after which we plot the Ca concentrations and membrane

voltage. In (A), CL¼ 500 ms, and in (B), CL¼ 250 ms. For (B), the voltage

trace corresponds to the beats indicated by the black horizontal line. The

APD at which a large Ca release occurred is indicated with a red arrow.

To see this figure in color, go online.
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FðpbÞ ¼ 1

1þ
�
p�
b

pb

�gb
; (15)

so that nonjunctional sparks are ignited at a rate that increases with the frac-

tion of activated boundary clusters pb. Here, p
�
b denotes the threshold for

excitation from the boundary, and gb gives a measure of the nonlinearity

of the activation process. Now, once sparks are formed in the interior,

they can then propagate and recruit more sparks provided a wave nucleation

threshold has been crossed. To model this effect, we will take

GðpiÞ ¼ 1

1þ
�
p�
i

pi

�gi
; (16)

where p�i is the nucleation threshold and where gi is the Hill coefficient that

characterizes the nonlinearity. Thus, a Ca wave is said to occur when

pi > p�i , and the internal spark rate is substantially increased. Here, ai and

bi are adjustable constants that parametrize the relative strength of bound-

ary-activated sparks and sparks activated by the Ca wave. Finally, we also

introduce a nonlinear SR load dependence given by

f
�
cjsr

� ¼ 1

1þ
�
c�
jsr

cjsr

�g2
; (17)

which ensures that Ca waves occur mostly above a threshold c�jsr . We point

out here that Ca waves can be formed if pi increases above the threshold

because of stochastic fluctuations alone. This scenario corresponds to the

well-known spontaneous Ca waves that occur during Ca overload condi-

tions and in the absence of LCC triggering. Hence, both spontaneous and

triggered waves can be described using the phenomenological spark rate

given by Eq. 14.
RESULTS

Model response to pacing with atrial AP model

To model rapid pacing, we have integrated our Ca cycling
equations with the major ion currents from the Grandi
et al. (18) human atrial cell model. In particular, we incorpo-
rate their ion current formulations for the fast Na current
ðINaÞ, the rapidly activating delayed rectifier Kþ current
ðIKrÞ, the slowly activating delayed rectifier Kþ current
ðIKsÞ, the ultrarapid delayed rectifier Kþ current ðIKurÞ, the
inward rectifier Kþ current ðIK1Þ, the transient outward Kþ

current ðItoÞ, the Naþ=Kþ exchange current ðINaKÞ, and
finally, the NaCa exchanger (NCX) current ðINaCaÞ. All Ca
cycling components of the original Grandi et al. (18) AP
model have been replaced with the Ca cycling equations
given in Eqs. 5, 6, 7, 8, and 9. In Fig. 4 A, we plot the
steady-state boundary cytosolic Ca concentration cb, along
with the internal concentration ci, at a pacing CL of
500 ms. Here, we see that cb tracks the periodic AP, whereas
Ca release at the interior is small. Under these conditions,
we find that the spark activation rate in the cell interior ai

is small so that the fraction of internal sparks pi is below
the wave activation threshold p�i , and no triggered waves
occur in the cell interior. Now, when the cell is rapidly paced
at CL¼ 250 ms, Ca release at the interior then exhibits large
intermittent release events (Fig. 4 B, red line) where the Ca
transient in the interior ci rises substantially. These release
events correspond to large increases in the fraction of acti-
vated sparks pi, which represents the effect of triggered
Ca wave propagation in atrial myocytes. Closer inspection
shows that these excitations are due to a larger recruitment
of boundary sparks, which is due to the increased SR
loading at rapid pacing rates, which initiate regenerative
spark activation in the cell interior. Furthermore, our
computational model indicates that these large Ca release
events induce fluctuations in the APD. In particular, we
find that the APD is prolonged on the beats in which the
Ca release is large, which is because of the increased inward
INaCa on that beat. Consequently, the next APD is smaller
(Fig. 4 B, bottom trace) because of the reduction of the pre-
vious DI, which leads to less time for recovery of the LCCs.
Thus, large Ca release events in the interior lead to a
sequence of long-short (LS) APD fluctuations.

To further explore the system response to rapid pacing, in
Fig. 5 A, we plot the APD for the last 40 beats of a simula-
tion of 200 beats for a range of CL. Here, we find that sto-
chastic APD fluctuations due to triggered waves begin to
occur for CLs below �500 ms. The frequency of these
events increases as the CL is decreased, such that at CL ¼
450 ms pacing (see inset) there are triggered release events
every 20–40 beats, whereas at CL ¼ 250 ms, these events
Biophysical Journal 115, 1130–1141, September 18, 2018 1135



FIGURE 5 (A) Steady-state APD as a function of

CL. In this simulation, we pace the cell for 200

beats, at a given CL, and then plot the APD for

the last 30 beats. The APD is computed as the dura-

tion between stimulus time and when

VðtÞ ¼ �50 mV during repolarization. The inset

shows example traces of the interior Ca concentra-

tion ci at CL ¼ 450 ms and CL ¼ 250 ms. (B) The

mean waiting time between large Ca release events

as a function of pacing CL. The mean waiting time

was computed by pacing to a steady state and then

measuring the time to the next triggered wave after

t ¼ 1000 ms. A triggered wave is designated to

occur when ci > 0.8 mM. The mean waiting time

is computed by averaging over 200 independent

simulations.
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are more frequent. To characterize the statistics of APD fluc-
tuations in Fig. 5 B, we compute the mean waiting time be-
tween internal Ca release events. Here, we find that the
timing to a triggered wave increases exponentially with
increasing CL. This result is qualitatively similar to experi-
mental measurements of triggered waves in isolated cells
from a normal dog atria (7). There, it was found that rapid
pacing increases the wave frequency so that a triggered
wave was observed every few beats at CLs in the range of
200–300 ms.
FIGURE 6 (A) The steady-state APD is shown for the last 30 beats after

pacing to a steady state for 200 beats. Sustained APD alternans are observed

during the range of CLs indicated by the shaded area. (B) The time course

of steady-state ci and VðtÞ when the cell is paced at CL¼ 300 ms. Note that

Ca release occurs only every other beat. All model parameters are the same

as that used in Fig. 5 with the exception of the threshold p�b, which has been
reduced from 0.5 to 0.44. To see this figure in color, go online.
Alternans

Our computational model can be used to explore Ca cycling
dynamics in atrial myocytes under a variety of experimental
conditions. In a previous study (7) on dog atrial myocytes,
we showed that upon the application of isoproterenol and
caffeine, these myocytes exhibited Ca transient alternans
when they were paced at rapid rates. A close inspection of
the corresponding line scan images reveals that these alter-
nans are due to synchronized wave activation, which occurs
only on alternate beats. Using our phenomenological model,
we find an alternans regime at rapid pacing rates after
decreasing the threshold p�b, which increases the coupling
between internal and boundary sites. This change is moti-
vated by a variety of previous experimental findings
showing that both isoproterenol and caffeine likely increase
the open probability of RyR, which should increase the like-
lihood of wave propagation. In Fig. 6 A, we show the bifur-
cation diagram of the model when we reduce the threshold
for boundary activation from p�b ¼ 0:5 to p�b ¼ 0:44, while
keeping all other parameters the same as that used in
1136 Biophysical Journal 115, 1130–1141, September 18, 2018
Fig. 5 A. Here, we find that there is a range of CLs (shaded
region) at which the APD alternates, on average, from a long
to short APD. In Fig. 6 B, we show the Ca transient ci along
with the membrane voltage at CL¼ 300 ms, which indicates
that during alternans the large internal Ca release occurs
only on alternate beats. In this case, the underlying mecha-
nism for alternans is straightforward. Effectively, a triggered
excitation occurs in the cell interior at a given beat but fails
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on the next because of insufficient recovery time of the SR
load. To confirm this physical picture, we have also applied
our detailed 3D computational model to image subcellular
Ca during alternans. Indeed, we find that at rapid rates the
system readily exhibits sustained alternans in which wave
propagation only occurs on alternate beats (see Fig. S1).
Finally, in Fig. S2, we present, to our knowledge, new
confocal line scan imaging data showing this alternans
mode in a dog atrial cell in heart failure.
Synchronization of Ca waves in tissue

Our model simulations reveal that the initiation of triggered
waves is a stochastic process. Thus, in cardiac tissue with
thousands of coupled myocytes, it is unclear how these sto-
chastic events can summate to induce triggered activity.
More precisely, electrical coupling between myocytes will
simply average the voltage over the electrotonic length
and therefore substantially minimize APD fluctuations due
to triggered waves. Furthermore, we note from Fig. 4 B
that a triggered Ca wave leads to a LS APD sequence.
This implies that if two neighboring cells undergo a trig-
gered excitation on alternate beats then electrical coupling
will average the long and short APD so that the average
APD will be substantially smaller than if both excitations
occur on the same beat. Therefore, for triggered waves to
be arrhythmogenic, it is essential for them to be synchro-
nized in tissue over thousands to millions of cells.

Synchronization due to CL perturbation

In this study, we propose two distinct synchronization mech-
anisms that substantially amplify the effect of triggered
waves in cardiac tissue. The first mechanism is based on
the observation that a prolongation of the pacing CL will
lead to an increased SR load at the beginning of the next
beat, because there will be more time for SERCA to load
Ca into the SR. Therefore, we expect that triggered excita-
tions in atrial myocytes will be more synchronized after a
fluctuation that increases the CL. In Fig. 7 A, we show
that an increase in CL from 400 to 700 ms leads to a trig-
gered excitation on the next beat. By plotting the interior
NSR load during the prolonged beat, we confirm that the
SR load is larger at the time of the next stimulus after a
CL prolongation. Thus, the probability of a triggered excita-
tion is increased because the SR is more primed for wave
propagation. In Fig. 7 B, we pace a cell for 20 beats at
CL ¼ 300 ms and compute the probability of a triggered
excitation on the 20th beat ðPtwÞ as a function of the CL
on the 19th beat (CL19). We find that Ptw increases as
CL19 is increased above the baseline CL. The effect of
this increased synchronization in cardiac tissue is substan-
tial. In Fig. 7 C, we show the spatial distribution of APD
when a cable of 210 cells is paced at CL ¼ 300 ms and
with a prolonged CL19 ¼ 450 ms. Here, model parameters
are chosen so that the middle 50 cells (80–130) exhibit trig-
gered waves at the baseline pacing of CL¼ 300 ms, whereas
cells outside do not exhibit triggered waves. To accomplish
this, we set the threshold for excitation to be p�b ¼ 0:5 for
cells prone to triggered waves and p�b ¼ 0:6 otherwise.
Fig. 7 C shows the APD distribution for the four last beats
showing that the prolonged CL dramatically amplifies the
APD variation on the next beat (APD20). In this case, we
find that triggered excitations in the ‘‘unhealthy’’ patch
lead to APD fluctuations that are �5 ms, whereas after the
FIGURE 7 The response of the system to a pro-

longation of CL. (A) Atrial cell model paced at

CL ¼ 400 ms followed by a prolonged beat with

CL19 ¼ 700 ms is shown. The bottom trace shows

the NSR load inside the cell as a function of time.

(B) The probability of triggered wave ðPtwÞ as a

function of prolonged beat duration CL19 is shown.

The cell is paced for 20 beats at CL ¼ 300 ms, and

Ptw is computed on the 20th beat. The criterion for

excitation is that ci > 0.8 mM during the 20th beat.

(C) A plot of the APD on a cable of 210 cells that is

paced at CL ¼ 300 ms with CL19 ¼ 450 ms is

shown. Cells from 80 to 130 are set with

p�b ¼ 0.5 and p�b ¼ 0.6 otherwise (i.e., triggered

waves only occur on the central patch). In this

simulation, we solve the cable equation for voltage

with DV ¼ 5 � 10�4 cm2/ms, space step

Dx ¼ 0.015 cm, and time step dt ¼ 0.1 ms. To

see this figure in color, go online.
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prolonged beat, this change is amplified to �30 ms. We
point out that APD fluctuations in the unhealthy patch dur-
ing the base CL pacing can fluctuate above or below the
APD of normal cells. This is because a triggered excitation
leads to a LS sequence, and in the absence of synchroniza-
tion, the spatial average can be either above or below the
APD in the absence of the triggered excitation. Therefore,
partial synchronization of the healthy patch over one beat
leads to a substantial effect in tissue by negating this cancel-
lation effect. This result implies that the effect of triggered
waves on cardiac tissue is highly sensitive to variations
in CL.
Synchronization due to bidirectional feedback

A second mechanism for wave synchronization occurs when
cells are in the alternans regime. In this parameter regime,
we find that the bidirectional coupling between Ca release
and APD can gradually force a population of coupled cells
to fire triggered waves on the same beat. In Fig. 8, A–C, we
show the peak of the interior Ca concentration ci, at the indi-
cated beat number, on a cable of 50 electrically coupled
cells. Here, we pace all cells in the cable at CL ¼ 300 ms
and choose parameters identical to Fig. 6 A so that all cells
are in the triggered alternans regime. In this simulation, a
triggered Ca release in the cell interior leads to a large
peak ci �4 mM, whereas a beat in which no internal release
occurs has a much smaller peak Ca (ci �0.2 mM). After pac-
ing for many beats, we find that the triggered release events
become gradually more synchronized so that after 60 beats
most cells have a triggered excitation on the same beat
(Fig. 8 C). For the same simulation, we have also computed
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the APD at a specific cell (Fig. 8 D). Our simulations show
that APD alternans amplitude grows with beat number as the
cell is paced. This is expected because the synchronization
of triggered waves on the cable will lead to a larger effect
on the APD. In Fig. 8 E, we show the spatial distribution
of APD on a cable of 400 cells that has been paced for
100 beats. At beats 40 and 41, we find a random pattern
of APD fluctuations due to stochastic triggered waves that
are spatially averaged by the electrical coupling between
cells. At beats 100 and 101, we find that the cable has
self-organized into synchronized regions of a size �100
cells. Within these regions, triggered Ca release is synchro-
nized, and the amplitude of APD alternans is large. Thus,
when each individual cell exhibits triggered wave alternans,
then the longtime evolution of a piece of tissue exhibits
spatially discordant alternans, in which the phase of alter-
nans changes over a characteristic length scale that is
much larger than a single cell.
DISCUSSION

In this study, we have developed a computationally tractable
model of Ca cycling in atrial myocytes. The main feature of
this model is that it accounts for the unique spatial architec-
ture of these cells, which do not have a well-developed TT
system. Thus, Ca signaling in atrial cells occurs mainly at
the cell boundary at junctional clusters where RyR and
LCCs are in close proximity. However, the large number
of nonjunctional RyRs in the cell interior can fire Ca sparks
so that propagating Ca waves can be triggered by excitations
at the cell boundary. The essential feature of these waves is
that they are initiated by LCC openings and can therefore
FIGURE 8 Synchronization of triggered waves

due to bidirectional feedback with APD. (A–C)

Black squares denote the peak of the Ca transient

on a cable of 50 cells at beats 20, 40, and 60. (D)

APD at cell 10 as a function of beat number is

shown. (E) APD on two alternate beats as a func-

tion of cell number on a cable of 400 cells is shown.

Traces show APD at beat 40 and 41, and bottom

traces shows beat 100 and 101. To see this figure

in color, go online.
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occur during pacing. It is this feature that makes them
particularly arrhythmogenic because they can disrupt the
rhythmic beating of the cell. Here, we have developed a
phenomenological model that describes triggered waves
by keeping track of the number of Ca sparks at both junc-
tional and nonjunctional sites. In this approach, a triggered
wave is modeled as an autocatalytic event in which the num-
ber of sparks at nonjunctional sites increases, leading to a
rise in the Ca concentration in the cell interior. This process
is coupled to Ca sparks at junctional sites at the cell bound-
ary so that during pacing the cell interior behaves as a sto-
chastic excitable system that is driven periodically. Our
model accounts for the stochastic nature of the release pro-
cess by modeling spark activation and extinction as a bino-
mial random process. In this way, we are able to model
experimentally measured features of triggered waves such
as their stochasticity and nonlinear dependence on SR
load. This phenomenological approach leads to a substantial
decrease in computational cost, as compared to detailed 3D
computational models that simulate the stochastic dynamics
of hundreds of thousands of individual ion channels. Thus,
the model developed here can be implemented to study
3D atrial tissue involving millions of electrically coupled
cells.

At the single-cell level, our model allows us to study Ca
cycling in atrial myocytes under rapid pacing conditions.
The main result is that during rapid pacing the SR Ca load
increases, which promotes the formation of triggered waves.
These triggered waves are stochastic, and so the appropriate
way to characterize their timing is by computing the mean
waiting time (Fig. 5 B). Our simulations reveal that the
mean waiting time decreases exponentially as the cell is
paced faster. This result is consistent with experiments in
dog atrial cells, which show that triggered waves occur
with greater frequency at rapid pacing rates (7) but are
essentially never observed at slow pacing rates. Further-
more, we find that if a triggered wave occurs at a given
beat then the APD on that beat is prolonged because of
the increased inward current due to NaCa exchanger. This
APD prolongation leads to a shortened DI and therefore a
shortened APD on the next beat because the LCC current
will be reduced because of the lesser time for recovery
from inactivation. Therefore, a triggered wave leads to a
LS sequence of APD, which will be arrhythmogenic
because an early afterdepolarization can potentially occur
at the long APD and therefore initiate a propagating beat.
Also, if the triggered wave is substantially delayed then it
can occur during the DI and generate inward currents that
can potentially trigger a premature excitation (i.e., a delayed
afterdepolarization). Our computational model also re-
vealed that the excitation of triggered waves is a highly
nonlinear process, which makes an atrial myocyte prone
to alternans. In this model, an alternans response occurs at
rapid rates when the nonlinear activation of the cell interior
is engaged. In this case, a mode can occur in which a Ca
wave is triggered only at every other beat. This pattern
has been observed experimentally under exposure to isopro-
terenol or caffeine (7), which are known to increase RyR
open probability and Ca waves. In the Supporting Materials
and Methods, we also show a line scan image showing clear
triggered wave alternans in dog atrial cells in heart failure
(Fig. S2). It is likely that in heart failure the RyR open prob-
ability is also increased, which engages the nonlinearity that
leads to alternans. These results indicate that the architec-
ture of atrial myocytes makes them particularly prone to al-
ternans given the nonlinear dependence of triggered wave
nucleation on key factors such as the SR load and the likeli-
hood of sparks at junctional clusters.

The primary goal of this study was to develop a compu-
tational model that can be used to explore how triggered
waves can induce electrical excitations on the tissue scale.
A crucial finding of our simulations is that synchronization
of triggered waves in a population of cells is essential for ar-
rhythmogenic perturbations of membrane voltage to occur.
This is true because triggered waves are stochastic; there-
fore, in the absence of synchronization, the net effect in tis-
sue will be for electronic effects to simply average out
excitations at the cell scale. During pacing, we expect that
voltage diffuses during one paced beat a distance of roughly
x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

DVCL
p

, where DV ¼5� 10�4cm2=ms is the effective
diffusion coefficient of voltage in cardiac tissue. Thus, we
expect the AP to be averaged out over a length scale
x �1–5 nm, which in 3D tissue, corresponds to a volume
containing several hundred thousand cells. Thus, randomly
occurring triggered waves will be spatially averaged, and
tissue scale APD fluctuations will be small. Furthermore,
we note that in response to a triggered wave, the APD of
a single cell will alternate in a LS sequence. Thus, if trig-
gered waves are randomly timed then the long and
short APDs will tend to cancel in a population of cells.
Therefore, it is absolutely crucial for triggered waves to
be synchronized to significantly perturb the voltage of a
mass of cardiac tissue.

To achieve synchronization, we have explored two
distinct mechanisms. The first relies on the prolongation
of the CL on a given beat, which leads to a larger SR load
on the next beat and therefore a larger number of triggered
waves. This effect is substantial on a one-dimensional cable
in which a segment is vulnerable to triggered waves. Here,
we find that CL prolongation at a given beat dramatically
amplifies the amplitude of the local APD by synchronizing
local release events. In effect, the synchronized response to
a CL prolongation negates the cancellation of randomly
timed LS APD perturbations. Here, we point out that this ef-
fect is not restricted to atrial tissue but can also be applied to
the ventricle. In the ventricle, we do not expect triggered
waves because TTs are highly developed, and there is little
space for triggered excitations to form. In that case, arrhyth-
mogenic activity is likely driven by spontaneous Ca waves,
which typically occurs during the DI. In this case, it is clear
Biophysical Journal 115, 1130–1141, September 18, 2018 1139



Shiferaw et al.
that if these spontaneous waves are to induce tissue scale ex-
citations, they will have to be highly synchronized. Our
findings suggest that a prolongation of CL will likely syn-
chronize Ca release activity by forcing all cells in the tissue
to a acquire a higher SR load on the same beat. In the clin-
ical setting, there is some evidence that large variations in
CL are associated with the onset of spontaneous arrhythmias
(19–21). In particular, several studies have shown that ven-
tricular tachycardia in some patients tends to occur immedi-
ately after a long inter beat interval (19). In other cases,
there is evidence that ventricular tachycardia occurs with
higher likelihood after a short-long inter beat interval that
is caused by an early premature ventricular contraction fol-
lowed by a long interval due to a missed sinus beat (20). Our
analysis suggests that such a sequence is highly arrhythmo-
genic because the resulting large variations in CL will syn-
chronize Ca waves after the long pause. Thus, our study
indicates that Ca wave synchronization may be crucial to
understand the initiation of some spontaneous cardiac
arrhythmias.

The second mechanism for triggered wave synchroniza-
tion occurs when the single cell exhibits triggered wave al-
ternans. When this occurs, we find that the bidirectional
feedback between the APD and Ca cycling can lead to a
gradual synchronization of triggered waves over many
beats. The underlying mechanism for this has been
described previously in a study by Sato et al. (22). To
explain this mechanism in this context, let us first identify
the two possible triggered wave sequences as follows: phase
1: triggered wave–no wave–triggered wave–no wave and
phase 2: no wave–triggered wave–no wave–triggered wave.

Now, when a population of cells is paced, we will have a
random collection of n1 cells in phase 1 and n2 cells in phase
2. Let us assume that n1 >n2 so that there are more cells in
phase 1. If this occurs, then the APD will alternate by a
small amount in synchrony with phase 1. Now, the APD
will feed back on triggered waves on the next beat because
the DI is smaller, and the probability of triggered waves on
the next beat will be reduced. In this way, the APD will
gradually synchronize triggered waves so that after many
beats segments of a long cable will tend to form regions
of synchronized triggered waves on a length scale compara-
ble to �x. Given that the phase of a given synchronized re-
gion is sensitive to the initial distribution of alternans phase,
then we expect that these synchronized patterns will tend to
form out-of-phase regions on the length scale x (i.e., the sys-
tem will form spatially discordant alternans with a wave-
length set by the electrotonic coupling). Thus, at a steady
state, we expect large APD fluctuations because triggered
waves will be synchronized over hundreds of thousands
of cells.

The synchronization mechanisms introduced here are
crucial for subcellular Ca cycling activity to induce
arrhythmia triggers on the tissue scale. In particular, spatially
discordant alternans of APD in cardiac tissue is highly
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arrhythmogenic for two reasons. Firstly, we expect that a syn-
chronized region of triggered waveswill induce substantially
larger inward currents, which can initiate an early afterdepo-
larization or delayed afterdepolarization, depending on the
average timing of the triggered Ca waves. Thus, we expect
that focal excitations in tissue will originate from patches
where triggered waves occur effectively in unison. Secondly,
spatially discordant alternans introduce large dynamical het-
erogeneities in cardiac tissue (23,24). In effect, as shown in
Fig. 8 E, the APD can vary substantially near the nodes that
separate out-of-phase regions. This heterogeneity is expected
to be highly arrhythmogenic because a triggered excitation
from a focal source will then tend to break in the regions of
large APD and propagate in regions where APD is reduced.
Finally, we highlight the general picture that triggered
wave alternans are particularly dangerous because their pres-
ence leads to a dramatic simplification of the system dy-
namics in which cells can lie in one of two possible
dynamical states that differ only by a phase. It is this reduc-
tion of the range of dynamical possibilities that allows the
APD synchronizationmechanism to take effect and therefore
amplify the resulting tissue scale voltage perturbations. Our
work indicates that perhaps it is this feature of alternans
that explains their strong correlation to arrhythmias in a
wide range of contexts (25). Finally, we stress the fact that
the mechanisms described here are robust in the sense that
they do not depend on the detailed mechanisms of calcium-
induced-calcium release and Ca wave propagation in atrial
myocytes. The essential requirement is simply that Cawaves
propagate in the cell and that their occurrence is regulated by
the membrane voltage via the L-type Ca current. Thus, we
expect the mechanisms proposed here to be relevant in a
more general context in which Ca waves occur and are sensi-
tive to changes in the membrane voltage.
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Phenomenological model equations 

Ca concentration equations 

To model the dynamics of Ca we divide the cell interior into compartments that represent various intracellular spaces.  

These spaces are illustrated in Figure 1D and described in detail in the main text.   The total Ca concentration in each 

compartment obeys the Ca flux equations: 

𝑣𝑏

𝑑𝑐𝑏
𝑇

𝑑𝑡
= 𝐽𝑟

𝑏 − 𝐽𝑢𝑝
𝑏 − 𝐽𝐶𝑎 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑏𝑖, (1) 

𝑣𝑠𝑟𝑏

𝑑𝑐𝑠𝑟𝑏
𝑇

𝑑𝑡
= −𝐽𝑟

𝑏 + 𝐽𝑢𝑝
𝑏 − 𝐽𝑏𝑠𝑟, (2) 

𝑣𝑖

𝑑𝑐𝑖
𝑇

𝑑𝑡
= 𝐽𝑟

𝑖 − 𝐽𝑢𝑝
𝑖 + 𝐽𝑏𝑖, (3) 

𝑣𝑗𝑠𝑟

𝑑𝑐𝑗𝑠𝑟
𝑇

𝑑𝑡
= −𝐽𝑟

𝑖 + 𝐽𝑛𝑖, (4) 

𝑣𝑛𝑠𝑟

𝑑𝑐𝑛𝑠𝑟
𝑇

𝑑𝑡
= 𝐽𝑢𝑝

𝑖 − 𝐽𝑛𝑖 + 𝐽𝑏𝑠𝑟  . (5) 

 

The definition of each of these currents is given in Table 1 in the main text.  For convenience we rescale the boundary 

and interior currents to the volume of the respective cytosol and make the replacements: 

𝐽𝑟
𝑏

𝑣𝑏
→ 𝐽𝑟

𝑏  ,      
𝐽𝑢𝑝

𝑏

𝑣𝑏
→ 𝐽𝑢𝑝

𝑏 ,      
𝐽𝑁𝑎𝐶𝑎

𝑣𝑏
→ 𝐽𝑁𝑎𝐶𝑎 ,      

𝐽𝐶𝑎

𝑣𝑏
→ 𝐽𝐶𝑎 ,

𝐽𝑏𝑖

𝑣𝑏
→ 𝐽𝑏𝑖 (6) 

 

𝐽𝑟
𝑖

𝑣𝑖
→ 𝐽𝑟

𝑖  ,      
𝐽𝑢𝑝

𝑖

𝑣𝑖
→ 𝐽𝑢𝑝

𝑖   .  (7) 

The equations are now written with the rescaled currents as 

𝑑𝑐𝑏
𝑇

𝑑𝑡
= 𝐽𝑟

𝑏 − 𝐽𝑢𝑝
𝑏 − 𝐽𝐶𝑎 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑏𝑖, (8) 

𝑑𝑐𝑠𝑟𝑏
𝑇

𝑑𝑡
= (

𝑣𝑏

𝑣𝑠𝑟𝑏
) (−𝐽𝑟

𝑏 + 𝐽𝑢𝑝
𝑏 ) − (

1

𝑣𝑠𝑟𝑏
) 𝐽𝑏𝑠𝑟, (9)  

𝑑𝑐𝑖
𝑇

𝑑𝑡
= 𝐽𝑟

𝑖 − 𝐽𝑢𝑝
𝑖 + (

𝑣𝑏

𝑣𝑖
) 𝐽𝑏𝑖  , (10) 

𝑑𝑐𝑗𝑠𝑟
𝑇

𝑑𝑡
= (

𝑣𝑖

𝑣𝑗𝑠𝑟
) (−𝐽𝑟

𝑖 ) + (
1

𝑣𝑗𝑠𝑟
) 𝐽𝑛𝑖  , (11) 
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𝑑𝑐𝑛𝑠𝑟
𝑇

𝑑𝑡
= (

𝑣𝑖

𝑣𝑛𝑠𝑟
) 𝐽𝑢𝑝

𝑖 − (
1

𝑣𝑛𝑠𝑟
) 𝐽𝑛𝑖 + (

1

𝑣𝑛𝑠𝑟
) 𝐽𝑏𝑠𝑟 . (12) 

Note here that all current fluxes are now in units of 𝜇𝑀/𝑚𝑠.       It is also convenient to rescale the diffusive currents   

𝐽𝑏𝑠𝑟

𝑣𝑠𝑟𝑏
→ 𝐽𝑏𝑠𝑟  ,   

𝐽𝑛𝑖

𝑣𝑗𝑠𝑟
→ 𝐽𝑛𝑖  . (13) 

So we can write the final equations as 

𝑑𝑐𝑏
𝑇

𝑑𝑡
= 𝐽𝑟

𝑏 − 𝐽𝑢𝑝
𝑏 − 𝐽𝐶𝑎 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑏𝑖, (14) 

𝑑𝑐𝑠𝑟𝑏
𝑇

𝑑𝑡
= (

𝑣𝑏

𝑣𝑠𝑟𝑏
) (−𝐽𝑟

𝑏 + 𝐽𝑢𝑝
𝑏 ) − 𝐽𝑏𝑠𝑟, (15) 

𝑑𝑐𝑖
𝑇

𝑑𝑡
= 𝐽𝑟

𝑖 − 𝐽𝑢𝑝
𝑖 + (

𝑣𝑏

𝑣𝑖
) 𝐽𝑏𝑖 , (16) 

𝑑𝑐𝑗𝑠𝑟
𝑇

𝑑𝑡
= (

𝑣𝑖

𝑣𝑗𝑠𝑟
) (−𝐽𝑟

𝑖 ) + 𝐽𝑛𝑖 , (17) 

𝑑𝑐𝑛𝑠𝑟

𝑑𝑡
= (

𝑣𝑖

𝑣𝑛𝑠𝑟
) 𝐽𝑢𝑝

𝑖 − (
𝑣𝑗𝑠𝑟

𝑣𝑛𝑠𝑟
) 𝐽𝑛𝑖 + (

𝑣𝑠𝑟𝑏

𝑣𝑛𝑠𝑟
) 𝐽𝑏𝑠𝑟   . (18) 

The diffusive fluxes between compartments are given by 

𝐽𝑏𝑖 =
𝑐𝑏 − 𝑐𝑖

𝜏𝑏𝑖
 , (19) 

𝐽𝑏𝑠𝑟 =
𝑐𝑠𝑟𝑏 − 𝑐𝑛𝑠𝑟

𝜏𝑠𝑏𝑖
, (20) 

𝐽𝑛𝑖 =
𝑐𝑛𝑠𝑟 − 𝑐𝑗𝑠𝑟

𝜏𝑠𝑖
, (21) 

where 𝜏𝑏𝑖  is the diffusion time scale linking the boundary and interior cytosol, 𝜏𝑠𝑏𝑖  is the time scale governing 

diffusion from the internal to boundary SR volumes, and 𝜏𝑠𝑖 is the diffusional delay from interior NSR to JSR.   

 

Buffers 

If 𝑐𝑥
𝑇 denotes the total Ca concentration in compartment 𝑥, 𝑐𝑥 denotes the free concentration, 𝐵 is the total buffer 

concentration, and [𝐶𝑎𝐵] is the concentration of bound buffers then: 

𝑑[𝐶𝑎𝐵]

𝑑𝑡
= 𝑘𝑜𝑛𝑐𝑥(𝐵 − [𝐶𝑎𝐵]) − 𝑘𝑜𝑓𝑓[𝐶𝑎𝐵], (22) 

where 𝑘𝑜𝑛  and 𝑘𝑜𝑓𝑓  is the binding and dissociation rate respectively.   For simplicity we assume instantaneous 

buffering so that the bound Ca is at steady state is 

[𝐶𝑎𝐵] =
𝐵𝑐𝑥

𝑐𝑥 +  𝐾
 , (23) 
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where 𝐾 = 𝑘𝑜𝑛/𝑘𝑜𝑓𝑓.    Therefore, given the presence of multiple buffers with total concentration 𝐵𝑖 and kinetics 𝐾𝑖, 

the total Ca in the cell is given by 

𝑐𝑥
𝑇 = 𝑐𝑥 +  ∑

𝐵𝑖𝑐𝑥

𝐾𝑖 + 𝑐𝑥
𝑖

  . (24) 

In this study we will apply two instantaneous cytosolic buffers.  These are Calmodulin buffers with 𝐵𝐶𝑎𝑀 = 24.0𝜇𝑀 

and 𝐾𝐶𝑎𝑀 = 7.0, and SR buffers with 𝐵𝑆𝑅 = 47.0𝜇𝑀 and 𝐾𝑆𝑅 = 0.6.  An advantage of solving directly for the total 

Ca concentrations (Eqs.  14-18) is that all internal Ca fluxes cancel exactly.   Previous approaches to instantaneous 

buffering did not enforce this exact cancellation and can lead to unphysical fluxes which violate ion conservation.   

However, to apply these equations it is necessary to compute the free from total Ca concentration.   To do this it is 

necessary to invert Eq. (24).     However, since Eq. (24) is nonlinear we will first fit the curve to a simpler  function 

of the form 

𝑐𝑥
𝑇 = 𝑎1𝑐𝑥 +

𝑎2𝑐𝑥

𝑎3 + 𝑐𝑥
   . (25) 

Fitting the buffers for concentrations in the physiological range 0.1𝜇𝑀 ≤ 𝑐𝑥 ≤ 5𝜇𝑀  gives a solution 𝑎1 =

2.23895, 𝑎2 = 52.0344, 𝑎3 = 0.666509.     Inverting Eq. (25) yields the free concentration 

𝑐𝑥 =
1

2𝑎
(−𝑎2 − 𝑎1𝑎3 + 𝑐𝑥

𝑇 + √(𝑎2 + 𝑎1𝑎3 − 𝑐𝑥
𝑇)2 + 4𝑎1𝑎3𝑐𝑥

𝑇)  . (26) 

Therefore, at each time step we use Eq. (26) to compute the free Ca concentration that regulates the Ca fluxes. 

 

The volume factors 

In order to solve the Ca flux equations it is necessary to determine the volume ratios given in Eqs (14-18).  To estimate 

these factors we first note that an atrial myocyte has an approximate volume of 𝑉𝐶𝑒𝑙𝑙 ∼ 15𝜇𝑚 × 15𝜇𝑚 × 60𝜇𝑚.  The 

boundary region will have a thickness of roughly 1.0𝜇𝑚 , so that the  volume of the interior 𝑉𝑖 ∼

13𝜇𝑚 × 13𝜇𝑚 × 58𝜇𝑚, which gives a ratio of boundary to interior of roughly  (𝑉𝑐𝑒𝑙𝑙 − 𝑉𝑖) 𝑉𝑖⁄ ∼ 0.4.    Thus, the 

ratio of cytosolic volumes between the boundary and interior should be approximately in the range ∼ 0.1 − 0.6.   In 

this study we will use a ratio 𝑣𝑏 𝑣𝑖 = 0.3⁄ .      To determine volume ratios with the SR we follow Restrepo et al. (1) 

who estimated that in ventricular myocytes the SR volume is roughly 30 times smaller than the cytosol.    We assume 

that this also applies in atrial myocytes at both the boundary and the interior  spaces so that 𝑣𝑏 𝑣𝑠𝑟𝑏⁄ = 30, and 

𝑣𝑖 𝑣𝑛𝑠𝑟 = 30⁄ .    Also, we assume that the NSR and JSR are roughly the same volume so that 𝑣𝑗𝑠𝑟 𝑣𝑛𝑠𝑟 = 1⁄ , and 

𝑣𝑖/𝑣𝑗𝑠𝑟 = 30. Finally, we set 𝑣𝑠𝑟𝑏 𝑣𝑛𝑠𝑟⁄ = 0.3, since the volume ratio of the boundary and interior SR should 

proportional to the ratio of total available volume.  
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The number of RyR clusters available 

To estimate the number of available RyR clusters we treat the cell as an approximately 3D rectangular grid.  Assuming 

a ∼ 1𝜇𝑚 spacing we estimate that there are roughly ∼ 5000 boundary sites and ∼ 10000 interior sites.   However, 

since we expect that RyR clusters are non-uniform we expect a lesser number of junctional and non-junctional sites.  

In this study we will use 𝑁𝑏 = 2500 and 𝑁𝑖 = 4000.     

 

Spark rate parameters 

The boundary spark recruitment rate is given by 

𝛼𝑏 = 𝑎𝑏𝑃𝑂|𝑖𝐶𝑎|Φ(𝑐𝑠𝑟𝑏) (27) 

where 𝑎𝑏 is a constant, 𝑃𝑂 is the proability of beingin the state 𝑂, 𝑖𝐶𝑎 is the current through the LCC channel, and  

Φ(𝑐𝑠𝑟𝑏) =
1

1 + (
𝑐𝑠𝑟𝑏

∗

𝑐𝑠𝑟𝑏
)

𝛾1
  . (28)

 

The interior spark rate is  

𝛼𝑖 = (𝑎𝑖  𝐹(𝑝𝑏) + 𝑏𝑖 𝐺(𝑝𝑖))𝜙(𝑐𝑗𝑠𝑟), (29) 

where 

𝜙(𝑐𝑗𝑠𝑟) =
1

1 + (
𝑐𝑗𝑠𝑟

∗

𝑐𝑗𝑠𝑟
)

𝛾2
 , (30)

 

𝐹(𝑝𝑏) =
1

1 + (
𝑝𝑏

∗

𝑝𝑏
)

𝛾𝑏
, (31)

 

𝐺(𝑝𝑖) =
1

1 + (
𝑝𝑖

∗

𝑝𝑖
)

𝛾𝑖
  . (32)

 

All parameters used in the model are given in Table (3). 

 

The sodium-calcium exchange current 

In this study we use a standard formulation of 𝐼𝑁𝑎𝐶𝑎 (2).    

𝐼𝑁𝑎𝐶𝑎 = 𝐴𝑁𝑎𝐶𝑎 (
𝑁𝑎𝑖

3𝐶𝑎𝑜 exp(0.35𝑧) − 𝑁𝑎𝑜
3𝑐𝑏 exp((−0.65𝑧))

(1 + 0.2 exp(−0.65𝑧))𝑈
) (33) 

where 𝑧 = 𝑉𝐹/𝑅𝑇, and where  

𝐴𝑁𝑎𝐶𝐴 =
1

1 + (
0.3
𝑐𝑏

)
3   , (34)
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𝑈 = 𝐾𝑚,𝐶𝑎𝑜𝑁𝑎𝑖
3 + 𝐾𝑚,𝑁𝑎𝑜

3 𝑐𝑏 + 𝐾𝑚,𝑁𝑎𝑖
3 𝐶𝑎𝑜 (1 +

𝑐𝑏

𝐾𝑚,𝐶𝑎𝑖
  )

+𝐾𝑚,𝐶𝑎𝑖𝑁𝑎𝑜
3 (1 + (

𝑁𝑎𝑖

𝐾𝑚,𝑁𝑎𝑖 
)

3

) + 𝑁𝑎𝑖
3𝐶𝑎𝑜 + 𝑁𝑎𝑜

3𝑐𝑏 . (35)

 

Model parameters used are: 𝐾𝑚,𝐶𝑎𝑜 = 1.3𝑚𝑀, 𝐾𝑚,𝐶𝑎𝑖 = 0.0036𝑚𝑀, 𝐾𝑚,𝑁𝑎𝑖 = 12.3𝑚𝑀, 𝐾𝑚,𝑁𝑎𝑜 = 87.5𝑚𝑀.  

Concentration parameters are given in Table 4. 

 

The L-type Ca current 

We use a standard formulation of the LCC current.  The driving force is given by 

𝑖𝐶𝑎 = 4𝑃𝐶𝑎𝑧𝐹
𝑐𝑏 exp(2𝑧) − 0.341𝐶𝑎𝑜

exp(2𝑧) − 1
 , (36) 

where 𝑧 = 𝑉𝐹 𝑅𝑇⁄ .  The open probability is governed my the Markov state diagram shown in Figure (3) which is 

solved in the deterministic limit.     The Ca independent transition rates are given by: 

𝛼 =
1

1 + exp (−
𝑉
4

)
  , (37) 

𝛽 = 1 − 𝛼, (38) 𝑟1 = 0.3 , (39) 

𝑟2 = 3.0, (40) 

𝑘1 = 0.00224, (41) 

𝑃3 =
1

1 + exp (−
𝑉 + 40

3
)

, (42) 

𝑘3 =
1 − 𝑃3

3
, (43) 

𝑃𝑟 = 1 −
1

1 + exp (−
𝑉 + 40

4 )
  , (44) 

𝑅 = 10 + 4954 exp (
𝑉

15.6
) , (45) 

𝜏𝐵𝑎 = (𝑅 − 450)𝑃𝑟 + 450 , (46) 

𝑃 =
1

1 + exp (−
(𝑉 + 40)

10 )
 , (47)

 

𝑘6 =
𝑃

𝜏𝐵𝑎
, (48) 

𝑘5 =
1 − 𝑃

𝜏𝐵𝑎
  . (49) 

The Ca dependent transition rates are 
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𝑠1 = 0.00195 + 0.06𝑓𝐶𝑎, (50) 

𝑘2 = 0.00413 + 0.06𝑓𝐶𝑎, (51) 

where the Ca dependence is given by 

𝑓𝐶𝑎 =
1

1 + (
𝑐′

𝑐𝑏
)

2    , (52)
 

and where 𝑐′ = 0.2𝜇𝑀 is the diastolic Ca concentration.     All transition rates between states facing a Ca spark are 

identical with the exception of the Ca transition rates, for which we set 𝑓𝑐𝑎 = 1.   This is because the Ca concentration 

in the vicinity of LCC channels during a Ca should be ∼ 100𝜇𝑀, which will saturate the Ca dependence of the LCC 

channel.      The total open probability is given by the two components 

𝑃𝑡 = 𝑃𝑜 + 𝑃𝑜𝑠 , (53) 

so that we can write the total LCC current as 𝐼𝐶𝑎 = 𝑃𝑡  ⋅ 𝑖𝐶𝑎.   

 

Sodium concentration 

To model the changes in internal sodium concentration we use a function 𝑁𝑎𝑖(𝑇) giving sodium concentration as a 

function of the pacing period 𝑇.    In this study we use a simple linear depenence so that 𝑁𝑎𝑖 = 12𝑚𝑀 at a pacing 

period of 𝑇 = 500𝑚𝑠, and 𝑁𝑎𝑖 = 14𝑚𝑀 at faster pacing rates of  𝑇 = 250𝑚𝑠.    This gives a functional form 

𝑁𝑎𝑖(𝑇) = 16𝑚𝑀 −
𝑇

125 𝑚𝑠
   . (54) 

Ca cycling fluxes 

The explicit Ca cycling fluxes used in Eqs (14-18) are given bellow: 

𝐽𝑟
𝑏 = 𝑔𝑏𝑐𝑠𝑟𝑏𝑝𝑏 , (55) 

 𝐽𝑟
𝑖 = 𝑔𝑖𝑐𝑠𝑟𝑖𝑝𝑖 , (56) 

𝐽𝑢𝑝
𝑏 =

𝑔𝑢𝑝
𝑏 𝑐𝑏

3

𝑐𝑏
3 + 𝑐𝑏

∗3 , (57) 

𝐽𝑢𝑝
𝑖 =

𝑔𝑢𝑝
𝑖 𝑐𝑖

3

𝑐𝑖
3 + 𝑐𝑖

∗3 , (58) 

𝐽𝐶𝑎 = 𝑔𝐶𝑎𝐼𝐶𝑎, (59) 

𝐽𝑁𝑎𝐶𝑎 = 𝑔𝑁𝑎𝐶𝑎𝐼𝑁𝑎𝐶𝑎  . (60) 

Explicit parameters used for each current are  given in Table (1).   

 

Computer simulation times 

We have coupled our Ca cycling model with the major ion currents in the Grandi human action potential model (3).  

The full model consists of 27 differential equations which we solve using a time step of Δ𝑡 = 0.05𝑚𝑠.  Simulations 
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of a single cell paced at 𝐶𝐿 = 250𝑚𝑠 for 100 beats requires 0.4𝑠 of simulation time using a single processor (Intel 

Xeon E5-2667 v3 3.20GHz).    Simulation of 100 beats at the same rate on a 400 cell cable requires 4 minutes of 

simulation time.      

 

Detailed 3D cell model simulations 

In this study we develop a phenomenological Ca cycling model in atrial myocytes.   To justify the various functional 

forms used for the spark recruitment rate we rely on a spatially distributed model of atrial myocytes developed 

previously by the authors(4).    This model is based on a model due to Restrepo et al. (1, 5) in which the cardiac 

myocyte is represented as a 3D array of subcellular compartments that are diffusively coupled.   Full details of the 

model framework and parameters have been given in our previous study (4).  In the simulations performed in Figure 

2A-D our cardiac cell model consists of 60 planes representing Z-planes, where each plane contains an array of 

20 × 20 regularly spaced compartments.   All sites at the boundary of the cell are designated as junctional CRUs, 

while all other sites are non-junctional CRUs.     In this study we consider the dynamics of Ca cycling when the cell 

is paced with an AP clamp.  Our AP clamp is taken to have the functional form (6) given by 

 

𝑉(𝑡) = {
𝑉𝑚𝑖𝑛 + (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)√1 − ((𝑡 − 𝑚𝐶𝐿) 𝑥𝐶𝐿⁄ )2                   𝑚𝐶𝐿 ≤ 𝑡 ≤ 𝑚𝐶𝐿 + 𝑥𝐶𝐿

𝑉𝑚𝑖𝑛                                                                                        𝑚𝐶𝐿 + 𝑥𝐶𝐿 < 𝑡 < (𝑚 + 1)𝐶𝐿
    

   (61) 

 

which mimics a typical AP wave form.   Here, the variable 𝐶𝐿 denotes the pacing cycle length, 𝑚 is an integer 

denoting the 𝑚𝑡ℎ paced beat, and 𝑥 = 𝐴𝑃𝐷/𝐶𝐿.    Following previous studies (6) we let this ratio vary with pacing 

rate according to the functional form 𝑥 = 𝑎/(𝑎 + 𝐶𝐿) where 𝑎 = 2/3.     

 

In Figure S1 we show an example of Ca transient alternans in our 3D computational cell model.   In this case we have 

paced the cell to steady state at 𝐶𝐿 = 250𝑚𝑠.  The top trace shows the total average Ca concentration in the cell 

showing an alternating release pattern.   Figures (a-d) show two dimensional cross sections of the cell at the beats 

indicated by the red arrows.   Here, we see that during alternans the cell exhibits a pattern of triggered wave 

propagation on alternate beats.   In this case we find that the small Ca transient corresponds to a boundary Ca release, 

while the large Ca transient corresponds to triggered waves that originates at multiple sites on the cell boundary.   In 

Figure S2 we show line scan images of triggered wave alternans in an isolated atrial myocyte from a failing dog heart.   

An expanded line scan image of the 5Hz pacing regime shows that Ca release occurs only on alternate beats.  In this 

case we find that the linescan image of the released beat exhibits a standard U-shape release pattern.  This indicates 

that there are multiple release sites on the cell boundary so that Ca propagates inward as a centripetal wave.  Thus, 

the line ends are activated first followed by the center of the cell, which leads to the observed activation pattern.     
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Full details of the experimental methods are given in Aistrup et al. (7).    A more detailed analysis of this dynamical 

pattern will be presented in a future publication.   
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Figures 

Figure S1.  Triggered wave alternans observed in our 3D computational cell model of an atrial myocyte.  Top trace 

shows the global average Ca concentration in the cell.   Bottom figures show two dimensional cross sections at (a) 

20ms after the 3rd beat.  (b) 100ms after the beginning of the 4th beat.  (c) 20ms after the 5th beat.  (d)  100ms after 

the 6th beat.   Model parameters are taken from Shiferaw et al.(4). 

 

Figure S2.    Example of triggered wave alternans in an isolated atrial myocyte from failing dog heart. During 2Hz 

pacing, individual subcellular triggered waves begin to develop, whereupon 3.3Hz pacing manifest across the entire 

length of the cell, and upon 5Hz pacing become essentially severe concordant ‘whole-cell’ Ca alternans (although, 

individual triggered waves are still apparent therein).  Bottom figure shows an expanded view of the 5Hz pacing 

interval.   Vertical dashed lines indicate 5Hz cycle markers.    

 

Tables 

 

1.  Ca cycling flux parameters 

Parameter Description Value 

𝑔𝑏 Strength of boundary release. 0.004 (𝑚𝑠)−1 

𝑔𝑖 Strength of release from interior sites RyR clusters 0.015 (𝑚𝑠)−1 

𝑔𝑢𝑝
𝑏  Boundary uptake strength 0.3𝜇𝑀/𝑚𝑠 

𝑔𝑢𝑝
𝑖  Internal uptake strength 0.1𝜇𝑀/𝑚𝑠 

𝑐𝑏
∗ Boundary uptake threshold 0.3𝜇𝑀 

𝑐𝑖
∗ Internal uptake threshold 0.3𝜇𝑀 

𝑔𝐶𝑎 L-type Ca current flux amplitude 224𝜇𝑀(𝑚𝑠)−1(𝑝𝐴)−1 

𝑔𝑁𝑎𝐶𝑎 Sodium-Calcium exchanger flux amplitude  2 𝜇𝑀(𝑚𝑠)−1(𝑝𝐴)−1  
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2.  Diffusion time scales 

Parameter Description Value 

𝜏𝑏𝑖 Diffusion time between boundary and internal cytosol 10𝑚𝑠 

𝜏𝑠𝑏𝑖 Diffusion time between boundary NSR and internal NSR 10𝑚𝑠 

𝜏𝑠𝑖 Diffusion time between internal NSR and JSR 50𝑚𝑠 

 

 

 

3.  Spark rate parameters 

Parameter Description Value 

𝑎𝑏 Boundary spark rate constant 100𝑠𝑝𝑎𝑟𝑘𝑠/(𝑚𝑠 ⋅ 𝑝𝐴) 

𝛾1 Hill coefficient for SR load dependence of boundary spark rate 6 

𝑐𝑠𝑟𝑏
∗  Threshold for spark activation at junctional sites 900𝜇𝑀 

𝛾2 Hill coefficient for SR load dependence of internal spark rate 4 

𝑐𝑗𝑠𝑟
∗  Threshold for spark activation at non-junctional sites 900𝜇𝑀 

𝑎𝑖 Constant that determines contribution of junctional sites to internal  

spark rate 

0.01𝑠𝑝𝑎𝑟𝑘𝑠/𝑚𝑠 

𝑏𝑖 Constant that determines strength of spark generation due to Ca waves 0.2 𝑠𝑝𝑎𝑟𝑘𝑠/𝑚𝑠 

𝑝𝑏
∗  Threshold for boundary activation of interior sparks 0.5 

𝛾𝑏 Hill coefficient for boundary spark activation of interior Ca sparks 8 

𝑝𝑖
∗ Threshold for internal Ca sparks  0.05 

𝛾𝑖 Hill coefficient describing Ca wave nucleation 5 

𝛽𝑏 Spark extinction rate at the cell boundary 1/20 𝑚𝑠 

𝛽𝑖  Spark extinction rate in the cell interior 1/50𝑚𝑠 

 

4.  Constant parameters 

Parameter Description Value 

𝑁𝑎𝑜  External sodium concentration 136𝑚𝑀 

𝐶𝑎𝑜 External Ca concentration 1.8𝑚𝑀 

𝐾𝑜 External potassium concentration 5.4𝑚𝑀 

𝐾𝑖 Internal potassium concentration 140𝑚𝑀 

𝑇 Temperature 308𝐾 

𝐹 Faraday's constant 96.485𝐶/𝑚𝑚𝑜𝑙 
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𝑅 Universal gas constant 8.315𝐽(𝑚𝑜𝑙 𝐾)−1 

𝑃𝐶𝑎  LCC Permeability constant 5.4 × 10−4 𝑐𝑚/𝑠 
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