Supporting Information
Methods

1. Focused ultrasound system and acoustic
characterization

The FUS system that was designed and built in
house is composed of an air-backed spherically
curved transducer (frequency: 1.025 MHz;
diameter/radius of curvature: 4/3 cm) that is
attached to a water filled 3D printed cone with an
exit window made of thin Mylar membrane (Fig.
1A). The system is mounted on a 3D positioning
system and target localization in X-Y directions

(left/right, superior/inferior) is performed with
needle guidance (Fig. 1A).
The FUS transducer spatial profile was

modeled using the Field Il program (Fig. S1). The
experimental spatial characterization of the FUS
was performed with a 0.2 mm hydrophone (ONDA,
HNC-0200, Sunnyvale, CA, USA) that was
attached to a motor-driven 3D scanning system
(Velmex, 3 axis UniSlide System MSU2004,
Bloomfield, NY, USA). We also measured the
efficiency of the transducer, by comparing the
electrical power input to the FUS, which was
measured with an RF power meter (Agilent,
E4419B RF Power Meter, Santa Clara, CA
95051USA) to the acoustic power output, which
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was determined with the radiation force balance
method using a digital balance (Mettler-Toledo,
Dual Range XS205, Columbus, OH, USA). The
FUS transducer was 56% efficient.

Ultrasound gel and plastic cranial windows
ensured good acoustic coupling with the targeted
region (< 5% inertial losses). The -6dB transverse
and axial focal region of the FUS system is 2 mm
and 9 mm respectively.

2. Experimental protocol.

All  animal procedures were performed
according to the guidelines of the Public Health
Policy on the Humane Care of Laboratory Animals
and approved by the Institutional Animal Care and
Use Committee of Massachusetts General
Hospital. Human HER2-amplified and estrogen
dependent BT474 breast cancer cells that were
genetically modified to express green fluorescent
protein were stereotactically implanted in the brain
of mice with cranial windows, as previously
described (1, 2). After cell implantation, tumor
growth was monitored using Gluc measurements,
as described before (3). When tumors reached a
size of ~20-40 mm?, we performed BTB disruption
using FUS exposures (10 msec bursts, every 1 sec
for 2 min) and concurrent i.v. administration of
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Fig. S1. Comparison of model predications with experimental profiles of the focused ultrasound system.
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microbubbles (20 ul/kg, Definity, Lantheus Medical
Imaging) (Fig. 1B). A 480 kPa peak negative
pressure (based on absolute characterization of
the FUS system was used throughout the present
study. To cover the entire tumor and its periphery
we performed four non-overlapping sonications (X-
Y directions).

Shortly after sonication, the pharmacokinetics
and intratumoral uptake and clearance of the auto-
fluorescent chemotherapeutic agent doxorubicin
was measured for 20 minutes using intravital
multiphoton microscopy (4). Briefly, the animals
were anesthetized and their heads were
immobilized on a motorized x-y stage (H101A
ProScan IlI, Prior Scientic) and the tumor margin
was localized by intravital multiphoton microscopy.
One area of interest was defined for sequential
imaging of doxorubicin uptake, based on local
vessel architecture and presence of tumor cells.
Prior to injection of doxorubicin, one z-stack image
was acquired at intervals of 1.38um, spanning a
depth of 100-200 pm. One plane in the vicinity of
50% depth of the z-stack image was chosen and
used for subsequent X-Y serial imaging. Three to
four sequential images were acquired at 20 sec
intervals before intravenous injection of 150l
doxorubicin at a concentration of 7 mg/ml over 30
sec (7.5 mg/kg). Following administration of
doxorubicin, continuous  sequential image
acquisition at 20 sec intervals was continued for a
total of 40-50 X-Y images. 8 animals were used in
total (#4 FUS-treated and #4 non-FUS treated). For
consistency in the notation of  the
experiments/modeling, Cv is the doxorubicin
intensity/concentration in the vessel, Ce is the
doxorubicin  intensity/concentration in  the
extracellular/interstitial space, and Ci is the
doxorubicin intensity/concentration that has been
internalized in the cells.

In separate experiments the antibody-drug
conjugate ado-trastuzumab emtansine (T-DM1) (5
mg/kg) was administered i.v. imnmediately after the
sonications. The animals were sacrificed at 4 hours
or at 5 days post treatment and the intratumoral
distribution of T-DM1 in the brain tumors was
determined through tissue staining for human IgG
and quantification of fluorescence, as previously
described (1).

3. Image analysis.

To analyze the data from the intravital imaging,
small image motion artifacts were corrected using
the image registration function “imregtform” Matlab

(Matlab2016b, Mathworks, Natick, MA) that had as
input the local vessel architecture. After
registration the vessels were segmented using
semiautomatic thresholding of the doxorubicin
images, which used as vessel marker, and the
doxorubicin kinetics were determined in a 20 x 20
pixel region of interest (ROI) in the vessel and
interstitial space (Fig. 2A). The drug penetration
measurement of doxorubicin was performed by
determining the drug profile perpendicular to the
vessel using maximum intensity projection across
the series of images. The doxorubicin intracellular
kinetics were determined on segmented cells. Cell
segmentation was performed using the “roipoly”
function of Matlab from the thresholded images.

Brains were collected and fixed at the specified
time points post-T-DM1 injection (4 hours and 5
days), then embedded in OCT and frozen. Tissues
were sectioned (10 puM) and immunostained for
CD31 (Millipore, MAB1398Z, mouse mAb, 1:200)
and human IgG (Invitrogen, Cat# A-21091, 1:100)
as previously described(1). Stained and mounted
tissues were imaged on a fluorescent slide scanner
(TissueFAXS, Ragon Institute of MGH, MIT, and
Harvard) using a 20 x objective (pixel:micron ratio
= 0.5). Penetration distance of T-DM1 from vessels
was characterized as previously described (1).
Area fraction of T-DM1 was quantified using
ImageJ software.

4. Single cell doxorubicin kinetics analysis

Magnified images of doxorubicin uptake by
endothelial cells (EC) in a brain tumor after FUS-
BBB/BTB disruption is shown in Fig. S2.

5. Overview of mathematical models for
drug transport.

Our mathematical modeling framework
simulates the convective and diffusive transport of
anticancer agents through the blood stream and
across the endothelium into the interstitial space of
a tumor along with their uptake by tumor cells. To
guantify different tumor micro-environmental drug
transport parameters (e.g. BTB diffusion
coefficient, vessel wall effective porosity, etc.), we
use a simplified tumor cord geometry and
experiment-specific parameter-fitting procedures
based on the experimentally determined interstitial
drug PK of the two different therapeutic agents.
The choice of a tumor cord geometry allows us to
keep the multidimensional fitting procedures
computationally tractable. Then, to study the
influence of the spatial structural heterogeneity
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Fig. S2. Doxorubicin uptake by endothelial cells (EC) in a brain tumor after FUS-BBB/BTB disruption. A)
Representative sequential images from intravital multiphoton microscopy of doxorubicin in the breast
cancer BM model after FUS-BTB disruption. Red: doxorubicin autofluorescence; green: GFP-positive
BT474-Gluc cancer cells. B) Magnified image to demonstrate uptake by three segmented endothelial cells.
C) Segmented endothelial cells and vessel wall. Color scale shows significant doxorubicin retention by the

endothelial cells.

(e.g. vascularity) of the brain  tumor
microenvironment on the interstitial drug transport
after FUS-BTB disruption, we reformulated our
model using a vascular network geometry and the
previously fitted model parameters.

For the tumor cord geometry model, the
computational domain include luminal, vascular
wall and interstitial subdomains (Fig. 4B). A formal
description of the model along with a detailed
discussion of the initial and boundary conditions

0. 2D tumor cord model for doxorubicin
and T-DM1 interstitial pharmacokinetics

In this section, we describe the details of the
Physiologically Based Pharmacokinetic (PBPK)
model using 2D tumor cord model. The main
processes to be described are the diffusive and
convective transport of the agents through the
blood stream and across the endothelium into the
interstitial space along with their uptake by tumor
cells. Table S2 provides a list of notations used in
this work. The computational domain, which is
based on the two-dimensional planar model,
includes luminal, vascular wall and interstitial
subdomains (Fig. S3). The luminal domain, with
one inlet and one outlet, has a diameter of 30um,
and the vessel wall thickness is 5um (6). The whole
domain is discretized using triangular elements
with an average mesh edge length of 3um that is

considered are provided below (SI methods,
Section 6). The geometry of vascular network
model is generated based on a previously
validated percolation method to mimic the tumor-
like vascular structure (Fig.5A) (5). A formal
description of the model along with a detailed
discussion of the initial and boundary conditions
considered are provided below (SI methods,
Section 7).

refined around the vascular wall (mesh edge length
1um along the vascular wall).

For the flow problem, we assume blood and
interstitial fluid to be homogeneous, Newtonian,
and incompressible fluids with constant viscosity,
M. Inside the vessel, flow is modeled with the
Stokes equation. The flow through vascular wall
and interstitial space, which is modeled as isotropic

porous medium (with porosity & and ¢
respectively), is described by the Brinkman
equation (with a characteristic  hydraulic

conductivity K). This approach was selected as it
provides more flexibility in defining the boundary
conditions, as compared to Darcy's law (7).
Boundary conditions are as follow: constant
velocity, Vi, at the inlet, a reference pressure at
the luminal outlet of 5 mmHg, no-slip velocity at the
solid interfaces of the vascular wall subdomain,
and a pressure of 1 mmHg at the interstitial outlets,
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Fig. S3. Mathematical model for doxorubicin and T-DML1 interstitial pharmacokinetics. A) A summary of
governing equations and boundary conditions used in the specific subdomain in the mathematical model.
B) Schematic illustration of the processes included in the model. C) Mathematical model formulation for
cell kinetics of doxorubicin and T-DM1. D) A notation table with transport parameters.

where Vi is a model parameter (Table S3).
Continuity of the pressure and velocity fields is
enforced across the subdomain boundaries. Vi
was experimentally measured via particle
velocimetry of fluorescently labeled red blood cells

(8).

For the anticancer agent transport problem, we
define the extracellular concentration of any agent
as a continuous scalar field, Ce, relative to a peak
concentration in the bloodstream inside the vessel.
The agent undergoes convection (based on the
previously described flow problem), diffusion, and
cellular uptake in the interstitial space. This
process is modeled as a convection-diffusion
problem in the Iluminal and vascular wall
subdomains with diffusion coefficients Dy and Dy,
and a reaction-convection-diffusion problem in the
interstitial subdomain with diffusion coefficient D
and an agent-specific reaction term. Boundary

concentrations profiles at the luminal inlet, which
are experimentally measured drug concentration
profiles for doxorubicin (Fig. 2B) and constant for
T-DM1, and outflow (Neumann boundary
conditions) at the rest of boundaries of the
computational domain.

The model accounts for the doxorubicin and T-
DM1 cellular uptake in the vascular wall and
interstitium  (reaction term in the reaction-
convection-diffusion) as follows. For doxorubicin,
cellular uptake in the vascular wall and interstitial
space is assumed to undergo reversible cellular
uptake (9) and a non-reversible intracellular drug
binding to the cell nucleus (extension to the
classical model to account for the binding of
doxorubicin to DNA), which define two scalar fields
for the intracellular concentration, C;, and bound
concentration, Cp, respectively (Fig. S3). The
reversible drug uptake is modeled based on
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Michaelis-Menten kinetics for a given maximum
binding rate, porosity, and Michaelis-Menten
kinetics constant (9, 10). The agent binds to the
nucleus at a constant rate. The T-DM1 kinetics
account for agent binding/unbinding to cancer
cells/matrix and non-reversible internalization into
cancer cells in the interstitial space only given
constant binding, unbinding, and internalization
rates and tissue porosity (6, 10, 11), which define
two additional scalar fields for the bound and
internalized  concentrations, C, and G
respectively. A summary of the model governing
equations, along with the specific subdomains they
are applied to, and the imposed boundary
conditions are provided in Fig. S3.

The parameters of the mathematical model
were fitted to the experimental data using a
numerical optimization procedure based on an
agent-specific objective function and initial values
for the model parameters taken from the literature,
see Table S3 and S4 for doxorubicin and T-DM1,
respectively. For doxorubicin, we defined the
objective function as the L2-norm of the difference
between the experimentally measured
pharmacokinetics at a given experiment-specific
distance from the vessel wall and the output of the
model at the same distance. The experimentally
measured doxorubicin pharmacokinetics and
equivalent mathematical model output are shown
in Fig. 4B. Due to the unavailability of
experimentally measured T-DM1 pharmacokinetic
measurements, we devised a procedure to recover
T-DM1 pharmacokinetics in the interstitium based
on the experimentally determined T-DM1
penetration data.

We assumed that T-DM1 fluorescence is
detectable for relative concentrations above 0.05.
This gives us a bound concentration value for any
given penetration distance. We then assumed that
the concentration goes from 0 to 0.05 over a period
of 4 hours and that the dynamics are governed by
the analytic solution of a one-dimensional
advection-diffusion problem where the TDM1
concentration is given for a distance x from the
vessel and time t:

Cp(x,t) S erfc <x_ut> [S1]

xl = )
b 2 JaD.t
where Cy=0.05, u is the interstitial flow velocity
obtained from the matching doxorubicin model
(non-FUS vs FUS), Dy=4x10? um?/s is a reference
diffusion value, and erfc is the complementary error

function. The T-DML1 profiles based on equation [1]
for control (no-FUS) and FUS treated along a
schematic of the experimental methodology
described above are shown in Fig. 4B.

This model fit procedure was performed for
each set of experimental data available, i.e. four
repetitions of each experiment class (doxorubicin
in non-FUS, doxorubicin after FUS, T-DM1 in non-
FUS, T-DM1 after FUS). Statistics in Table 1,
Table 2, and Fig. 4 are computed over these
repetitions.

The model considers that BTB disruption
occurs immediately after the ultrasound exposure
(sonication) and remains open for 4 hours after the
sonications (12-17). Molecular weight dependent
closing of the barrier was not included in 2D tumor
cord modeled, as it is expected to have a marginal
impact on doxorubicin due to its fast clearance (10
min), whereas in T-DM1 the interstitial drug
distribution was measured at 4 hours, hence
effective values were used. Systemic agent
clearance from the blood plasma and antibody
degradation in the tumor tissue were ignored in the
current model.

7. Vasculature network model for
doxorubicin and T-DM1 interstitial
pharmacokinetics

To study the impact of tumor heterogeneity in
interstitial transport, we expanded the 2D tumor
cord model to a two-dimensional vascular network
based model. The vascular network with one inlet
and five outlets is generated using the previously
validated percolation method for the generation of
synthetic tumor-like vascular networks (18), shown
in Fig. 5A. The computational domain consists of
two subdomains, vasculature (average diameter
15 pm) and interstitial space. The whole domain is
discretized using triangular elements with an
average mesh edge length of 3um. The mesh is
refined around the vascular wall (average mesh
edge length 0.8um along the vascular wall). Inside
the vessel, blood flow is modeled following the
approach employed in the 2D tumor cord model.
Transvascular fluid transport is modeled using
Starling's law and assuming no osmotic pressure
difference (6). The rate of transvascular fluid flow
is defined as:

Jr =Lp(R, = P),  [S2]
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where L, = “oud is the hydraulic conductivity of the

vessel wall, Py and P; are vascular and interstitial
pressure respectively, € is the void fraction at
vessel wall, ro is the pore radius and d is the vessel
wall thickness. The flow inside interstitial space is
modeled with Darcy’s Law. For boundary
conditions, we define a constant pressure of 25
mmHg at the inlet and 5 mmHg at the luminal
outlet, and zero pressure at the interstitial outlets
(29).

The anticancer agent transport in the luminal
subdomain is modeled as a convection-diffusion
problem, and a reaction-convection-diffusion
problem in the interstitial subdomain, as described
for the 2D tumor cord model. For transvascular
anticancer agent transport, we first calculate the
Péclet number across the vessel wall

Ly(B, — P)(1—of)
P, = ,
P
where of is the reflection coefficient and P is the

vascular diffusive permeability,

HD,
d )

[S3]

gp=1-W,P= [S4]

and H and W are the diffusive and convective
hindrance factors that depend on the relative size
of the particles to the pores (20).

H = ¢(1 — 2.1044a + 2.089a3 — 0.948a°),
[S5]

2
W=¢2-9¢) (1 — §a2 - 0.1630.'3), [S6]

where a is the particle size to pore size ratio and
o =(1-a)?

The rate of drug transvascular transport J; across
the vessel wall is modeled using Starling’s
approximation (6, 20). When the Péclet number is
less than or equal to 1, the Kedem-Katchalsky
equation is used

AC
Js=Jr(1— af)—ln ) +AC,  [S7]

where AC is the anticancer agent concentration
difference across the vessel wall. When the Péclet
number is greater than 1, the Patlak equation is
used

c,efe—C,
]S=]f(1_0-f) ePe _1 "’

For boundary condition, we use agent-specific
concentrations profiles at the luminal inlet as
described before, outflow (Neumann boundary
condition) at the Iluminal outlet and the
concentration at the rest of the boundary is set to
be zero.

[S8]
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Fig. S4. Pressure distribution and transvascular pressure difference with varies pore sizes. A) Qualitative
demonstration of pressure field and transvascular pressure difference for doxorubicin with pore diameter
of 10m and 400nm. Quantification of transvascular pressure difference as a function of vessel wall pore
diameter for the percolation model B) Doxorubicin C) T-DM1. Quantification of drug transvascular flux as
a function of vessel wall pore diameter D) Doxorubicin E) T-DM1
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In addition, in the case that FUS is applied, to
model the blood brain barrier closure, we
incorporate an exponential decay for porosity ¢, for
both agents and vessel wall diffusive coefficient Dy
for doxorubicin to baseline value

&, =Cg e *'+B,, [S9]
D,=Cp e RE+B,, [$10]

where R is the constant that describes the rate of
exponential decay, which is extracted from the
decay of measured MRI contrast agent transfer
coefficient reported by Park, et al (21). B, , are
the baseline value that we fitted with the control
experiments using the 2D tumor cord model. C p
are the values that we fitted using the FUS
experiments.

To study influence of vascular pore size on
transvascular transport, we performed simulations
using vascular network based model with an
average of previously fitted transport parameters
(Table 1 and 2). The transvascular drug transport
is defined as transvascular mass flux normalized
by the average transvascular concentration

—Baolus
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»=156
»=20
=25

Time (mins)
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difference and it is calculated at a certain region of
interest in the vascular network (19) (Fig. 5B). Fig.
S4. A indicates an elevated interstitial fluid
pressure after FUS-BBB/BTB disruption and a
transvascular pressure difference drop as pore
diameter increases for doxorubicin. Fig. S4. B-E
shows the transvascular pressure difference and
drug transvascular flux for the two different agents
as a function of pore diameter. Both pressure
difference across the vessel wall and drug
transvascular flux are higher after FUS-BBB/BTB
disruption as compared to control group (non-
FUS). Then we conducted sensitivity analysis to
study the relative importance of the different
transport parameters and intracellular drug kinetics
using different administration protocols with the
experiment-specific and drug-specific (fitted)
model parameters (Fig. 5C, Table 1 and 2). Other
parameters used in the vascular network model is
shown in Table S5.
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Fig. S5. A) Simulated doxorubicin administration using the Weibull probably distribution function. B)
Intracellular drug kinetics for bolus vs infusion administration
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Fig. S6. A) T-DM1 intracellular drug kinetics for different at low (left) and high (right) perfusion regions in
the percolation model. B) T-DM1 intracellular drug kinetics 10 fold higher dose.

7



8. Modeling doxorubicin administration
protocol

The bolus administration experimental data
were fitted using the analytical form of the Weibull
probably distribution function (PDF)

[S11]

Varying the different parameters, C, A, and k,
allowed us to control independently the shape and
the scale of the vascular drug concentration profile,
while warranting a constant dose (area under the
curve) as we move from bolus to infusion. Good
fitting with the experimental values was obtain for
C=2.72, \=2, and k=1.4. By varying A different drug
administration protocols can be attained (Fig.
S5A). These curves were then used as input to the
numerical simulations (time-dependent drug
concentration profiles at the luminal inlet). Fig. S5B
shows the intercellular doxorubicin concentration
as a function of time for the different administration
protocols based on Weibull PDF.

9. Model parameter fit.

The parameters of the mathematical model
were fitted using a numerical optimization
procedure based on initial reference values taken
from the literature (Table S3 and S4) and an
agent-specific objective function. Sixteen models
were fitted comprising four repetitions of each class
of experiment: non-FUS vs FUS and doxorubicin
vs T-DML1. For doxorubicin, we took advantage of
experimentally determined doxorubicin kinetics
measured 20 um from the vessel wall to define the
objective function as the difference between this
measurement and the output of the model at the
same point. To quantify the rate of cellular
transmembrane transport from the single cell
kinetic measurements of more than one cell type
(Fig. 6), we redefined the objective function to each
cell type in turn and fitted for changes in the rate of
cellular transmembrane transport by assuming
homogeneous well-mixed cell populations (22).
The ratio of the endothelial cell populations was set
to be 75% of the total vasculature cell population
(23). For T-DM1, we reused the agent-independent
model parameters ¢, and ¢; (fitted values from
doxorubicin model), and fit the rest. Due to the
unavailability of experimentally measured T-DM1
pharmacokinetic measurements, we devised the
procedure described above (SI methods, Section
6) to recover T-DM1 pharmacokinetics in the

interstitium based on the experimentally
determined T-DM1 penetration data.

10. Sensitivity analysis

For both agents, we performed sensitivity
analyses for the 16 fitted models (4 per case) in
order to compare the sensitivity of each model to
changes in each of their parameters as well as
differences before and after FUS treatment using
vasculature network model. Mathematically, we
numerically approximate the derivative of the
intracellular agent concentration C; with respect to

any parameter P; i.e. %. To be able to compare the

L

sensitivities to different parameters and also
across different experiment classes we employed
the following normalized measure of sensitivity S =

—%_9% \where o, is the standard deviation of P;
max(C;) 0P;

across the four repetitions of each experiment
class and max(C) is the peak intracellular
concentration measured. S should be interpreted
as the relative change in C; for a given change of
Pi that is equally likely for all i.

11. Numerical implementation

The simulations were performed using the
commercial package COMSOL (version 5.2a,
Burlington, MA, USA), which uses the finite
element method to solve the partial differential
equations in the model numerically. The
computational domain for the 2D tumor cord model
and the percolation model was discretized with an
average element size of 3um, and with the grid
being refined near the vessel walls in order to be
able to capture a larger gradient. For optimization,
we employed the Nelder-Mead method with a
maximum number of iterations of 1000. For
doxorubicin, duration of the simulation was
dictated by its clearance that according to the
multiphoton microscopy measurements was
approximately 12 mins. For T-DM1, duration of the
simulation was dictated by time point of
immunostaining (4 hours).
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Table S1. Summary of studies reporting the impact of FUS-BBB/BTB disruption on the delivery of anticancer agents in murine in brain
tumor models. Data form the first clinical trial have also been included. Note that the delivery of some nanoparticle formulations reported in the

literature was magnetically or acoustically actuated.
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(NOI;)-smd (IL-4-Lipo-DOX) imaging of Dox Modgst improvement in Did FUS improve AP-1-
Mice) survival (IST median . .
(Chemotherapy) 67% Vs 44%-IL-4-Lipo- Lipo-DOX penetration
DOX alone) and change cell
' uptake?
_ indirect via  Multiple treatments with 1S the improved survival
oL Liposomal Contrast-enhanced T1- contrast liposomal doxorubicin related to higher Dox
i doxorubicin , ; uptake by cancer cells
gliosarcom _ 90 nm w MRI enhanced T1- _and ultrasound p y. _ (48)
a model (Lipo-DOX) The correlation was not . improved outcomes Did FUS improve Lipo-
. weighted MR . :
(Rat) (Chemotherapy) estimated. imaces (IST median 100% vs DOX penetration?
9 16%-Lipo-DOX alone).
, Is the increased
oL Liposomal Contrast-enhanced T1- Incr_eased extravasation extravasation of Lipo-
gliosarcom doxorubicin W MRI. Fluorometric of lipo-dox when it was dox related to changes
. 90 nm . administered before . (49)
a model (Lipo-DOX) The correlation was not assay e in BBB/BTB
(Rat) (Chemotherapy) estimated sonication (7-fold vs 5- permeabilit and/or
Py ' fold improvement as aotity,
interstitial transport
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compared to Lipo-Dox
alone).

and/or endothelial cell
uptake from to bubble
activity?

Did FUS improve Lipo-
DOX penetration and
change Dox cell
uptake?

The use of controlled

Did the controller result
in optimum BBB/BTB

sonication improved the  permeability or
Fo8 gl Liposomal Contras;t/-verlc/lhslnced T1- maximum concentration improved interstitial
mgdlzzna doxorubicin % X ff_ - f Fluorometric ~ level of delivered transport? 50
(Rats) (Doxil " Detlrnii(rigt‘iaor?lo?ﬁro an assay doxorubicin (10ug/mL,  pjg the controller result (50)
(Chemotherapy) Blue and Dox is I’2=)6p97 >10-fold improvement  j, improved  Doxil
' as compared to drug penetration and/or
only) change  Dox  cell
uptake?
Is the increased
Contrast-enhanced T1- extravasation of
W MRI: Confocal ' ' Nanoparthles related to
aL . - . ' Confocal 28-fold improvement in changes in BBB/BTB
. Cisplatin in microscopy of florescent . . . .
gliosarcom . . microscopy of ~ extravasation in the permeability and/or
Brain- labeled particles. . ! e
a and F98 Penetratin 60nm D labeli ¢ BPN florescent glioma model. interstitial transport 51
models Chemother ti ore rrlslpt?lr?irer?—alse extravasation in  survival in FUS treated uptake/kinetics?
(Rats) (Chemotherapy) € correration IS r=A4, brain tumors vs BPN alone animals Did FUS improve the
but after cisplatin .
o Nanoparticle
release it is unknown. .
penetration and change
cisplatin cell uptake?
Evans Blue (4hrs post Is the increase of PTX-
treatment) and LIPO in the brain
Fluorometric imaging of 2-fold increase in the related to changes in
: fluorescent tagged . FUS targeted region BBB/BTB permeability,
gI%%Tag/ltSm If;%cslg?ﬁ:é liposomes. Filrl]ch;roirr?etc:]lcc (3hrs post treatment). interstitial transport,
~90 nm  Due to labeling of PTX- _Imaging Modest but significant and/or cell kinetics for (52)
a model (PTX-LIPO) Lipo before Paclitaxel Iposome and i provement in survival the exposures tested?
(Mice) (Chemotherapy) P HPLC (PTX) b :

release, the correlation
is r=1, but after
Paclitaxel release it is
unknown.

(IST median 21% vs 5%
- PTX-Lipo alone).

Did FUS improve PTX-
LIPO penetration and
change paclitaxel cell
uptake)?
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>2-fold increase on Dox
concentrations in tumors
regardless of the stage

Why the Dox uptake is
higher in the sonicated

oL Liposomal Dynamic Contrast of tumor growth. tumors after day 14 and
gliosarcom doxorubicin 80 nm Enhanced MRI. Fluorometric  The transfer coefficient 17 but not the Kians? (53)
a model (Lipo-DOX) The correlation was not assay Kyans for Gd-DTPA in Did FUS improve Lipo-

(Rat) (Chemotherapy) estimated. tumors was significantly DOX penetration and
different from control at change Dox cell
small tumor sizes (day uptake?

9).
Significantly higher .
: Is the ncrease
Indirect via apoptotic and aut_ophagy apoptosis | and
: . . Contrast-enhanced T1- activities were induced 2POP : )

C6 glioma Cilengitide 588.67 W MR contrast- b the  combined autophagy in the brain
model (CGT) /rﬁol Th lati i i enhanced T1- tﬁ/erapy related to improved (54)
(Rat) (Peptide) 9 € corre‘i'a |c;n dwas no weighted MR Mod t- : . peptide penetration and

estimated. images odes Increase N oot and changes in
survival (41.1 £ 2.0 vs uptake?
35.0 + 1.8 days). '
Is the increased
delivery of  GNPs
Delivery of SERS 50 or related to changes in
Contrast-enhanced T1- .

oL oEGFR- 50- W MR: Evans Blue: 120 nm gold BBB/BTB permeability

gliosarcom  SERS440 Gold 120 nm Raman nanoparticles to the and/or interstitial

. Raman Spectroscopy. i . (55)
a model Nanoparticles (PEG- h It ¢ Spectroscopy  tumor margins (no in transport and/or cell
(Rat) (GNPs) coated) ecorretire:]uin dwas no vivo  statistics were uptake/kinetics?
estimated. provided) What was the GNPs
penetration and cell
uptake?
Is the increased
delivery of Dox related
_5"[1'f?|d b hi({:]rtler to char)(ges in BBB/BTB
Folate- T2*W MRI of SPION 'F“ng ‘;Irgg;a ox Than permeability ~ and/or

C6 glioma conjugated nanoparticles; Confocal o ' interstitial transport
model Polymersomal microscopy. HPLC Significant ltth mod_es'; and/or cell  (56)
(Rat) Doxorubicin The correlation was not |mpr(;)_vemen n SIL_"V“:& uptake/kinetics?

FPD estimated. (median _ survival: What was the FPD
(FPD) days for FDP w FUS :
ays for w VS penetration?

29 days for FPD alone.
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Drug Attached to Magnetic Nanoparticles (MNPs)®

How the magnetic
targeting changes the
interstitial kinetics?

What fraction of the

Contrast-enhanced T1- T2*W images showed increased uptake of
W and T2*-W MRI. increased uptake of BCNU — MNP is related
C6 glioma Due to labeling of BPN : MPs. to FUS-mediated
BCNU-MNP  ~10- 9 * .
model (Chemotherapy) 1r?m20 before Cisplatin release TﬁRV}/rilgg;id Significant improvement changes in BBB/BTB (57)
(Rat) by the correlation is r’=1, in survival (no IST permeability and/or
but after BCNU release median values were intestinal transport?
it is unknown. provided). Was there an increase
in the MNP penetration
and change in cell
uptake with and without
magnetic targeting?
How magnetic targeting
. . h the interstitial
MRI - R2 map of 2.6-fold increase in MNP Einag':%ii © Interstlia
C6 glioma P magnetic particles. in the brain in the ] .
model E(p:)::ublc[[r;] MNP ~12 nm Correlation of AR2 HPLC combined treatment W?rsl trll/?&epan mctre?se (58)
(Rat) (Chemotherapy) value and Epirubicin (FUS w MT) vs control le;lnd eChanggenﬁ]ra:;rl}
ition: r2= FUS MT). i ,
deposition: 1°=0.9. ( wio MT) uptake with and without
magnetic targeting?
MRI - R2 map of How magnetic targeting
magnetic particles. il (f:(r)éiséHuzli_r?g) m(:gnzg)é changes the interstitial
~36 nm ; inetics?
C6 glioma Doxorubicin — (SPIO); Correlation of AR2 targeting of the SPIO- Kinetics ,
model SPIO i geueand PO HPLC Dox-microbubble as there an increase  (sg)
(Rat) (Chemotherapy) Hm, eposition: T7=4.05, complex (compared to In the penetration
(MBs) correlation of Dox Magnetic targeting and and change in Dox cell
deposition and SPIO no FUS) uptake with and without
deposition: r?=0.79. ' magnetic targeting?
Drug Loaded to Microbubbles (MBs)°®
214 Da 8-fold increase in BCNU How the ultrasonic
i tumor deposition 10 actuation changes the
CGm%I(IjOer}’la BCNU (BC_NU) H EvaII’ISt.Blue. ‘ HPLC mins post treatment, but interstitial kinetics? (60)
(Rat) (Chemotherapy)  _, | © Cogsii?ngtr;;v as no marginal deposition at What was the increase
H 30 mins (healthy in uptake in brain
(MBs) Brains). tumors?
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12% increase in median

Was there any

survival compared to improvement in BCNU
free BCNU. penetration and change
in cell uptake in brain
tumors?
Was the anti-tumor
effect mediated by
BCNU or did FUS have
a direct cytotoxic
effect?
How the ultrasonic
actuation changes the
Evans Blue: Acoustic 5.8-fold increasg in interstitial kinetics?
214 Da Emi ! BCNU accumulation in  What was the increase
: missions. : . . .
C6 glioma BCNU (BCNU) h lation bet healthy brains. in  uptake in brain
model ; © corre‘ation between HPLC Significant improvement tumors? (61)
(Chemotherapy) Acoustic emissions . . .
(Rat) ~1 pm change and BCNU in in survival (IST median Was there any
(MBs) healthy brain r>=96. 52.8% vs 22%-BCNU improvement in BCNU
alone). penetration and change
in cell uptake in brain
tumors?
How the ultrasonic
actuation changes the
interstitial transport?
What was the increase
214 Da é.gz-lfJold increiats_e !n ItrleoL:EE.)ake in - brain
accumulation in
C6 glioma VEGFR2-BCNU (BC,NU) Evans Blue. healthy brains. Was there any
model (Antlan_gloge_nr;c- ' The correlation was not HPLC Significant improvement |mprover_nent '(;] E\’CNU (62)
(Rat) targeting wit ~18 estimated. in survival (IST median penetration and change

Chemotherapy) pm
(MBs)

121% vs 37%-VEGFR2
alone).

in cell uptake in brain
tumors?

Was the anti-tumor
effect mediated by
VEGFR2-BCNU or did
FUS have a direct
cytotoxic effect?
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Evans Blue and

) . . Was there an
Folate- > Fluorescent microscopy 4.7-fold improvement in improvement in DNX
C6 glioma conjugated Mba _of MBs IVIS imaging of gene transfection penetration and change
model DNA-loaded (152 vesicles and IVIS G-Luc efficiency as compared in cell uptake? 63
L kbp); imaging of G-Luc . to direct injection at P ' . (63)
(Rat) cationic MBs : transfection JeC How ultrasonic
1.1 um transfection. 24hrs. Modest difference .
(FCMBS) . actuation enhanced
(MBs)  The correlation was not at 3 days. . .
. transfection efficiency?
estimated.
How the ultrasonic
Evans Blue and actuation and magnetic
_ o ~36 nm > . 1.6-fold increase in targeting changes the
C?n‘z,'('joerra D"X‘g“;,%c'” ~ (SPIO); susce('og'\f’v"l')tyM"l‘ﬁ'ghted Fluorometric ~ SPIO-Dox+FUS uptake interstitial kinetics? 64
~1 um . ' assay comparted to SPIO-Dox Was there any
(Rat) (Chemotherapy) The correlation was not | . ,
(MBs) estimated. alone. improvement in SPIO

penetration and change
Dox in cell uptake?

2 All models are orthotropic; * Magnetic actuation of the drug into the tumor interstitial space after FUS-BBB/BTB disruption; ¢ The drug might have
been propelled into the tumor by the microbubble collapse after the application of FUS. Review Criteria: Information for the data in Table | was
compiled by searching the PubMed and Web of Science databases for articles published before March 1%t 2018, including early-release publications.
Search terms included “focused ultrasound brain tumor”, “ultrasound blood tumor barrier disruption”, “ultrasound blood tumor barrier disruption”,
“focused ultrasound blood brain barrier glioma”, and “focused ultrasound blood tumor barrier glioma”. Full articles were checked for additional material

when appropriate, and articles that cite key publications were checked.
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Table S2. Notations

Symbol

Description

Vrbc

RBC velocity in tumor vessels

PV

Vascular outlet pressure

PA

Vascular inlet pressure

Pl

Interstitial pressure

U

Blood viscosity

d

Vessel wall thickness

Dv

Vessel effective diffusion coefficient

Di

Interstitium effective diffusion coefficient

Dy

Diffusion coefficient in blood

K

Hydraulic conductivity

Ei

Interstitium porosity

Ev

Vessel wall porosity

V

Rate of transmembrane transport of doxorubicin

Rate of doxorubicin binding to nucleus

Michaelis-Menten kinetics constants

T-DM1 Association rate

T-DM1 Internalization constant

T-DM1 Dissociation rate

Concentration of cell surface receptors

Extracellular drug concentration

Intracellular drug concentration

Bound drug concentration

Drug concentration inside vessel

Rate of transvascular fluid flow

Rate of drug transvascular transport

Hydraulic conductivity (Darcy’s law)

Vascular diffusive permeability

Reflection coefficient

Diffusive hindrance factor

Convective hindrance factor

the particle size to pore size ratio

Péclet number

Rate of BBB closure

BBB closure constant

Doxorubicin BBB closure constant

BBB closure baseline value

Doxorubicin BBB closure baseline value
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Table S3. Doxorubicin model parameters

Symbol | Value | Units Description Reference
Vibe 0.12 mm/s RBC velocity in tumor vessels (8)
PV 5 mmHg Vascular pressure (6)
Pl 1 mmHg Interstitial pressure -
J 0.004 | Pa*s Blood viscosity (6, 10, 65)
& 0.4 - Interstitium porosity (65-68)
Ev 0.5 - Vessel wall porosity -
K 4x10® | cm?(mmHg*s) | Hydraulic conductivity (69)
d 5 pm Vessel wall thickness (6)
Dy 1.25 um?/sec Vessel effective diffusion coefficient (10, 70)
Di 40 um?/sec Interstitium effective diffusion coefficient | (10, 65, 71)
(Free dox)
Dp 1x10° | pm?/sec Diffusion coefficient in blood (72)
V 42.9 nM/s Rate of transmembrane transport (73-75)
Vi 0.0016 | 1/s Rate of drug binding to nucleus
E.e ggg El\l\;: Michaelis-Menten kinetics constants
Table S4. T-DM1 model parameters.
Symbol | Value Units Description Reference
K 4x108 cm?(mmHg.s) | Hydraulic conductivity (69)
Dv 4.67x10° | pm?/sec Vessel effective diffusion coefficient (20, 70, 76)
3
Di 10 um?/sec Interstitium effective diffusion (10)
coefficient
Kon 1.5x10* | m?/(sec*mol) Association rate (6,11, 77)
Kint 5x10° 1/s Internalization constant
Kot 8x10°3 1/s Dissociation rate
C: 1x10° M Concentration of cell surface receptors
Table S5. Vascular network model parameters.
Symbol | Value Units Description Reference
PV 5 mmHg Vascular outlet pressure (6, 19)
PA 25 mmHg Vascular inlet pressure (19)
R 9x10° 1/s Rate of BBB closure (21)
Ce, 0.34+ 0.09 - BBB closure constant
-12
Cp, 151328131 m?/s Doxorubicin BBB closure constant
B, 0.28+0.11 BBB closure baseline value
Bp, 3.1x101%+ m?/s Doxorubicin BBB closure baseline
1.5x1073 value
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