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Supplemental Methods 

Materials and reagents. All reagents were purchased from Sigma Aldrich (St. Louis, MO) unless 

otherwise indicated. Cell culture media were purchased from Invitrogen (Grand Island, NY). Fetal bovine 

serum (FBS) was purchased from Atlas Biologicals (Ft. Collins, CO).  

Quantification of cellular MGO. Quantification of MGO was achieved using a modified derivatization 

technique using o-phenylenediamine (1). Cells were plated in 6-well plates. Following treatments, the 

medium was removed and cells washed with ice-cold PBS. Cells were then scraped into ice-cold PBS and 

pelleted via centrifugation at 1,000 x g. Cell pellets were lysed in 100 µL of a buffer containing 150 mM 

NaCl, 50 mM HEPES (pH 7.4), 1% IGEPAL, and protease and phosphatase inhibitor cocktails and 

briefly sonicated. Aliquots (10 µL) were removed to quantify protein, and the remaining lysate was mixed 

1:1 with ice-cold methanol containing 50 pmol 13C-MGO. Protein was precipitated for 1 h at -20 oC and 

pelleted via centrifugation at 20,000 x g at 4oC. Supernatants were removed and derivatized with 1 mM o-

phenylenediamine for 2 h at room temperature protected from light. Samples were centrifuged at 20,000 x 

g and the clarified supernatant was chromatographed using a Shimadzu LC system equipped with a 50 x 

2.1 mm, 3 µm particle diameter Ascentis C18 column (Supelco, Bellefonte, PA) at a flow rate of 300 

µL/min. Buffer A (0.1% formic acid in H2O) was held at 99% for 0.5 min, then a linear gradient to 98% 

solvent B (0.1% formic acid in acetonitrile) was applied over the next 4 min. The column was held at 

98% B for 2 min and then equilibrated to 99% A for 2 min. Multiple reaction monitoring was conducted 

in positive ion mode using an AB SCIEX 3200 QTrap with the following transitions: m/z 145.1 → 77.1 

for MGO; m/z 148.1 → 77.1 for 13C-MGO. 

Measurement of MGO adducts using QuARKMod – MGO adducts were measured using protein pellets 

collected from MGO quantification or chromatin samples (50 µg) using previously published methods 

(2). The following table gives the transitions of all analytes reported here as well as their collision 

energies (CE).  
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Species Q1 (m/z) Q3 (m/z) CE (V) 

Lys 147.1 84.1 22 

13C6
15N2 Lys 155.1 90.1 22 

Arg 175.1 70.1 26 

13C6
15N4 Arg 185.1 75.1 26 

acLys/me3Lys 189.2 84.1 29 

acLys-d8 197.2 91.1 29 

13C6
15N2 me3Lys 197.2 90.1 29 

Leu 132.1 86.1 13 

13C6
15N Leu 139.1 93.1 13 

meLys 161.1 84.1 26 

me2Lys 175.1 84.1 26 

S/ADMA 203.1 70.1 29 

meArg 189.1 70.1 29 

ADMA-d7 210.1 77.1 29 

MG-H 229.2 70.1 35 

MG-H-13C 230.2 70.1 35 

CEA 247.2 70.1 47 

CEA-13C 248.2 70.1 47 

CEL 219.2 84.1 29 

CEL-d4 223.2 88.1 29 

 

Measurement of GLO1 activity.  GLO1 activity was quantified via incubation of cell lysate (100 µg 

protein) with a mix of 2.5 mM GSH and 2.5 mM MGO (pre-incubated at 37ºC for 1 h to generate 

hemithioacetal substrate) at 37ºC for 30 min. 5 nmol of stable isotopte-labeled GSH-(glycine-13C2,15N) was 

then added to each reaction as the internal standard and reactions were immediately quenched via addition 

of ethyliodoacetate (200 mM in acetonitrile (ACN), 20 mM final). Samples were derivatized for 30 min at 

room temperature protected from light. Protein was precipitated via addition of 20% (w/v) 5-sulfosalicylic 

acid (2% final) and removed via centrifugation at 10,000 x g for 5 min at room temperature. Supernatants 

were removed and diluted 1:1 in H2O containing 200 mM heptafluorobutyric acid (HFBA). Clarified 

supernatant (20 µL) was chromatographed using a Shimadzu LC system equipped with a 50 x 2.1 mm, 
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2.6 µm particle diameter Kintetix C8 column (Phenomenex, Torrance, CA) at a flow rate of 400 µL/min. 

Solvent A (10 mM HFBA in H2O) was held at 96% for 0.5 min, then a linear gradient to 95% B (10 mM 

ACN) was applied over the next 4.5 min. The column was held at 95% B for 0.5 min and then 

equilibrated to 96% A for 2 min. The needle was washed prior to each injection with a buffer consisting 

of 25 mM NH4OAc in MeOH. Multiple reaction monitoring was performed in positive ion mode using an 

AB SCIEX 3200 QTrap with the following transitions: m/z 394.2 � 265.2 for GSH; m/z 380.1 � 233.1 

for LGSH; 397.2 � 268.2 for GSH-(glycine-13C2,15N). GSH and LGSH were quantified using GSH-

(glycine-13C2,15N).  

Assessment of MGO toxicity. Cells were seeded in 96-well plates at a density of 3 × 103 and allowed to 

adhere overnight. The following day, adherent cells were treated with either sterile-filtered ddH2O or 

MGO. After 24 h, viability was determined using WST-1 (Roche Applied Science) according to the 

manufacturer's protocol.  

SDS-PAGE and immunoblotting. Samples were denatured in SDS loading buffer and heated at 95oC for 5 

min. Proteins were resolved via 15% SDS-PAGE and transferred to nitrocellulose membranes (BioRad, 

Hercules, CA). Membranes were blocked with Odyssey Blotting Buffer (Li-Cor Biosciences, Superior, 

NE) for 30 min at room temperature. Primary antibodies were incubated with membranes overnight at 4 

oC with the following dilutions: GLO1 (1:2500, Millipore: 05-1925);  GLO2 (1:2000, ThermoFisher: 

PA5-30965); DJ-1/PARK7 (1:2000, Abcam, ab18257); Actin (Santa Cruz, sc-1616, 1:5000); MG-H1, 

MG-H2, and MG-H3/CEA (1:1000, laboratory of D.A.S., (3)); H2B (1:5000, CST: #2934); H3 (1:5000, 

CST: #3638); H2A (1:5000, CST: #3636); H4 (1:2000, CST: #2935);  H3K4me (1:5000, Abcam: 

ab8895); H3K27me3 (1:10000, Millipore: 07-449); H3K27ac (1:2000, Abcam: ab4729); H3K56ac 

(1:1000, Abcam: ab71956); H3K79me2 (1:2000, Abcam: ab3594); H2BK5ac (1:2000, Abcam: ab40886); 

H2BK12ac (1:2000, Abcam: ab40883); H2BK15ac (1:2000, Abcam: ab62335); H2BK20ac (1:2000, 

CST: 2571); H2BK120ub (1:2000, CST: #5546); H4K5ac (1:2000, CST: #8647); H4K8ac (1:2000, CST: 

#2594); H4K12ac (1:2000, CST: #13944); H2AK5ac (1:1000, Abcam: ab45152); H2AK9ac (1:1000, 
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Abcam: ab47816). Following 3 washes with Tris-buffered saline (TBS) + 0.1% Tween-20 (TBST), 

infrared secondary antibodies (Li-Cor) were added in blocking buffer (1:5000) for 45 min. Blots were 

developed following 3 additional washes with TBST using the Odyssey Infrared Imaging System (Li-

Cor). 

Synthesis of stably-labeled MG-H isomers. 13C-Labeled methylglyoxal hydroimidazolone (MG-H) 

standards were synthesized as previously reported with the incorporation of 13C-labeled reagents into the 

synthetic route (4). Specifically, MG-H1 and MG-H3 were labeled via the incorporation of 1-13C-DL-

alanine (Cambridge Isotope Laboratories), while MG-H2 was labeled via the incorporation of 13C-thiourea 

(Cambridge Isotope Laboratories). 

Proteomic characterization of histone adducts. Chromatin (5 µg) was separated on a 15% SDS-PAGE gel 

and stained with SimplyBlue SafeStain (Invitrogen, Carlsbad, CA). Four gel bands were excised 

corresponding to each histone based on molecular weight. Bands were reduced, alkylated, and destained 

as described (5). To obtain 100% sequence coverage over all four histones, samples were digested and 

peptides were extracted as previously described (6). Peptides were reconstituted in 0.1% formic acid, and 

peptide mixtures were loaded onto a capillary reverse-phase analytical column (360 μm o.d. x 100 μm 

i.d.) using an Dionex Ultimate 3000 nanoLC and autosampler. The analytical column was packed with 22 

cm of C18 reverse-phase material (Jupiter, 3μm beads, 300 Å or Aqua C18, 3 μm beads, Phenomenex), 

directly into a laser-pulled emitter tip. Peptides were gradient-eluted at a flow rate of 400 nL/min, and the 

mobile phases consisted of water containing 0.1% formic acid (solvent A) and acetonitrile containing 

0.1% formic acid (solvent B). A 90 min gradient was performed, consisting of the following: 0−3 min, 

1% B (during sample loading); 3−68 min, 1−40% B; 68−77 min, 40−95% B; 77-78 min, 95% B; 78-79 

min 95−2% B; and 79−90 min, 2% B (column re-equilibration). Upon gradient elution, peptides were 

mass analyzed on an Q Exactive Plus mass spectrometer  (Thermo Scientific), equipped with a 

nanoelectrospray ionization source. The instrument was operated using a data-dependent method with 

dynamic exclusion enabled. Full-scan (m/z 375−1800) spectra were acquired with the Orbitrap (resolution 
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60,000). The instrument method consisted of MS1 using an MS AGC target value of 3e6, followed by up 

to 20 MS/MS scans of the most abundant ions detected in the preceding MS scan.  A maximum MS/MS 

ion time of 100 ms was used with a MS2 AGC target of 1e5. Dynamic exclusion was set to 15s, HCD 

collision energy was set to 27 nce, and peptide match and isotope exclusion were enabled.   

For identification of histone peptides, tandem mass spectra were searched with Sequest (Thermo 

Fisher Scientific) against a human subset database created from the UniprotKB protein database 

(www.uniprot.org). Due to the plethora of diverse histone modifications, multiple database searches were 

required for each sample to minimize false positives. These variable modifications included: +57.0214 

(carbamidomethylation) on Cys; +15.9949 (oxidation) on Met; +14.0157 (methylation), +28.0313 

(dimethylation), +42.0106 (acetylation) on Lys; +54.0106 (MG-H) on Arg; +72.0212 (CEL, CEA) on Lys 

and Arg. Additionally, a variable mass of +56.0262 (propionylation) was applied to Lys where 

propionylation was required. Search results were assembled using Scaffold 3.0 or 4.3.2 (Proteome 

Software). Spectra of interest were inspected using Xcalibur 2.2 Qual Browser software (Thermo 

Scientific). Tandem mass spectra of all modified peptide precursors as well as spectra acquired of the 

corresponding unmodified peptide forms were interrogated manually. 

RNA-Sequencing analysis. WT or GLO1-/- cells (4 x 106) were treated with either vehicle (ddH2O), 50 µM 

MGO or 500 µM MGO for 6 h. Following treatments, cells were washed once with ice-cold PBS and then 

scraped and pelleted. Cell pellets were placed in a QIAshredder column and total cellular RNA was 

extracted using a commercial RNA purification kit (RNeasy, Qiagen, Valencia, CA), according to 

manufacturer’s instructions. Total RNA quality was assessed at the Vanderbilt Technologies for Advanced 

Genomics (VANTAGE) core facility using the 2100 Bioanalyzer (Agilent). At least 200ng of DNase-

treated total RNA with an RNA integrity number greater than 6 was used to generate polyA (mRNA) 

enriched libraries using Stranded mRNA sample kits with indexed adaptors (New England BioLabs). 

Library quality was assessed using the 2100 Bioanalyzer (Agilent) and libraries were quantitated 

using KAPA Library Quantification Kits (KAPA Biosystems). Pooled libraries were subjected to 150 bp 
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paired-end sequencing according to the manufacturer’s protocol (Illumina NovaSeq6000). Bcl2fastq2 

Conversion Software (Illumina) was used to generate de-multiplexed Fastq files. Reads were trimmed to 

remove adapter sequences using Cutadapt v1.16 (7) and aligned to the human b37 genome using STAR 

v2.5.3a at the Vanderbilt Technologies for Advanced Genomics Analysis and Research Design 

(VANGARD) (8). Ensembl v75 gene annotations were provided to STAR to improve the accuracy of 

mapping. Quality control on both raw reads and adaptor-trimmed reads was performed using FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc). featureCounts v1.15.2 (9) was used to count the 

number of mapped reads to each gene. Significantly differential expressed genes with FDR-adjusted p-

value < 0.05 and absolute fold change > 2.0 were detected by DESeq2 (v1.18.1) (10).  
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Datasets 
 
Dataset S1. gRNA and primer design for the generation of HEK293 cells lacking GLO1. The gRNA 

utilized was designed to target the Bae1 restriction enzyme target site. The GLO1 gene was amplified via 

PCR using the forward and reverse primers listed. RFLP was then performed via PCR product treatment 

with Bae1 and GLO1 knockout cell lines determined based upon the absence of the restriction fragments 

shown.  

 

Dataset S2. Protein-coding transcripts significantly altered in GLO1-/- cells treated with either vehicle, 50 

µM, or 500 µM MGO for 6 h.   

 

Dataset S3. DAVID analysis was performed on each gene list, revealing pathways and gene ontology 

enrichments for each cohort.  
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Supplemental Figures 

 

 
 

 
 
 
 
 
 
 
 

Fig. S1. Stably labeled MG-H1 (A), MG-H2 (B), and MG-H3 (C) internal standards are 

chromatographically resolved using QuARKMod. * indicates the presence of a 13C.  MG-H3 (Black) is 

readily hydrolyzed to generate CEA (Red) following a 24 h incubation at 37oC, whereas < 10% CEA 

results from MG-H1 hydrolysis. (D) MG-H1, MG-H2, MG-H3 were mixed at an equimolar ratio to 

demonstrate chromatographic separation of the MG-H isomers.  
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Fig. S2. (A) Levels of MG-H1 detected in untreated histone H4 (top), histone H4 reacted with 100 µM 

MGO for 24 h (center), and chromatin from untreated HEK293 cells (bottom). In each case, the sample 

data are shown in black and the internal standard in red. MG-H1 in untreated H4 was below the limits 

of detection of the assay, but the adduct was readily detected following MGO treatment. In chromatin, 

peaks are detected (5.19 and 5.36 min) with the same MRM transitions as MG-H1, these peaks do not 

co-elute with the internal standards. (B) Similar results are observed upon assay for CEA.  
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Fig. S3. GLO1-/- cells display a significant shift decrease in viability (compared to WT cells) following 

exposure to MGO for 24 h. Data are presented as the mean ± S.D. of twenty-four measurements.	
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Fig. S4 Cellular MGO was quantified in WT and GLO1-/- cells exposed to increasing concentrations of 

MGO for 1 h. Measurements were performed in triplicate and are presented as the mean ± S.D. Statistical 

significance was determined using an unpaired t-test (*** p < 0.001). 
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Fig. S5. (A) Cellular MGO was quantified over time in WT and GLO1-/- cells exposed to 50 µM MGO. 

Measurements were performed in triplicate and are presented as the mean ± S.D. (B-D) Protein pellets 

collected from cells described in (A) were analyzed for MGO-derived PTMs using QuARKMod. GLO1-

/- cells display increased MGO-derived PTMs following exposure to 50 µM MGO with concentrations 

peaking at ~ 6 h. Statistical significance was determined by two-way ANOVA (*** p < 0.001). 
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Fig. S6. (A) GLO1 is not altered following treatment with either 50 or 500 µM MGO for 6 h. (B) Cellular 

MGO is significantly elevated in GLO1-/- cells 6 h post-MGO exposure. Data are presented as the mean 

± S.D, N = 3 and statistical significance was determined by a two-way ANOVA (*** p < 0.001). 
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Fig. S7. WT or GLO1-/- cells were treated with increasing concentrations of MGO for 6 h. Chromatin 

was harvested and subjected to immunoblotting. A concentration-dependent increase in MG-H1 and 

MG-H3/CEA immunostaining is observed in GLO1-/- cells while MG-H2 is not observed.  

	



	
	

16	

 

  

A. B.

Fig. S8. QuARKMod demonstrates the levels of chromatin (A) acLys and (B) me3Lys in each cohort. 
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A. B.

C.

Fig. S9. (A) Mapping identified sites of modification (red) on the nucleosome core particle. (B, C) 

H4R23, H4R55, and H3R72 all lie within close proximity to DNA. PDB: 1KX5. 
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Fig. S10. WT or GLO1-/- cells were treated with 50 or 500 µM MGO for 6 h, and chromatin was extracted 

and subjected to immunoblotting. (A) MGO leads to a marked disruption in H2B acetylation and 

ubiquitylation, while preserving H3K79me2. (B) No alterations in H2A, H3, or H4 PTMs were observed. 

Shown are representative blots from a single N = 3 experiment.  
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Fig. S11. RNA-Seq reveals transcripts altered by MGO. (A-E) Volcano plots reveal all RNA 

significantly increased (red) or decreased (blue) compared to WT vehicle control (Log2 fold change > 2, 

P < 0.05). N = 3 for each cohort.  
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Fig. S12. QuARKMod was performed on chromatin fractions isolated from each cohort, demonstrating 

no changes in (A) acLys, (B) me3Lys, (C) ADMA, or (D) CEL. Treatments were for 6 h. Data are 

presented as the mean ± S.D., N = 3, and statistical significance was determined via two-way ANOVA 

(*** p < 0.001). 

	

A. B. C. D. 
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MS/MS spectra of identified MG-H, CEA, or CEL adducts.  
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Fig. S13. MS/MS spectra of the MG-H adduct identified at H3R8; D 2.02 ppm, retention time of 51.62 

min. 
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Fig. S14. MS/MS spectra of the MG-H adduct identified at H3R19; D 10.9 ppm, retention time of 11.29 

min. 
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Fig. S15. MS/MS spectra of the CEA adduct identified at H3R19; D 2.4 ppm, retention time of 28.51 

min. 
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Fig. S16. MS/MS spectra of the MG-H adduct identified at H3R26; D 0.25 ppm, retention time of 51.98 

min. 
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Fig. S17. MS/MS spectra of the MG-H adduct identified at H3R53; D 6.32 ppm, retention time of 45.12 

min. 
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Fig. S18. MS/MS spectra of the CEA adduct identified at H3R53; D 2.14 ppm, retention time of 43.95 

min. 
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Fig. S19. MS/MS spectra of the MG-H adduct identified at H3R63; D 1.37 ppm, retention time of 53.99 

min. 
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Fig. S20. MS/MS spectra of the MG-H adduct identified at H3R72; D 0.16 ppm, retention time of 50.32 

min. 
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Fig. S21. MS/MS spectra of the CEA adduct identified at H3R72; D 0.31 ppm, retention time of 49.22 

min. 
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Fig. S22. MS/MS spectra of the CEL adduct identified at H3K79; D 1.28 ppm, retention time of 35.08 

min. 
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Fig. S23. MS/MS spectra of the MG-H adduct identified at H3R128; D 2.17 ppm, retention time of 

45.73 min. 
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Fig. S24. MS/MS spectra of the MG-H adduct identified at H2AR35; D 4.05 ppm, retention time of 

39.18 min. 
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Fig. S25. MS/MS spectra of the CEA adduct identified at H2AR35; D 3.55 ppm, retention time of 38.62 

min. 
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Fig. S26. MS/MS spectra of the MG-H adduct identified at H2AxR20; D 0.90 ppm, retention time of 

46.54 min. 
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Fig. S27. MS/MS spectra of the MG-H adduct identified at H2BR79; D -0.48 ppm, retention time of 

57.12 min. 
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Fig. S28. MS/MS spectra of the MG-H adduct identified at H2BR86; D -0.36 ppm, retention time of 

25.87 min. 
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Fig. S29. MS/MS spectra of the MG-H adduct identified at H2BR92; D 0.98 ppm, retention time of 

49.58 min. 
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Fig. S30. MS/MS spectra of the CEA adduct identified at H2BR92; D -0.19 ppm, retention time of 45.88 

min. 
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Fig. S31. MS/MS spectra of the MG-H adduct identified at H2BR99; D 1.44 ppm, retention time of 

60.55 min. 
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Fig. S32. MS/MS spectra of the CEA adduct identified at H2BR99; D 1.09 ppm, retention time of 59.79 

min. 
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Fig. S33. MS/MS spectra of the CEL adduct identified at H2BK108; D 1.46 ppm, retention time of 57.22 

min. 
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Fig. S34. MS/MS spectra of the CEL adduct identified at H2BK116; D -0.23 ppm, retention time of 

44.17 min. 
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Fig. S35. MS/MS spectra of the CEL adduct identified at H2BK125; D 2.34 ppm, retention time of 36.33 

min. 
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Fig. S36. MS/MS spectra of the MG-H adduct identified at H4R23; D 1.22 ppm, retention time of 57.39 

min. 
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Fig. S37. MS/MS spectra of the MG-H adduct identified at H4R55; D 1.35 ppm, retention time of 58.38 

min. 
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Fig. S38. MS/MS spectra of the CEL adduct identified at H4K79; D 5.91 ppm, retention time of 68.98 

min. 
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Fig. S39. MS/MS spectra of the MG-H adduct identified at H4R91; D 2.56 ppm, retention time of 66.43 

min. 
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Fig. S40. MS/MS spectra of the MG-H adduct identified at H4R95; D 3.33 ppm, retention time of 48.19 

min. 

	


