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Supplemental Methods
Materials and reagents. All reagents were purchased from Sigma Aldrich (St. Louis, MO) unless
otherwise indicated. Cell culture media were purchased from Invitrogen (Grand Island, NY). Fetal bovine

serum (FBS) was purchased from Atlas Biologicals (Ft. Collins, CO).

Quantification of cellular MGO. Quantification of MGO was achieved using a modified derivatization
technique using o-phenylenediamine (1). Cells were plated in 6-well plates. Following treatments, the
medium was removed and cells washed with ice-cold PBS. Cells were then scraped into ice-cold PBS and
pelleted via centrifugation at 1,000 x g. Cell pellets were lysed in 100 yL of a buffer containing 150 mM
NaCl, 50 mM HEPES (pH 7.4), 1% IGEPAL, and protease and phosphatase inhibitor cocktails and
briefly sonicated. Aliquots (10 L) were removed to quantify protein, and the remaining lysate was mixed
1:1 with ice-cold methanol containing 50 pmol “C-MGO. Protein was precipitated for 1 h at -20 -C and
pelleted via centrifugation at 20,000 x g at 4-C. Supernatants were removed and derivatized with 1 mM o-
phenylenediamine for 2 h at room temperature protected from light. Samples were centrifuged at 20,000 x
g and the clarified supernatant was chromatographed using a Shimadzu LC system equipped with a 50 x

2.1 mm, 3 pm particle diameter Ascentis C, column (Supelco, Bellefonte, PA) at a flow rate of 300

pL/min. Buffer A (0.1% formic acid in H,O) was held at 99% for 0.5 min, then a linear gradient to 98%
solvent B (0.1% formic acid in acetonitrile) was applied over the next 4 min. The column was held at
98% B for 2 min and then equilibrated to 99% A for 2 min. Multiple reaction monitoring was conducted
in positive ion mode using an AB SCIEX 3200 QTrap with the following transitions: m/z 145.1 = 77.1

for MGO; m/z 148.1 = 77.1 for “C-MGO.

Measurement of MGO adducts using QuARKMod — MGO adducts were measured using protein pellets
collected from MGO quantification or chromatin samples (50 pg) using previously published methods
(2). The following table gives the transitions of all analytes reported here as well as their collision

energies (CE).



Species Q1 (m/z) | Q3 (m/z) | CE (V)
Lys 147.1 84.1 22
+CsN. Lys 155.1 90.1 22
Arg 175.1 70.1 26
“CsN, Arg 185.1 75.1 26
acLys/meLys | 189.2 84.1 29
acLys-d, 197.2 91.1 29
“CsN. meLys | 197.2 90.1 29
Leu 132.1 86.1 13
«CsN Leu 139.1 93.1 13
meLys 161.1 84.1 26
me.Lys 175.1 84.1 26
S/ADMA 203.1 70.1 29
meArg 189.1 70.1 29
ADMA-d, 210.1 77.1 29
MG-H 2292 70.1 35
MG-H--C 230.2 70.1 35
CEA 2472 70.1 47
CEA--C 2482 70.1 47
CEL 219.2 84.1 29
CEL-d, 2232 88.1 29

Measurement of GLOI activity. GLOI1 activity was quantified via incubation of cell lysate (100 pg
protein) with a mix of 2.5 mM GSH and 2.5 mM MGQO (pre-incubated at 37°C for 1 h to generate
hemithioacetal substrate) at 37°C for 30 min. 5 nmol of stable isotopte-labeled GSH-(glycine-=C,,sN) was
then added to each reaction as the internal standard and reactions were immediately quenched via addition
of ethyliodoacetate (200 mM in acetonitrile (ACN), 20 mM final). Samples were derivatized for 30 min at
room temperature protected from light. Protein was precipitated via addition of 20% (w/v) 5-sulfosalicylic
acid (2% final) and removed via centrifugation at 10,000 x g for 5 min at room temperature. Supernatants
were removed and diluted 1:1 in H,O containing 200 mM heptafluorobutyric acid (HFBA). Clarified

supernatant (20 L) was chromatographed using a Shimadzu LC system equipped with a 50 x 2.1 mm,



2.6 um particle diameter Kintetix C,column (Phenomenex, Torrance, CA) at a flow rate of 400 puL/min.
Solvent A (10 mM HFBA in H,O) was held at 96% for 0.5 min, then a linear gradient to 95% B (10 mM
ACN) was applied over the next 4.5 min. The column was held at 95% B for 0.5 min and then
equilibrated to 96% A for 2 min. The needle was washed prior to each injection with a buffer consisting
of 25 mM NH.OAc in MeOH. Multiple reaction monitoring was performed in positive ion mode using an
AB SCIEX 3200 QTrap with the following transitions: m/z 394.2 0 265.2 for GSH; m/z 380.1 O 233.1
for LGSH; 397.2 0 268.2 for GSH-(glycine--C.,,sN). GSH and LGSH were quantified using GSH-

(glycine-+C,,sN).

Assessment of MGO toxicity. Cells were seeded in 96-well plates at a density of 3 x 10- and allowed to
adhere overnight. The following day, adherent cells were treated with either sterile-filtered ddH.O or
MGO. After 24 h, viability was determined using WST-1 (Roche Applied Science) according to the
manufacturer's protocol.

SDS-PAGE and immunoblotting. Samples were denatured in SDS loading buffer and heated at 95-C for 5
min. Proteins were resolved via 15% SDS-PAGE and transferred to nitrocellulose membranes (BioRad,
Hercules, CA). Membranes were blocked with Odyssey Blotting Buffer (Li-Cor Biosciences, Superior,
NE) for 30 min at room temperature. Primary antibodies were incubated with membranes overnight at 4
-C with the following dilutions: GLO1 (1:2500, Millipore: 05-1925); GLO2 (1:2000, ThermoFisher:
PAS5-30965); DJ-1/PARK7 (1:2000, Abcam, ab18257); Actin (Santa Cruz, sc-1616, 1:5000); MG-H1,
MG-H2, and MG-H3/CEA (1:1000, laboratory of D.A.S., (3)); H2B (1:5000, CST: #2934); H3 (1:5000,
CST: #3638); H2A (1:5000, CST: #3636); H4 (1:2000, CST: #2935); H3K4me (1:5000, Abcam:
ab8895); H3K27me, (1:10000, Millipore: 07-449); H3K27ac (1:2000, Abcam: ab4729); H3K56ac
(1:1000, Abcam: ab71956); H3K79me, (1:2000, Abcam: ab3594); H2BK5ac (1:2000, Abcam: ab40886);
H2BK12ac (1:2000, Abcam: ab40883); H2BK15ac (1:2000, Abcam: ab62335); H2BK20ac (1:2000,
CST: 2571); H2BK120ub (1:2000, CST: #5546); H4K5ac (1:2000, CST: #8647); H4K8ac (1:2000, CST:

#2594); H4K12ac (1:2000, CST: #13944); H2AK5ac (1:1000, Abcam: ab45152); H2AK9ac (1:1000,



Abcam: ab47816). Following 3 washes with Tris-buffered saline (TBS) + 0.1% Tween-20 (TBST),
infrared secondary antibodies (Li-Cor) were added in blocking buffer (1:5000) for 45 min. Blots were
developed following 3 additional washes with TBST using the Odyssey Infrared Imaging System (Li-

Cor).

Synthesis of stably-labeled MG-H isomers. »C-Labeled methylglyoxal hydroimidazolone (MG-H)
standards were synthesized as previously reported with the incorporation of “C-labeled reagents into the
synthetic route (4). Specifically, MG-H1 and MG-H3 were labeled via the incorporation of 1--C-DL-
alanine (Cambridge Isotope Laboratories), while MG-H2 was labeled via the incorporation of =C-thiourea

(Cambridge Isotope Laboratories).

Proteomic characterization of histone adducts. Chromatin (5 ug) was separated on a 15% SDS-PAGE gel
and stained with SimplyBlue SafeStain (Invitrogen, Carlsbad, CA). Four gel bands were excised
corresponding to each histone based on molecular weight. Bands were reduced, alkylated, and destained
as described (5). To obtain 100% sequence coverage over all four histones, samples were digested and
peptides were extracted as previously described (6). Peptides were reconstituted in 0.1% formic acid, and
peptide mixtures were loaded onto a capillary reverse-phase analytical column (360 um o.d. x 100 pm
i.d.) using an Dionex Ultimate 3000 nanoL.C and autosampler. The analytical column was packed with 22
cm of C18 reverse-phase material (Jupiter, 3pum beads, 300 Aor Aqua C18, 3 um beads, Phenomenex),
directly into a laser-pulled emitter tip. Peptides were gradient-eluted at a flow rate of 400 nL/min, and the
mobile phases consisted of water containing 0.1% formic acid (solvent A) and acetonitrile containing
0.1% formic acid (solvent B). A 90 min gradient was performed, consisting of the following: 0—3 min,
1% B (during sample loading); 3—68 min, 1-40% B; 68—77 min, 40-95% B; 77-78 min, 95% B; 78-79
min 95-2% B; and 79-90 min, 2% B (column re-equilibration). Upon gradient elution, peptides were
mass analyzed on an Q Exactive Plus mass spectrometer (Thermo Scientific), equipped with a
nanoelectrospray ionization source. The instrument was operated using a data-dependent method with

dynamic exclusion enabled. Full-scan (m/z 375—-1800) spectra were acquired with the Orbitrap (resolution



60,000). The instrument method consisted of MS1 using an MS AGC target value of 3e6, followed by up
to 20 MS/MS scans of the most abundant ions detected in the preceding MS scan. A maximum MS/MS
ion time of 100 ms was used with a MS2 AGC target of 1e5. Dynamic exclusion was set to 15s, HCD

collision energy was set to 27 nce, and peptide match and isotope exclusion were enabled.

For identification of histone peptides, tandem mass spectra were searched with Sequest (Thermo
Fisher Scientific) against a human subset database created from the UniprotKB protein database

(www.uniprot.org). Due to the plethora of diverse histone modifications, multiple database searches were

required for each sample to minimize false positives. These variable modifications included: +57.0214
(carbamidomethylation) on Cys; +15.9949 (oxidation) on Met; +14.0157 (methylation), +28.0313
(dimethylation), +42.0106 (acetylation) on Lys; +54.0106 (MG-H) on Arg; +72.0212 (CEL, CEA) on Lys
and Arg. Additionally, a variable mass of +56.0262 (propionylation) was applied to Lys where
propionylation was required. Search results were assembled using Scaffold 3.0 or 4.3.2 (Proteome
Software). Spectra of interest were inspected using Xcalibur 2.2 Qual Browser software (Thermo
Scientific). Tandem mass spectra of all modified peptide precursors as well as spectra acquired of the

corresponding unmodified peptide forms were interrogated manually.

RNA-Sequencing analysis. WT or GLO1- cells (4 x 10¢) were treated with either vehicle (ddH.O), 50 yM
MGO or 500 uM MGO for 6 h. Following treatments, cells were washed once with ice-cold PBS and then
scraped and pelleted. Cell pellets were placed in a QIAshredder column and total cellular RNA was
extracted using a commercial RNA purification kit (RNeasy, Qiagen, Valencia, CA), according to
manufacturer’s instructions. Total RNA quality was assessed at the Vanderbilt Technologies for Advanced
Genomics (VANTAGE) core facility using the 2100 Bioanalyzer (Agilent). At least 200ng of DNase-
treated total RNA with an RNA integrity number greater than 6 was used to generate polyA (mRNA)
enriched libraries using Stranded mRNA sample kits with indexed adaptors (New England BioLabs).
Library quality was assessed using the 2100 Bioanalyzer (Agilent) and libraries were quantitated

using KAPA Library Quantification Kits (KAPA Biosystems). Pooled libraries were subjected to 150 bp



paired-end sequencing according to the manufacturer’s protocol (Illumina NovaSeq6000). Bcl2fastq2

Conversion Software (Illumina) was used to generate de-multiplexed Fastq files. Reads were trimmed to

remove adapter sequences using Cutadapt v1.16 (7) and aligned to the human b37 genome using STAR

v2.5.3a at the Vanderbilt Technologies for Advanced Genomics Analysis and Research Design

(VANGARD) (8). Ensembl v75 gene annotations were provided to STAR to improve the accuracy of

mapping. Quality control on both raw reads and adaptor-trimmed reads was performed using FastQC

(www Dbioinformatics.babraham.ac.uk/projects/fastqc). featureCounts v1.15.2 (9) was used to count the

number of mapped reads to each gene. Significantly differential expressed genes with FDR-adjusted p-

value < 0.05 and absolute fold change > 2.0 were detected by DESeq?2 (v1.18.1) (10).
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Datasets

Dataset S1. gRNA and primer design for the generation of HEK293 cells lacking GLOI. The gRNA
utilized was designed to target the Bael restriction enzyme target site. The GLO1 gene was amplified via
PCR using the forward and reverse primers listed. RFLP was then performed via PCR product treatment
with Bael and GLO1 knockout cell lines determined based upon the absence of the restriction fragments

shown.

Dataset S2. Protein-coding transcripts significantly altered in GLO1~ cells treated with either vehicle, 50
uM, or 500 uM MGO for 6 h.

Dataset S3. DAVID analysis was performed on each gene list, revealing pathways and gene ontology

enrichments for each cohort.
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labeled MG-H1 (A), MG-H2 (B), and MG-H3 (C) internal standards are

chromatographically resolved using QuARKMod. * indicates the presence of a “*C. MG-H3 (Black) is

readily hydrolyzed to generate CEA (Red) following a 24 h incubation at 37-C, whereas < 10% CEA
results from MG-H1 hydrolysis. (D) MG-H1, MG-H2, MG-H3 were mixed at an equimolar ratio to

demonstrate chromatographic separation of the MG-H isomers.
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Fig. S2. (A) Levels of MG-H1 detected in untreated histone H4 (top), histone H4 reacted with 100 uM

MGO for 24 h (center), and chromatin from untreated HEK293 cells (bottom). In each case, the sample

data are shown in black and the internal standard in red. MG-H1 in untreated H4 was below the limits

of detection of the assay, but the adduct was readily detected following MGO treatment. In chromatin,

peaks are detected (5.19 and 5.36 min) with the same MRM transitions as MG-H1, these peaks do not

co-elute with the internal standards. (B) Similar results are observed upon assay for CEA.
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Fig. S3. GLOL1- cells display a significant shift decrease in viability (compared to WT cells) following

exposure to MGO for 24 h. Data are presented as the mean + S.D. of twenty-four measurements.
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Fig. S4 Cellular MGO was quantified in WT and GLOIcells exposed to increasing concentrations of

MGO for 1 h. Measurements were performed in triplicate and are presented as the mean + S.D. Statistical

significance was determined using an unpaired t-test (*** p < 0.001).
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Fig. SS. (4) Cellular MGO was quantified over time in WT and GLO1-cells exposed to 50 uM MGO.

Measurements were performed in triplicate and are presented as the mean + S.D. (B-D) Protein pellets

collected from cells described in (A) were analyzed for MGO-derived PTMs using QuARKMod. GLO1-

- cells display increased MGO-derived PTMs following exposure to 50 M MGO with concentrations

peaking at ~ 6 h. Statistical significance was determined by two-way ANOVA (*** p <0.001).

13



[MGO]uM - 50 500 - 50 500

GLO1 | == == =

Actin I-———— —I

*kk

6009 3 WT —

500 @l GLOT* i
400
50 -

404
304
204
10-

UM MGO

Vehicle 50uM 500uM
Fig.S6.(A) GLOL1 is not altered following treatment with either 50 or 500 M MGO for 6 h. (B) Cellular
MGO is significantly elevated in GLO1~+ cells 6 h post-MGO exposure. Data are presented as the mean
+ S.D, N = 3 and statistical significance was determined by a two-way ANOVA (*** p < 0.001).

14



WT GLO1--

50 100 500 1000 - 50 100 500 1000

[MGO] uM

MG-H1

MG-H2

MG-H3/CEA

Fig. S7. WT or GLO1~- cells were treated with increasing concentrations of MGO for 6 h. Chromatin

was harvested and subjected to immunoblotting. A concentration-dependent increase in MG-H1 and

MG-H3/CEA immunostaining is observed in GLO1- cells while MG-H2 is not observed.
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Fig. S9. (A) Mapping identified sites of modification (red) on the nucleosome core particle. (B, C)
H4R23, H4R55, and H3R72 all lie within close proximity to DNA. PDB: 1KX5.
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Fig.S10. WT or GLOI1- cells were treated with 50 or 500 M MGO for 6 h, and chromatin was extracted
and subjected to immunoblotting. (A) MGO leads to a marked disruption in H2B acetylation and
ubiquitylation, while preserving H3K79me.. (B) No alterations in H2A, H3, or H4 PTMs were observed.

Shown are representative blots from a single N = 3 experiment.
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P <0.05). N =3 for each cohort.
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MS/MS spectra of identified MG-H, CEA, or CEL adducts.
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Fig. S14. MS/MS spectra of the MG-H adduct identified at H3R19; A 10.9 ppm, retention time of 11.29
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Fig. S15. MS/MS spectra of the CEA adduct identified at H3R19; A 2.4 ppm, retention time of 28.51

min.
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Fig. S27. MS/MS spectra of the MG-H adduct identified at H2BR79; A -0.48 ppm, retention time of
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Fig. S29. MS/MS spectra of the MG-H adduct identified at H2BR92; A 0.98 ppm, retention time of
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Fig.S30. MS/MS spectra of the CEA adduct identified at H2BR92; A -0.19 ppm, retention time of 45.88

min.

38



| I B By B | e B e B I B i By B |

EIQTAVRMGHELLLPGELAK

- L_L_L_ L_ - L_L_L_ L_L_ L_L_1L_
100 MH*2
903.0307
95
90
85
80
75
70
65
60
55
y6

50 614.3513 b10
1191.7095
45

Relative Abundance

40

MH-H203
35 894.0250,
y2 s

30 218.1499 b4

A
y1 472.2402 y13+ \
05 3147.1128 b3 7179412 |\

ya ; \ b9
371. 192‘{602743 y1on 840y§18;3 V9 1078.6234

582.3632 ’ A
: co 953:5971 1333.8209

L 1 .
¥5  |6a2.34971 : b13

20 !
1
1 1
§ S17.3013 75,7 7 \ . y10 i 1474.8242
. y12
1
1
1
1

15

! 727,4352 1 b7 1 b8 1163.7447
10 ,‘ ,' ! y14285.451p  965.5394 y11 1;;45 7830 b14 5
| b5 Y127 bgh 9662| ' i 1262.7828 , »  y13 | 1587.9109 1658,9397

667.414 b1 !, 1434.87¢5 )/144a
N T T T O 2 2 S
R R R | "|' IIII""IIIII hLARRRE R A R AR R R R R R | L R A A R A R R b
200 400 600 800 1000 1200 1400 1600 1800
miz

Fig. S31. MS/MS spectra of the MG-H adduct identified at H2BR99; A 1.44 ppm, retention time of
60.55 min.
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Fig. S32. MS/MS spectra of the CEA adduct identified at H2BR99; A 1.09 ppm, retention time of 59.79

min.
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Fig. S33. MS/MS spectra of the CEL adduct identified at H2BK108; A 1.46 ppm, retention time of 57.22

min.
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Fig. S34. MS/MS spectra of the CEL adduct identified at H2BK116; A -0.23 ppm, retention time of

44 .17 min.
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Fig.S35.MS/MS spectra of the CEL adduct identified at H2BK125; A 2.34 ppm, retention time of 36.33
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Fig. S36. MS/MS spectra of the MG-H adduct identified at H4R23; A 1.22 ppm, retention time of 57.39

min.
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Fig. S37. MS/MS spectra of the MG-H adduct identified at H4R5S5; A 1.35 ppm, retention time of 58.38

min.
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Fig. S38. MS/MS spectra of the CEL adduct identified at H4K79; A 5.91 ppm, retention time of 68.98

min.
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Fig. S39. MS/MS spectra of the MG-H adduct identified at H4R91; A 2.56 ppm, retention time of 66.43

min.
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Fig. S40. MS/MS spectra of the MG-H adduct identified at H4R95; A 3.33 ppm, retention time of 48.19

min.
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