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Supplementary Information Text 

Methods 

Participants 

Data were provided by the Human Connectome Project (24) WU-Minn Consortium (Principal 

Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657, RRID:SCR_008749) 

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 

Research; and by the McDonnell Center for Systems Neuroscience at Washington University,  

The analyzed data were split between the S900 data release (964 participants) and the S1200 data 

release (236 additional participants). We treated the S900 as the main analysis sample and results 

from this sample are reported throughout the paper. At times, we used unique participants from 

the S1200 release for replication, referred to as S1200n. For the main analysis sample, we applied 

the following exclusion criteria, as these might confound brain-obesity associations: people with 

missing values on crucial variables, such as age, BMI, education, income, gender, race, and 

ethnicity (n=6), hypo/hyper thyroidism (n=4), other endocrine problems (n=16), underweight 

(BMI <=18, n=9), and women who had recently given birth (n=9). In addition, as we used family 

information to control for participants’ relatedness, we excluded participants that were half-

siblings to other participants (n=31). The same exclusions were applied to S1200n (n=11). 

The final main analysis dataset consisted of 895 participants, demographics of which are 

summarized in Table 1. The sample had good gender balance and variation in BMI and income. 

As limitations, the sample was relatively young and well educated, and BMI distribution was 

slightly less obese compared to current prevalence estimates for Missouri or the US as a whole 

(MO: 31.7%, US: 36.5%, ref: , 49). Most people were white and non-Hispanic, however other 

races-ethnicities were also represented. The participants were nested into 384 families, typically 

having 1 to 3 siblings in the dataset. For comparison, we also provide the same statistics for the 

S1200n sample, as well as a subset of S1200n sample in which no participant is related to the 

S900 sample.  

For the heritability analysis between each neurocognitive factor and BMI, we randomly chose 

one sibling pair per family, ensuring that the pair had complete data. Non-twin sibling pairs were 

considered equivalent to dizygotic twin pairs with respect to heritability analyses once data was 
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residualized for age and gender. If multiple sibling pairs within a family had complete data, we 

prioritized choosing monozygotic twin pairs and dizygotic twin pairs over non-twin sibling pairs. 

Depending on the neurocognitive factor, the heritability analysis was conducted on 46-111 pairs 

of monozygotic twins (median=97) and 60-202 pairs of dizygotic twins and siblings 

(median=176). 

Measures 

Psychological measures. 

Participants completed an extensive set of questionnaires and cognitive tests (see 53, 54 for an 

overview). In the current analysis, we included 22 questionnaires and 18 cognitive tests (see Fig. 

2 and Dataset S1, section 1 for complete list). Here we refer to the set of questionnaire results as 

personality variables, as personality encompasses various patterns of what people want, say, do, 

feel, or believe (55). Based on our previous review (6) we chose cognitive tests capturing aspects 

of executive function, memory, and language. 

Cortical thickness. 

All T1-weighted MRI images were processed using the CIVET pipeline (version 2.0) (29, 56, 

57). Processing was executed on the Canadian Brain Imaging Network (CBRAIN) High 

Performance Computing platform for collaborative sharing and distributed processing of large 

MRI datasets (58). Briefly, native T1-weighted MRI scans were corrected for non-uniformity 

using the N3 algorithm (59). The corrected volumes were masked and registered into stereotaxic 

space, and then segmented into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) 

and background using a neural net classifier (60). The white matter and gray matter surfaces were 

extracted using the Constrained Laplacian-based Automated Segmentation with Proximities 

algorithm (61, 62). The resulting surfaces were resampled to a stereotaxic surface template to 

provide vertex based measures of cortical thickness (63). All resulting images were visually 

inspected for motion artefacts by experienced personnel and then subsequently processed through 

a stringent quality control protocol, which only 641 of the 894 participants in our initial cohort 

passed. In the S1200n, 144 of the 214 passed. For those participants who passed, cortical 

thickness was then measured in native space using the linked distance between the two surfaces 

across 81924 vertices and a 20mm surface smoothing kernel was applied to the data (64). The 

Desikan–Killiany–Tourville (DKT) atlas was used to parcellate the surface into 64 cortical 
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regions (65). Cortical thickness was averaged over all vertices in each region of interest for each 

subject (66) and the effect of mean cortical thickness was regressed to allow for regional analysis 

(67). After participant exclusions, data was available for 591/137 participants in the S900/S1200n 

samples. 

Volumetric estimates. 

Because the CIVET cortical thickness method does not cover all medial temporal and subcortical 

structures, we used volumetric estimates for these brain regions. For subcortical volumetric 

estimation, T1-weighted scans of the subjects were pre-processed through a computerized 

pipeline (n=899). Image denoising (68), intensity non-uniformity correction (59), and image 

intensity normalization into range (0-100) using histogram matching were performed. After 

preprocessing, all images were first linearly (using a 9-parameter rigid registration) and then 

nonlinearly registered to an average template (MNI ICBM152) as part of the ANIMAL software 

(30, 69). The subcortical structures, i.e., thalamus, putamen, caudate, and globus pallidus were 

segmented using ANIMAL by warping segmentations from ICBM152 back to each subject using 

the obtained nonlinear transformations. The medial temporal lobe structures, i.e. hippocampus, 

amygdala, temporal pole, and parahippocampal, entorhinal and perirhinal cortices, were 

segmented using an automated patch-based label-fusion technique (70). The method selects the 

most similar templates from a library of labelled MRI template images, and combines them with 

a majority voting scheme to assign the highest weighted label to every voxel to generate a 

discrete segmentation. Quality control was performed on the individual registered images as well 

as the automated structure segmentations by visual inspection, and inaccurate results were 

discarded. In S900, 648 participants passed the quality control for medial temporal lobe 

structures, ad 895 for subcortical structures. Within S1200n, of the 214 participants, 212 passed 

the quality control for subcortical structures, and 174 passed the quality control for medial 

temporal lobe. After exclusions, the S900/S1200n samples included data from n=828/204, 8 

parcels per subjects for the subcortical structures, and n=594/166, 12 parcels for the medial 

temporal lobe structures. 

Data Analysis 

Analyzing each feature. 

A schematic pipeline of the analysis is displayed in SI Appendix Fig. S1. Data from all 



 

 

5 

 

neurocognitive factors were first residualized for control variables (age, ethnicity, gender, 

handedness, race) using multiple linear regression. When presenting phenotypic associations, we 

used a linear mixed model, adding a random intercept for family (SI Appendix Fig. S1), and also 

varied the involvement of income and education. As BMI was skewed (long-tail at the upper end 

of the scale), it was log-transformed to achieve a normal-like distribution. Handedness was also 

log normalized. 

For each factor category (cognition, personality, cortical thickness, medial temporal volume, 

subcortical volume), factor-BMI relationships were assessed using univariate correlation between 

each brain parcel or test score and BMI. We initially also tried using a partial least squares (PLS) 

correlation approach, which is a multivariate technique suited to handling correlated predictors 

(71, 72). However, the PLS estimates were extremely close to univariate correlations, therefore 

univariate correlations were preferred for simplicity. As a result, we received an estimate of the 

relative contribution (weight) of each predictor within a given factor. Estimates used in this study 

are presented in Dataset S1, section 2. 

Creating poly-phenotype scores. 

To summarize effects for each neurocognitive factor, we created an aggregate BMI risk score or 

poly-phenotype score (PPS) for each neurocognitive factor. This was inspired by the polygenic 

risk score approach, where the effects of single-nucleotide polymorphisms are added up to form a 

total genetic score (73). Specifically, we used the correlation-derived weights to multiply each 

participant's measured values, and aggregated the results into a single composite variable for a 

given factor, the PPS. A PPS would reflect the total association that a given factor has with BMI. 

Even though only some features within a neurobehavioural factor had significant effects on BMI, 

and certain features correlated with each other (see Datasets S3-S7), both our testing (see SI 

Results) and recommendations by others (74) lead us to not apply p-value cutoffs, clumping, or 

pruning, as excluding these steps does not hurt predictive ability and improves transparency (74). 

PPS-s have a mean of 0 but varying standard deviation, depending on the number of features and 

their effect sizes (Dataset S1, section 8). 

We used cross-validation principles to avoid and test for overfitting. Namely, we divided 

participants into 10% folds. Each 10% fold received the correlation weights from the remaining 
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90% of the sample. As the result, we received one PPS vector for each factor, where each 

participant’s score was based on out-of-sample prediction. When creating the 10% folds, we 

created folds for each factor separately, as each factor has a different number of available data 

points, ensuring that folds were as equal in size as possible. We also ensured that siblings from 

the same family were in the same fold. Therefore, no data from family members were used in 

calculating both the correlation weights and performing out of sample predictions.  

To test the robustness of PPS-s, we first tested the impact of not pruning and applying p-value 

cutoffs. In a pruned PPS, features are omitted that a) correlate above criterion to another feature 

and b) have lower correlation with BMI than the other feature (75). In a PPS with p-value cut-off, 

features are omitted that have an above-criterion uncorrected p-value when correlated with BMI 

Neither pruning nor a p-value cutoff improved the predictive ability of the PPS-s (see SI Results). 

We further tested the predictive ability of PPS scores by applying the weights created on the full 

S900 release to predict BMI in the S1200n release (new participants only), which we did not 

touch before predicting. As 101 participants within the S1200n were related to participants in the 

S900, we also tested the predictive ability in the subset of S1200 that was not related to S900 

(n=124).  

Heritability analysis. 

In the heritability analysis, a typical behavioural genetics decomposition uses relatedness 

assumptions between individuals to divide variance in a trait to the following components: 

genetic variance (A, additive and interactive effects), shared environmental variance (C, family 

and shared school effects), and unique environmental variance (E, unique experience and 

measurement error). The assumptions are: 100% of genetic variance shared between 

monozygotic twins, 50% of genetic variance shared between dizygotic twins and sex-and gender 

residualized siblings, 100% of family environment shared by all siblings, 0% unique variance 

shared between siblings. Such decomposition is called univariate heritability.  

Besides establishing univariate heritability, one can also conduct heritability analysis on the 

covariance between two traits. For instance, a genetic correlation is the correlation between the A 

components of trait 1 and trait 2. A bivariate heritability analysis decomposes the phenotypic 
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correlation between trait 1 and trait 2 into A, C, and E components. 

Heritability analysis was conducted on PPS scores not residualized for family structure, as this 

information is used in heritability modelling. We then ran bivariate heritability analyses 

separately between each PPS and BMI, which provided univariate heritability estimates of the 

PPS-s and BMI, genetic and environmental correlations between the univariate estimates of PPS-

s and BMI, and bivariate decomposition of the phenotypic correlation between each PPS and 

BMI. We used the AE model, since BMI was best explained by an AE model, as opposed to an 

ACE model, based on Akaike Information Criterion (AIC) (Dataset S1, section 9). Similar AIC 

patterns were present for bivariate models (SI Appendix Fig. S12, Dataset S1, section 12). We 

report only standardized A estimates in the main results, as in the univariate and bivariate 

analysis of the AE model, E=100-A. Also, no environmental correlations were significant. All 

standardized and unstandardized estimates are reported in the supplementary materials (Datasets 

S10-S11). 

Analysis software. 

Analysis was conducted in Microsoft R Open 3.4.0 (76), using May 2017 version of packages 

abind, car, caret, cowplot, corrplot, ggplot2, lme4, MuMIn, pbkrtest, plyr, psych, synthpop, tidyr, 

WriteXLS (77–92). Cortical thickness was plotted using Surfstat (93) in MATLAB (94). 

Heritability analysis was conducted using OpenMX (95), adapting scripts provided by the 

Colorado International Twin Workshop (96). 

SI Results 

Control variables 

Age, gender and race related to BMI, demonstrating the need for residualizing (SI Appendix Fig. 

S2). Marginal R2 explaining only fixed effects was 0.07, and conditional R2 explaining both fixed 

and random effects was 0.38, highlighting the effect of family structure. When controlling for 

education and income, education was a significant additional predictor, with total model R2 being 

0.09 and conditional R2 0.37. Further, controlling for family structure in a nested model as 

random intercept improved model fit (AIC dropped from 7006 to 6895 / 6978 to 6885 when 

controlling for education and income), suggesting that family nesting needs to be taken into 

account. 
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Robustness of PPS-s 

Similarly to genetic literature (74), we found that pruning features or applying a p-value threshold 

does not change the predictive ability of the PPS-s (SI Appendix Fig. S5 & S6).  

To test the generalizability of the PPS approach, we used weights obtained from the full S900 

release (SI Appendix Fig. S3 right and S4 right) to predict the BMI of new participants in the 

S1200 release (S1200n, n=236), which were not used in any of the initial assessments. As certain 

participants in the S1200n release were related to participants in the S900, we also tested the PPS 

performance when they were excluded. As can be seen in SI Appendix Fig. S7, cortical thickness 

estimates are very similar, no matter the training or testing dataset. Cognition PPS effect sizes 

were similar to each other, but did not reach statistical significance in the replication sample 

(S1200n). Personality PPS had unexpectedly high correlation with BMI in the new data. Further 

research is needed to determine if such effect sizes would further replicate. Medial temporal lobe 

PPS-s also did not replicate.  

Heritability replication 

We tested whether the PPS-based bivariate analysis patterns would replicate in the S900 dataset, 

but using unaggregated top individual features within the PPS-s. We chose the 5 individual 

features from the top predictors of cognition and cortical thickness. As shown in SI Appendix 

Fig. S8, the individual tasks are comparable with the PPS-s in terms of univariate heritability, 

genetic correlations, and heritability of phenotypic correlation. However, with genetic 

correlations, the estimates are non-significant (SI Appendix Fig. S8 B1&B2), suggesting that we 

are not powered to establish significance of the smaller correlations. Further, the standardized 

estimates for heritability of the phenotypic correlations (SI Appendix Fig. S8 C1&C2) are noisier 

and the estimator often failed at estimating standardized confidence intervals. Such failures at 

individual feature levels highlight the value of PPS-s, which provide more stable estimates at 

these sample sizes. 

We further used participants only in the S1200n release to replicate the bivariate heritability 

analysis results in new data. PPS weights were obtained from the S900 release. We focused only 

on participants who did not have siblings in the S900 release. Granted, the power is low because 

of fewer complete twin pairs available (29 MZ pairs and 30 DZ pairs). The univariate estimate 

for BMI heritability was [A=64% [95% CI: 41%;79%]. In the bivariate analysis, we were also 
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able to replicate the patterns seen in the main dataset (SI Appendix Fig. S9), however the 

confidence intervals were often covering 0 or not estimated, likely due to small sample size. 

Figures 

 

Fig. S1. A schematic diagram of the analysis pipeline. All steps were conducted on all 

neurocognitive factors separately. BMI=body mass index; CV=cross-validation; MTL=medial 

temporal lobe; MRI=magnet resonance image; PPS=poly-phenotype score; SC=subcortical; 

SES=socio-economic status (education and income). 
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Fig. S2. Regression weights of a multilevel linear model nested for family. Lines mark standard 

95% confidence intervals. Intercept is 27.37 (standard error: 2.16). For interpretability, regular 

BMI is unscaled here. Reference groups: Gender: male, Race: white, Ethnicity: not 

Hispanic/unknown. Am.=American; BC=birth control; Is.=Islander 
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Fig. S3. Associations between body mass index (BMI), cognitive test scores (A), and personality 
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traits (B), either when controlling for education, income, and family structure (left), or not 

controlling for these variables (right). Error bars mark 95% confidence intervals. See Dataset S1, 

section 1 for explanation of cognitive test names. Numerical values are reported in Dataset S1, 

section 2. EF=executive function; FFM=Five-Factor Model; FDR=false discovery rate; 

Imp=(lack of) impulsivity; Lang=language; Mem=memory; Neg=negative affect; 

Perc=perception; PWB=psychological well-being; Soc=social relationships; SSE=stress and self 

efficacy; WM=working memory 
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Fig. S4. Associations between body mass index (BMI), cortical thickness (A) and regional brain 
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volume (B), either when controlling for education, income, and family structure (left), or not 

controlling for these variables (right). Error bars mark 95% confidence intervals. Numerical 

values are reported in Dataset S1, section 2. FDR=false discovery rate; Fro=frontal, Ins=insula; 

L=left;  Occ=occipital; Par=parietal; R=right; Tem=temporal;  

 

 

 

 

 

Fig. S5. Low impact of pruning to the poly-phenotype scores’ (PPS) associations with BMI. PPS-

s were trained and tested within the Human Connectome Project’s S900 release, using cross-

validation. Pruning means excluding features that have a higher correlation than set criterion with 

another feature that associates with BMI. A pruning criterion equal to 1 means no pruning was 

done. Cogn=PPS of cognitive tests; CT=PPS of cortical thickness; MTL=PPS of medial temporal 
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lobe volume; Pers=PPS of personality tests. 

 

Fig. S6. Low impact of excluding features by p value to the poly-phenotype scores’ (PPS) 

associations with BMI. PPS-s were trained and tested within the Human Connectome Project’s 

S900 release, using cross-validation. Features with a p value higher than criterion were excluded 

from the PPS. A p criterion of 1 means no exclusion was done. Cogn=PPS of cognitive tests; 

CT=PPS of cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of 

personality tests. 
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Fig. S7. Comparison of poly-phenotype scores’ (PPS) performance in correlating with BMI, 

depending on training data and test data.  

S900CV→S900: PPS-s within S900 release trained and tested with cross-validation to avoid bias. 

These PPS-s are used in heritability analysis.  

S900→S1200n: PPS-s trained on S900 and tested in full S1200n sample.  

S900→S1200n (unrelated): PPS-s trained on S900 and tested in S1200n sample not related to 

S900.  

Cogn=PPS of cognitive tests; CT=PPS of cortical thickness; CV=cross-validated; MTL=PPS of 

medial temporal lobe volume; Pers=PPS of personality tests; S900 – Participants in Human 

Connectome Project’s S900 release; S1200n – participants only in the S1200 release; SC=PPS of 

subcortical structure volumes; 

 



 

 

17 

 

 

Fig. S8. Heritability analysis of the association between poly-phenotype scores (PPS) of 

cognitive test scores (A1-C1) and cortical thickness (A2-C2), compared with most significant 

individual features of each PPS. (A) Heritability of each trait. The effect of unique environment 

(E) is not shown, since E=100-A. (B) Genetic correlations between BMI and each PPS or 

between BMI and each feature. The PPS-based genetic correlations are positive, because the 

PPS-s are designed to positively predict BMI. However, individual features can have negative 

genetic correlations. (C) Heritability of the phenotypic correlation between BMI and PPS or 

between BMI and each feature. Horizontal lines depict 95% confidence intervals. The estimator 

failed at estimating certain features. Corr=correlation; L=Left hemisphere; herit=heritability; 

R=right hemisphere. 
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Fig. S9. Heritability analysis of the association between poly-phenotype scores (PPS) and body 

mass index (BMI) in the S1200n sample unrelated to S900. (A) Heritability of each trait. BMI 

has multiple estimates, since it was entered into a bivariate analysis with each PPS separately. 

The effect of unique environment (E) is not shown, since E=100-A. (B) Genetic correlations 

between BMI and each PPS. The genetic correlations are positive, because the PPS-s are 

designed to positively predict BMI. None of the environmental correlations were significant and 

therefore not shown. (C) Heritability of the phenotypic correlation between BMI and PPS. 

Horizontal lines depict 95% confidence intervals. Estimates not shown for PPS-s that did not 

have significant phenotypic association with BMI. Cogn=PPS of cognitive tests; 

corr=correlation; CT=PPS of cortical thickness; herit=heritability; MTL=PPS of medial temporal 

lobe volume; Pers=PPS of personality tests; SC=PPS of subcortical structure volumes 
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Fig S10. Heritability analysis of the association between poly-phenotype scores (PPS) and body 

mass index (BMI), when controlling for education and income within the S900 sample (top 

panel) and in the S1200 sample, where S1200n is added to the S900 sample (bottom panel). As in 

previous analyses, the PPS weights of S1200n sample are based on S900 sample, S1200n sample 

just adds statistical power to the S900 based findings. Depending on the neurocognitive factor, 

the heritability analysis in the combined sample was conducted on 59-135 pairs of monozygotic 

twins (median=108.5) and 85-259 pairs of dizygotic twins and siblings (median=179). (A) 

Heritability of each trait. BMI has multiple estimates since it was entered into a bivariate analysis 

with each PPS separately. (B) Genetic correlations between BMI and each PPS. The genetic 

correlations are positive, because the PPS-s are designed to positively predict BMI. (C) 

Heritability of the significant phenotypic correlation between BMI and PPS. Horizontal lines 

depict 95% confidence intervals. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of 

cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; 

SC=PPS of subcortical structure volumes.  
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Fig. S11. Phenotypic (upper triangle) and genetic (lower triangle) correlations between PPS-s 

used for heritability analysis. Phenotypic correlations account for family structure. FDR-

corrected significant correlations are highlighted with color. Correlations are multiplied by 100 

for clarity. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical thickness; 

MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; SC=PPS of 

subcortical structure volumes 
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Fig. S12. Akaike Information Criteria (AIC) for BMI-PPS (poly-phenotype score) bivariate 

heritability decompositions. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical 

thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; SC=PPS of 

subcortical structure volumes. 
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Table S1. Descriptive statistics of samples analyzed. 

Variable S900 S1200n 

S1200n 

unrelated 

N 895 225 124 

Age (years) 
x̄=28.83 

(SD=3.67) 

x̄=28.85 

(SD=3.84) 

x̄=29.31 

(SD=3.83) 

BMI (kg/m2) 

x̄=27.27 

(SD=5.77) 

x̄=26.51 

(SD=5.21) 

x̄=26.32 

(SD=5.18) 

BMI groups    

Normal weight (BMI 18-24.9) 375 (41.9%) 101 (44.9%) 56 (45.2%) 

Overweight (BMI 25-29.9) 285 (31.8%) 74 (32.9%) 45 (36.3%) 

Obese (BMI 30+) 235 (26.3%) 50 (22.2%) 23 (18.5%) 

Drug test positive    

No 777 (86.8%) 195 (86.7%) 105 (84.7%) 

Yes 118 (13.2%) 30 (13.3%) 19 (15.3%) 

Education (years) 
x̄=14.85 

(SD=1.82) 

x̄=15.06 

(SD=1.72) 

x̄=14.83 

(SD=1.8) 

Ethnicity:    

Hispanic/Latino 819 (91.5%) 198 (88%) 114 (91.9%) 

Not Hispanic/Latino/unknown 76 (8.5%) 27 (12%) 10 (8.1%) 

Families 384 151 66 

1 sibling 37 (10.4%) 19 (20%) 19 (28.8%) 

2 siblings 107 (30.1%) 49 (51.6%) 36 (54.5%) 

3 siblings 163 (45.9%) 20 (21.1%) 11 (16.7%) 

4 siblings 43 (12.1%) 6 (6.3%) 0 (0%) 

5 siblings 5 (1.4%) 1 (1.1%) 0 (0%) 

Gender    

Male 413 (46.1%) 120 (53.3%) 61 (49.2%) 

Female no birth control 143 (16%) 24 (10.7%) 16 (12.9%) 

Female with birth control 339 (37.9%) 81 (36%) 47 (37.9%) 

Handedness 
x̄=65.07 

(SD=45.13) 

x̄=68.93 

(SD=41.03) 

x̄=70.73 

(SD=36.97) 

Income    

<$10,000 65 (7.3%) 16 (7.1%) 9 (7.3%) 

10K-19,999 79 (8.8%) 12 (5.3%) 9 (7.3%) 

20K-29,999 116 (13%) 24 (10.7%) 15 (12.1%) 

30K-39,999 104 (11.6%) 30 (13.3%) 17 (13.7%) 

40K-49,999 98 (10.9%) 23 (10.2%) 13 (10.5%) 

50K-74,999 181 (20.2%) 46 (20.4%) 25 (20.2%) 

75K-99,999 119 (13.3%) 28 (12.4%) 14 (11.3%) 

>=100,000 133 (14.9%) 46 (20.4%) 22 (17.7%) 

Race    
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White 664 (74.2%) 176 (78.2%) 95 (76.6%) 

Other/unknown 45 (5%) 21 (9.3%) 11 (8.9%) 

Black or African Am. 145 (16.2%) 13 (5.8%) 8 (6.5%) 

Asian/Nat. Hawaiian/Other 

Pacific Is. 
41 (4.6%) 15 (6.7%) 10 (8.1%) 

BMI=body mass index; Is=islander; Nat=native 

 

 

  



 

 

24 

 

Additional Dataset S1 (separate file) 

See first tab of file “SI_Dataset_1.xlsx” for table of contents. 
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