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Supplementary Information

Inferring Dynamic Topology for Decoding Spatiotemporal Structures

in Complex Heterogeneous Networks

1 Methodology
Inferring topology (time-varying connections) has been an essential, but difficult, step towards
understanding large, complex and diverse systems including biological, financial, and electrical
networks [1–5]. In recent years, various studies based on Bayesian statistics, information theory,
and spectral analysis, have been proposed to extract the dynamics of systems using their measured
data [6–10]. While techniques exist for relatively small system sizes [11] (e.g., single nonlinear
unit [2]), sparse networks [7, 12], or networks with predetermined topology [4], the tackling of
functionality or behavior of real-world complex systems, such as the circadian clock and social
synchronization, requires investigating large-scale networks (at least hundreds of nodes) and beyond
logic-based (binary-valued) topology [13,14].

The novel contribution of this work is to establish a unified, data-driven framework that provides
a highly reliable and efficient approach to inferring connections of networks (ICON). We show
that the ICON technique identifies the strength and direction of functional connections in diverse
complex networks - from cells to societies. In this supplementary information, we provide a detailed
description of the ICON technique and include numerical and statistical analysis to demonstrate
the reliability and robustness of this data-driven method for unfolding the topology of large-scale
networks.

1.1 Inferring Connections of Networks (ICON)
We consider the broadly-defined complex network constituted by a population of interacting dy-
namic units (agents). The time-evolution of such a network follows the dynamical law governed by
the agent’s self-dynamics and the influence from other agents, given by

ẋi(t) = f(xi) +
N
∑

j=1
j 6=i

Kij(xi, xj), i = 1, . . . , N, (1)

where the vector xi(t) ∈ R
n denotes the state of agent i at time t, the function f represents the

baseline dynamics of each agent, and Kij , i, j = 1, . . . , N , is the coupling function between agent i
and j, which is not necessarily symmetric. Note that both f and Kij ’s are time-varying functions,
where the time-dependency is expressed indirectly by the state-dependency, e.g., f̃i(t) = f(xi(t))
for t ∈ [0, T ], T ∈ (0,∞).

The central idea of ICON is to approximate the natural and coupling dynamics, f and Kij ,
in (1) using complete orthonormal bases. Specifically, we represent f and Kij as truncated series,
e.g., f ≈

∑

k akQk(xi) and Kij(xi, xj) ≈
∑

k

∑

ℓ b
kℓ
ij Pk(xi)Pℓ(xj), where {Qk}

∞
k=1 and {Pk}

∞
k=1 are

orthonormal bases of the respective function space containing f and Kij . These approximations are
always possible because any continuous function can be approximated arbitrarily well by a truncated
series of orthonormal bases (e.g., Fourier series) on a compact support with a quantifiable error
bound with respect to the number of truncation terms by the Stone-Weierstrass theorem [15, 16].
As a result, the dynamical law as in (1) can be approximately expressed using orthonormal bases,
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e.g., for n = 1, by

ẋi(t) =

m
∑

k=1

akQk(xi) +

N
∑

j=1
j 6=i

r
∑

k=1

r
∑

ℓ=1

bkℓij Pk(xi)Pℓ(xj), i = 1, . . . , N, (2)

and the coupling strength (or energy), denoted αij , between agents i and j can be defined through
the coefficients of the chosen orthonormal basis by

αij =

√

√

√

√

r
∑

k,ℓ=1

(bkℓij )
2. (3)

In this one-dimensional case, xi(t) ∈ R and ak and bkℓij are the scalar coefficients of the chosen
orthonormal bases {Qk} and {Pk}, respectively. Similarly, for n-dimensional systems, i.e., xi(t) ∈
R
n for n = 2, 3, . . ., the dynamics of the uth-component of agent i, denoted [xi]u, can be expressed,

for i = 1, . . . , N , by

[ẋi(t)]u =
m
∑

k1+k2+···+kn=1

(

auk1···kn

n
∏

̺=1

Qk̺([xi]̺)
)

+
N
∑

j=1
j 6=i

r
∑

k=1

r
∑

ℓ=1

n
∑

v=1

bkℓiujvPk([xi]u)Pℓ([xj ]v), (4)

where auk1···kn is the scalar coefficient for the basis Qk1Qk2 . . . Qkn of component u of the self-

dynamics f , and bkℓiujv is the coefficient of the coupling function Kiujv , namely, the coupling between
the components [xi]u and [xj ]v. In particular, if the components of the self dynamics, f(xi) ∈ R

n,
are independent, i.e., [f(xi)]u = f([xi]u), and the interaction between two agents, say i and j, is
component-wise, i.e., Kiujv = 0 if u 6= v for u, v = 1, . . . , n, then the dynamics of each component,
[xi]u, of agent i described in (4) is reduced to the same dynamical law as in (2).

Following this approach, the topology of a complex network can be effectively estimated, given
the measurement time-series data of each agent i in the network. Let’s now illustrate the idea using

the case in which the agents xi(t) ∈ R. Let {x̂
(i)
k } be the available time-series data of agent i at

time tk, i = 1, . . . , N and k = 0, 1, . . . ,M , where N is the number of agents in the network and
M is the number of data points in each time-series. Then the orthonormal basis representation in
(2) enables the formulation of the complex nonlinear topology estimation as a typical linear inverse
problem for each agent i, given by

min
z(i)

‖y(i) −A(i)z(i)‖2, (5)

where y(i) ∈ R
M is the data vector whose elements y

(i)
j =

x̂
(i)
j −x̂

(i)
j−1

∆tj
, j = 1, . . . ,M , denote the

finite-difference approximation of the temporal dynamics of agent i at time tj with ∆tj = tj − tj−1

being the data sampling time interval; A(i) ∈ R
M×(r2N+m) is the matrix defined by

A(i) =
[

L(i)
∣

∣O
(i)
11

∣

∣ · · ·
∣

∣O
(i)
1r

∣

∣O
(i)
21

∣

∣ · · ·
∣

∣O
(i)
2r

∣

∣ · · ·
∣

∣O
(i)
r1

∣

∣ · · ·
∣

∣O
(i)
rr

]

,

in which L(i) ∈ R
M×m and O

(i)
kℓ ∈ R

M×N , k, ℓ = 1, . . . , r, are the matrices involving the orthonormal
bases for the expansion of f and Kij , respectively,

L(i) =







Q1(x̂
(i)
1 ) · · · Qm(x̂

(i)
1 )

...
. . .

...

Q1(x̂
(i)
M ) · · · Qm(x̂

(i)
M )






, O

(i)
kℓ =







Pk(x̂
(i)
1 )Pℓ(x̂

(1)
1 ) · · · Pk(x̂

(i)
1 )Pℓ(x̂

(N)
1 )

...
. . .

...

Pk(x̂
(i)
M )Pℓ(x̂

(1)
M ) · · · Pk(x̂

(i)
M )Pℓ(x̂

(N)
M )






; (6)
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and z(i) = (z
(i)
Q , z

(i)
P11

, . . . , z
(i)
P1r

, z
(i)
P21

, . . . , z
(i)
P2r

, . . . , z
(i)
Pr1

, . . . , z
(i)
Prr

)′ ∈ R
r2N+1 is the coefficient vector

to be estimated for agent i, in which each z
(i)
Pkℓ

∈ R
1×N is the coefficient vector associated with the

base PkPℓ, k, ℓ = 1, ..., r. Note that technically the ICON method requires prior knowledge of the
self-dynamics, e.g., its functional form, in order to uniquely determine the network topology (i.e.,
obtain a unique solution to (5)) with respect to the chosen sets of orthonormal basis expansions,
{Qk}, k = 1, . . . ,m, and {Pk, Pℓ}, k, ℓ = 1, . . . , r, in (2). For example, if f(xi) is a constant, e.g.,
representing the frequency of an oscillator in an oscillatory network, the matrix L(i) in (6) is a

vector of ones, i.e., L(i) = [1, 1, · · · , 1]′ ∈ R
M , and z

(i)
Q = c(i) is a scalar for each agent i. The

minimizer z(i) of the problem in (5) then determines the baseline dynamics, i.e., f(xi) = c(i), and

the connections, i.e., Kij(t) = Kij(xi(t), xj(t)) ≈
∑

k,ℓ[z
(i)
Pkℓ

]jPk(xi)Pℓ(xj), j = 1, . . . , N , of agent

i, where [z
(i)
Pkℓ

]j denotes the jth element of z
(i)
Pkℓ

. Most importantly, this linear formulation enables
independent estimation of the time-varying couplings for each individual agent in the network,
so that estimating topology of very large networks becomes possible via a parallel computation
architecture.

1.2 Computing Network Topology
There exists a variety of techniques for solving the large-scale least squares, or linear inverse,
problem presented in (5) [17]. Among many of these methods, a basic step is to compute the Moore-
Penrose pseudoinverse using the singular value decomposition (SVD). In this work, we adopt the
truncated SVD (TSVD) to solve this problem in a parallel manner for each agent i. TSVD is known
as a method for dealing with ill-posed linear least squares problems [18], by which we are able to
retain as much information of the reconstructed couplings as possible by controlling the cut-off of
insignificant singular values. In addition, because the matrices A(i) ∈ R

M×(r2N+1), i = 1, . . . , N , in
(5) are dense and ill-conditioned (columns may be close to be linearly dependent), TSVD provides
numerically stable and accurate solutions by replacing very small singular values with zeros. For
example, in our numerical implementations, the threshold for zeroing out the singular values was
chosen to be 10−8 taking the floating error of a standard computer into account.

It is known that the theoretical solution to the problem in (5) is in terms of the pseudoinverse
of A(i), denoted A†, given by

z(i) = A†y(i) =
[

(A(i))′A(i)
]−1

(A(i))′y(i), i = 1, . . . , N.

Although the square matrix W (i) = (A(i))′A(i) is in general positive definite (A(i) is composed of the
chosen orthonormal bases), it may have singular values very close to zero, which results in numerical
instability and computational errors. By the SVD, we can decompose W (i) = U (i)Σ(i)(V (i))′, and
then obtain the solution vector ẑ(i) of (5) synthesized by the truncated singular values and singular
vectors,

ẑ(i) =

N (ǫ)
∑

j=1

(y(i))′A(i)ū
(i)
j

s
(i)
j

v̄
(i)
j , (7)

where ū
(i)
j and v̄

(i)
j are the columns of U (i) and V (i), respectively, called the left and the right

singular vectors, s
(i)
j are the singular values that are the elements of the diagonal matrix Σ(i), and

the positive integer N (ǫ) denotes the number of singular values that is greater than ǫ > 0, where ǫ

is the specified truncation threshold. Clearly, one can observe ẑ(i) → z(i) as N (ǫ) → rank(W (i)) or
as ǫ → 0.

We would like to emphasize that the efficiency and accuracy of TSVD may be degraded with the
increase of the dimension of A(i), i.e., the size of the network. Alternative methods such as iterative
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shrinkage-thresholding (IST) algorithms [19, 20] that effectively solve large-scale inverse problems
in an iterative manner can be adopted to compromise between efficiency and accuracy. Moreover,
when the network is sparse (i.e., z(i) is sparse) or the focus is placed on certain interactions so that
the matrices A(i) become sparse, the methods of compressive sensing [21], e.g., ℓ1 optimization, are
suitable for constructing sparse coupling topology effectively.

1.3 A Special Case: Weakly-Coupled Oscillatory Networks
Many natural and engineered rhythmic systems are weakly-connected and weakly-forced by envi-
ronmental fluctuations, such as neurons, circadian clock networks, and bees in a colony [1, 22–24].
The techniques of phase model reduction have been widely used to describe the dynamics of this
class of nonlinear oscillatory systems [25–28], by which a network of weakly-coupled oscillators can
be modeled through their averaged phase drift dynamics [29] as,

ϕ̇i = ωi +

N
∑

j=1

Kij(ϕj − ϕi), i = 1, . . . , N. (8)

In this equation, ωi is the natural oscillation frequency of oscillator i, Kij is the coupling function
between oscillators i and j, which depends on their phase difference and is 2π-periodic, and N is
the number of oscillators in the network.

We now illustrate the application of ICON to recover the topology of such a weakly-coupled
oscillatory network. Since each coupling function Kij , for i, j = 1, . . . , N , is 2π-periodic, it can be
represented as a truncated Fourier series, i.e., Kij(∆ϕij) =

∑r
k=1

[

ξkij sin(k∆ϕij) + ηkij cos(k∆ϕij)
]

with ∆ϕij = ϕj − ϕi, so that (8) can be expressed as

ϕ̇i = ωi +

N
∑

j=1
j 6=i

r
∑

k=1

[

ξkij sin(k∆ϕij) + ηkij cos(k∆ϕij)
]

, i = 1, . . . , N, (9)

where ξkij and ηkij are the Fourier coefficients that define the coupling strength

αij =

√

√

√

√

r
∑

k=1

[

(ξkij)
2 + (ηkij)

2
]

. (10)

Given the time-series data {ϕ̂
(i)
k } of each oscillator i at time tk for i = 1, . . . , N and k = 0, 1, . . . ,M ,

the topology of an oscillatory network as in (9) can be determined by solving the linear inverse

problem as in (5) with y(i) = (y
(i)
1 , . . . , y

(i)
M ) ∈ R

M , in which y
(i)
j =

ϕ̂
(i)
j −ϕ̂

(i)
j−1

∆tj
, j = 1, . . . ,M , and the

matrix A(i) =
[

L
∣

∣S
(i)
1

∣

∣ · · ·
∣

∣S
(i)
r

∣

∣C
(i)
1

∣

∣ · · ·
∣

∣C
(i)
r

]

∈ R
M×(2rN+1), in which L = [1, 1, · · · , 1]′ ∈ R

M , and

S
(i)
k =







sin k∆ϕ̂i1(t1) sin k∆ϕ̂i2(t1) · · · sin k∆ϕ̂iN (t1)
...

...
. . .

...
sin k∆ϕ̂i1(tM ) sin k∆ϕ̂i2(tM ) · · · sin k∆ϕ̂iN (tM )






∈ R

M×N ,

C
(i)
k =







cos k∆ϕ̂i1(t1) cos k∆ϕ̂i2(t1) · · · cos k∆ϕ̂iN (t1)
...

...
. . .

...
cos k∆ϕ̂i1(tM ) cos k∆ϕ̂i2(tM ) · · · cos k∆ϕ̂iN (tM )






∈ R

M×N ,
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where ∆ϕ̂ij = ϕ̂j − ϕ̂i and z(i) = (ωi, z
(i)
S1
, . . . , z

(i)
Sr
, z

(i)
C1
, . . . , z

(i)
Cr
)′ ∈ R

2rN+1 is the Fourier coefficient

vector that is being estimated, in which z
(i)
Sk

= (ξki1, · · · , ξ
k
iN ) ∈ R

1×N and z
(i)
Ck

= (ηki1, · · · , η
k
iN ) ∈

R
1×N for k = 1, . . . , r. Hence, the estimated time-varying coupling function Kij can be expressed

as,

Kij(t) ≈
r
∑

k=1

[

[z
(i)
Sk
]j sin(k∆ϕij(t)) + [z

(i)
Ck

]j cos(k∆ϕij(t))
]

,

where [z
(i)
Sk
]j and [z

(i)
Ck

]j denote the jth element of z
(i)
Sk

and z
(i)
Ck

, respectively.

Remark 1 The choice of suitable, or optimal, basis functions would be highly dependent on the data
structure. For example, Fourier series are natural and the best choice for approximating a periodic
function. Other widely-used orthogonal polynomials such as Legendre or Chebyshev polynomials
exhibit fast convergence rate to approximate a continuous function with high precision, i.e., they may
be used to approximate a function very accurately with only a few expansion terms. In particular, it
is known that Chebyshev polynomials are the optimal basis functions for approximating a continuous
function with minimum interpolating error based on the Chebyshev points [30]. Theoretically, the
expansion of a function in terms of a sequence of orthogonal (orthonormal) functions, called spectral
approximation, inherits spectral accuracy. Namely, for the expansion f(xi) ≈

∑∞
k=1 akQk(xi),

where {Qk} is a set of orthonormal bases, the kth coefficient ak decays faster than k−n for all n ≥ 1
for smooth functions [30].

2 Implementation of ICON
In this section, we present various numerical examples to illustrate the implementation of the ICON
technique using synthetic networks on different orders of size from 3 to 30000 nodes. We also provide
numerical, statistical, and information-theoretic analysis to demonstrate the robustness, reliability,
and efficiency of ICON, and to quantify the sufficiency of data in order to capture precise network
dynamics.

2.1 Definition of Phase from Experimental Data
The phase was obtained from experimental data using peak finding and a linear interpolation
method [31]. In this technique, the maximum of each cycle is located with a peak finding method,
which searches for maxima of data points above a threshold (set to 50% above the mean level
relative to the maximum data point). At the kth oscillatory peak, the phase is set to k × 2π; and
for other times, linear interpolation is applied.

2.2 Generation of Synthetic Data
To numerically examine the performance of ICON, we generate time-series data by constructing
synthetic networks with specified size, sparsity, and noise intensity. Here, the sparsity of the network
is defined as the percentage of the nonzero entries in the off-diagonal elements of the adjacency
matrix, and the noise intensity is defined as the ratio of the noise amplitude to the maximum
coupling strength in the network. We generate synthetic data for testing ICON using two different
ways, which are classified as autonomous (phase-dependent) and non-autonomous (time-dependent)
data.

2.2.1 Generating Phase-dependent (Autonomous) Data

In this scenario, we synthesize data for a network of N agents by first randomly generating a
coefficient matrix of size N × 2rN that contains the Fourier coefficients ξkij and ηkij , as defined in
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(9), within a compact set K ∈ R
+, for k = 1, . . . , r and i, j = 1, . . . , N , given by

C =







ξ111 · · · ξ11N
...

. . .
...

ξ1N1 · · · ξ1NN

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

ξr11 · · · ξr1N
...

. . .
...

ξrN1 · · · ξrNN

∣

∣

∣

∣

∣

∣

∣

η111 · · · η11N
...

. . .
...

η1N1 · · · η1NN

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

ηr11 · · · ηr1N
...

. . .
...

ηrN1 · · · ηrNN






,

where the first rN columns represent the coefficients of the sin(k∆ϕij) series and the rest rN

columns represent the coefficients of the cos(k∆ϕij) series. The sparsity s ∈ [0, 1] can be specified
when generating the coefficient matrix C. Then, the phase for each agent i can be obtained by
evolving the differential equation (9) with a specified frequency ωi. After obtaining the phase data
for each agent ϕi, white noise with a specified intensity λ ∈ [0, 1] can be added to ϕi.

2.2.2 Generating Time-dependent (Non-autonomous) Data

An alternative way to test ICON using synthetic networks is to generate explicit time-dependent
data (i.e., f(t) and Kij(t) instead of f(xi) and Kij(xi, xj)) of a general autonomous system as in (1)
or (2), and show that the autonomous dynamics can be reconstructed through the orthonormal basis
representation of the dynamics. This is to avoid the possibility of obtaining a trivial solution for the
network reconstruction, namely, generating autonomous data using a given (phase) model system
as in (9) and then reconstructing the parameters (coefficients of the orthonormal basis functions)
for this known system. Our procedure is to synthesize the couplings Kij(t) as functions of time
by using interpolating polynomials. In this way the system dynamics are in general non-periodic.
Then the interactions are recovered in the form Kij(xi(t), xj(t)).

We construct a network of N agents, with sparsity s ∈ [0, 1] and noise intensity ratio λ ∈ [0, 1],
in two steps. First, we generate the adjacency matrix M with m0

.
= [sN(N − 1)] non-zero entries,

where [sN(N−1)] denotes the closest integer to sN(N−1). Each non-zero entry of M, denoted αij ,
i, j = 1, . . . , N , represents the coupling strength of Kij , which is randomly assigned over a compact
set K ⊂ R

+ (e.g., using ‘rand’ in Matlab). Second, we synthesize the time-varying function Kij(t)
using interpolating polynomials. To achieve this, we generate a sequence of random points {tk}
that partitions the time interval [0, T ], i.e., 0 = t0 < t1 < · · · < tq = T , and then use these points
to synthesize an interpolating polynomial Lij(t) by

Lij(t) =

q
∑

p=0

(

∏

0≤k≤q
k 6=p

t− tk

tp − tk

)

Lij(tp), t ∈ [0, T ].

The time-varying coupling function Kij(t) can then be synthesized by rescaling Lij(t) according to
the assigned coupling strength αij , that is,

Kij(t) =
αijLij(t)

∫ T

0 Lij(σ) dσ
. (11)

Once the coupling functions are synthesized, the time-series data {x̂
(i)
k } for agent i at time tk,

i = 1, . . . , N , can be generated by evolving (1) using the Kij in (11).

2.3 Quantification of Data Sufficiency and Spectral Approximation
The sufficiency of the available data is crucial to formulate a validate estimation problem in (5). In
this problem, the dimension of the matrices A(i) is M × (r2N +1), and thus it is necessary to have
M > r2N + 1 in order for it to be an inconsistent (overdetermined) inverse problem. Moreover,
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Figure S1: (a) The time-series of the synthetic (solid line) and estimated (circled) states ϕi, i = 1, 2, 3, of the
network in (12) for the time-horizon t ∈ [0, 12] recovered by ICON. (b) The coupling functions of the synthetic (solid)
and estimated (circled) networks.

the bound on the sufficiency of the amount of data, i.e., the length of the time measurement data,
for extracting significant information to achieve a precise representation of the network dynamics
may be computed and quantified [32].

On the other hand, with sufficient time measurement data {x̂
(i)
k } for each node xi, i = 1, . . . , N ,

ICON can be applied to reconstruct the continuous nonlinear coupling functions Kij for i, j =
1, . . . , N . The accuracy of the recovery relies on the number of truncation terms r of the chosen
orthonormal basis, as the expansion in (2). Theoretically, the larger r leads to the better approx-
imation to the true network dynamics, and the sufficient number of r with respect to a desired
precision of the estimation can be quantified by using the tools from information theory.

Given the time-series data {x̂
(i)
k } of a network of N agents as in (1), and given a prescribed

tolerance threshold δ, there exists an integer r∗ > 0 such that the error of the topology recovery is
bounded by δ by approximating the network dynamics using r∗ terms of the chosen orthonormal
basis functions as in (2). It is equivalent to saying that these r∗ terms contain sufficient information
of the original nonlinear dynamics. It can be shown by Shannon information theory [33] that this
number r∗ is proportional to the information entropy, i.e., the nonlinearity and noisiness of the
time measurement data, given by,

r∗ ∝

W log

(

I
{x̂

(i)
k

}
+ INoise

INoise

)

δ
,

where W is the data bandwidth, i.e., the width of the frequency range of the time-series data

{x̂
(i)
k }, i = 1, . . . , N , which characterizes the nonlinearity of the data; I

{x̂
(i)
k

}
and INoise denote the

intensities of {x̂
(i)
k } and the noise, respectively. The lower bound of r∗ can be derived, and interested

readers may refer to the works in [15,16,32,33].

2.4 Numerical Examples
In this section, we illustrate the implementation procedure of the ICON technique explicitly through
the topology estimation of a small network consisting of three coupled oscillators. This network is
synthesized using the procedure described in Section 2.2. Additional examples of large synthetic
networks with more complicated and heterogeneous structures will also be presented to address to
robustness, reliability, and applicability of ICON. All of the numerical experiments in this work
were implemented on a standard desktop PC (Intel Core i5 3.5 GHz, 32 GB DDR2 RAM).
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2.4.1 Small Networks - an Illustrative Example

We consider a small all-to-all coupled network of three agents of the form as in (1), given by

ẋ1 = ω1 +K12 +K13,

ẋ2 = ω2 +K21 +K23, (12)

ẋ3 = ω3 +K31 +K32,

where the drift dynamics, ω1 = 2.63, ω2 = 0.97, and ω3 = 2.4, are assumed to be constant, which
may represent the frequencies of the individual systems, and Kij(t), i, j = 1, 2, 3, are the coupling

functions. We synthesize the time-series data, {x̂
(1)
k }, {x̂

(2)
k }, and {x̂

(3)
k }, k = 0, 1, . . . ,M = 1500, for

this networked system using the procedure described in Section 2.2 over the time period t ∈ [0, 12]
partitioned by a uniform grid of 25 points, i.e., 0 = t0 < t1 < · · · < t24 = 12. The synthetic data
are shown in Figure S1.

Now, we demonstrate the application of ICON to recover the time-varying connections Kij of

this network based on the synthetic data {x̂
(1)
k }, {x̂

(2)
k }, and {x̂

(3)
k }. Here, we use the Legendre

polynomials of order r = 5 to expand the coupling functions Kij , i.e., Kij(t) = Kij(xi, xj) =
∑5

k=1

∑5
ℓ=1 b

kℓ
ij Pk(xi)Pℓ(xj) for i, j = 1, 2, 3 and i 6= j, where {PkPℓ} forms a two-dimensional

Legendre basis. Then, we constitute the matrix A(i) ∈ R
1500×76, i = 1, 2, 3, as

A
(i)

=











1

.

.

.
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

P1(x̂
(i)
1 )P1(x̂

(1)
1 ) · · · P1(x̂

(i)
1 )P1(x̂

(3)
1 )

.

.

.
. . .

.

.

.

P1(x̂
(i)
M

)P1(x̂
(1)
M

) · · · P1(x̂
(i)
M

)P1(x̂
(3)
M

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

P1(x̂
(i)
1 )P5(x̂

(1)
1 ) · · · P1(x̂

(i)
1 )P5(x̂

(3)
1 )

.

.

.
. . .

.

.

.

P1(x̂
(i)
M

)P5(x̂
(1)
M

) · · · P1(x̂
(i)
M

)P5(x̂
(3)
M

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

P5(x̂
(i)
1 )P1(x̂

(1)
1 ) · · · P5(x̂

(i)
1 )P1(x̂

(3)
1 )

.

.

.
. . .

.

.

.

P5(x̂
(i)
M

)P1(x̂
(1)
M

) · · · P5(x̂
(i)
M

)P1(x̂
(3)
M

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

P5(x̂
(i)
1 )P5(x̂

(1)
1 ) · · · P5(x̂

(i)
1 )P5(x̂

(3)
1 )

.

.

.
. . .

.

.

.

P5(x̂
(i)
M

)P5(x̂
(1)
M

) · · · P5(x̂
(i)
M

)P5(x̂
(3)
M

)











.

We also have the data vector y(i) ∈ R
M with the elements y

(i)
j =

x̂
(i)
j −x̂

(i)
j−1

∆tj
for i = 1, 2, 3 and

j = 1, . . . , 1500. Now we solve the linear inverse problem as in (5) using TSVD, which yields

ẑ(i) = (ω̂i, z
(i)
P11

, . . . , z
(i)
P15

, z
(i)
P21

, . . . , z
(i)
P25

, . . . , z
(i)
P51

, . . . , z
(i)
P55

)′ ∈ R
76, i = 1, 2, 3, where the constant

coefficients, ω̂1 = 2.6299, ω̂2 = 0.9685, ω̂3 = 2.4019, are the estimated drift dynamics (natural
frequencies) and the cut-off threshold for the singular values is set to be ǫ = 10−8. These estimates
ẑ(i) define the network dynamics, and the reconstructed network is shown in Figure S1. The true
(synthetic) and the estimated state trajectories are plotted in Figure S1(a), and the coupling func-
tions are displayed in Figure S1(b). The estimated topology and coupling strength show excellent
agreement with that of the true network. This result is also confirmed by the comparison of the
adjacency matrices of the true (M) and estimated (M̂) networks,

M =





0.0000 0.6167 1.2229
0.8710 0.0000 3.8409
4.9523 2.8912 0.0000



 , M̂ =





0.0000 0.6175 1.2229
0.8713 0.0000 3.8409
4.9523 2.8912 0.0000



 ,

in which the ijth elements of M and M̂, αij and α̂ij , represent the synthetic and estimated coupling
strength between oscillators i and j, respectively, as defined in (3). This shows a perfect network
reconstruction by ICON with 100% recovery in connections and almost perfect (99.8%) recovery in
coupling strength, where the recovery rate in coupling strength is calculated by

(

3
∑

i,j=1

5
∑

k,ℓ=1

(|b̂kℓij |)
)/(

3
∑

i,j=1

5
∑

k,ℓ=1

(|bkℓij |)
)

≈ 99.8%.
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Remark 2 (Network Inference based on autonomous and non-autonomous data) The estimation
based on non-autonomous data generated by the procedure described in Section 2.2 is valid and
causes minor discrepancy compared to the use of autonomous (state-dependent) data. The difference
results from the step of approximating Kij(t) by Kij(xi(t), xj(t)). To illustrate the subtle distinction
between the two scenarios, we also synthesize the phase data of the example above through an
autonomous approach. That is, we first generate the coupling functions as Fourier series, i.e.,
Kij(xi, xj) =

∑N
j=1,j 6=i

∑r
k=1

∑r
ℓ=1 b

kℓ
ij Pk(xi)Pℓ(xj), where Pk and Pℓ are Fourier bases, N = 3,

r = 5, and the coefficients bkℓij are randomly selected over [0, 2] using the Matlab built-in function
‘rand’. Then, we obtain the phase data x̂i, i = 1, 2, 3, by evolving (12). The true and the recovered
networks are represented by their adjacency matrices, M and M̂, respectively, i.e.,

M =





0.0000 0.6150 1.2500
0.8750 0.0000 3.8500
5.0000 3.0000 0.0000



 , M̂ =





0.0000 0.6148 1.2498
0.8749 0.0000 3.8500
4.9999 3.0000 0.0000



 .

This result of 99.9% recovery rate shows excellent estimation performance of ICON based on au-
tonomous data.

2.4.2 Non-oscillatory Networks of Multi-dimensional Agents

In this section, we illustrate the generality of the ICON technique for non-oscillatory networks
consisting of multi-dimensional agents, i.e., n > 1. To fix ideas, we consider an example involving
a network of 10 non-periodic two-dimensional oscillators, where the self-dynamics of each agent is
of the form

f(xi) =

[

ξi −ωi

ωi ηi

]

xi, i = 1, 2, . . . , 10.

We generate the synthetic data of this networked system,

{

[

x̂
(i)
k1

x̂
(i)
k2

]

}

, k = 0, . . . ,M , according to

the procedure described in Section 2.2 with M = 201 (number of time sampling points) over T = 2
(time duration), 80% sparsity rate, and the coupling strength αij ∈ [−5, 5], where k = 1, . . . , 201
and i, j = 1, . . . , 10. The coupling between dimension u of agent i and dimension v of agent j can
be represented by a tensor product, given by

Kiujv =
r
∑

k=1

r
∑

ℓ=1

N
∑

j=1
j 6=i

bkℓiujvPk

(







x̂
(i)
1u
...

x̂
(i)
Mu







)

⊗ Pℓ

(







x̂
(j)
1v
...

x̂
(j)
Mv







)

. (13)

The corresponding linear inverse problem (5) is formulated as min
z
(i)
s

‖y
(i)
s − A

(i)
s z

(i)
s ‖2, s = 1, 2,

where the elements of y
(i)
s ∈ R

M , i.e., y
(i)
ks =

x̂
(i)
ks

−x̂
(i)
(k−1)s

∆tk
for k = 1, . . . ,M , denote the finite-

difference approximation of the temporal dynamics of dimension s, s = 1, 2, of agent i at time tk

with ∆tk = tk − tk−1; A
(i)
s ∈ R

M×(nr2N+2) is the matrix defined by

A(i)
s =

[

L
∣

∣O
(i)
11s

∣

∣ · · ·
∣

∣O
(i)
1rs

∣

∣O
(i)
21s

∣

∣ · · ·
∣

∣O
(i)
2rs

∣

∣ · · ·
∣

∣O
(i)
r1s

∣

∣ · · ·
∣

∣O
(i)
rrs

]

,
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in which L ∈ R
M×2 denotes the baseline dynamics defined by L =







x̂
(1)
11 x̂

(2)
12

...
...

x̂
(1)
M1 x̂

(2)
M2






, and O

(i)
kℓs

∈

R
M×nN (n = 2), k, ℓ = 1, . . . , r, are the matrices involving the orthonormal bases,

O
(i)
kℓs

=







Pk(x̂
(i)
1s )Pℓ(x̂

(1)
11 ) · · · Pk(x̂

(i)
1s )Pℓ(x̂

(N)
11 ) Pk(x̂

(i)
1s )Pℓ(x̂

(1)
12 ) · · · Pk(x̂

(i)
1s )Pℓ(x̂

(N)
12 )

...
. . .

...
...

. . .
...

Pk(x̂
(i)
Ms)Pℓ(x̂

(1)
M1) · · · Pk(x̂

(i)
Ms)Pℓ(x̂

(N)
M1 ) Pk(x̂

(i)
Ms)Pℓ(x̂

(1)
M2) · · · Pk(x̂

(i)
Ms)Pℓ(x̂

(N)
M2 )






;

and z
(i)
s = (c

(i)
s , z

(i)
P11s

, . . . , z
(i)
P1rs

, z
(i)
P21s

, . . . , z
(i)
P2rs

, . . . , z
(i)
Pr1s

, . . . , z
(i)
Prrs

)′ ∈ R
r2nN+2 is the coefficient

vector to be estimated for agent i, in which c
(i)
s ∈ R

1×2 and z
(i)
Pkℓs

∈ R
1×nN are the coefficient

vectors associated with L and the base PkPℓ for dimension s, respectively.
Similarly, these least-squares problems can be solved by using the TSVD (in general can be

solved by using the tensor (multilinear) SVD [34]), and the estimated parameters c
(i)
s containing

ξ̂i, ω̂i, and η̂i, are shown in the following table, which agree with the true values ξ, ω, and η,
respectively.

ξi -2.0920 -0.2996 -0.0851 -1.3978 -0.9021 -1.4808 -0.1442 -1.9975 -2.8041 -0.0253

ξ̂i -2.0921 -0.2967 -0.0050 -1.3978 -0.9031 -1.4808 -0.1447 -1.9975 -2.8041 -0.0268
ωi -0.5229 1.2028 0.4439 -0.0352 -0.2805 -1.4783 0.3712 -0.5778 0.2201 0.4783
ω̂i -0.5234 1.2025 0.4437 -0.0329 -0.0800 -1.4783 0.3722 -0.5778 0.2200 0.4785
ηi -0.0871 -0.0070 -0.2458 -0.5732 -1.1532 -0.8467 -1.0793 -0.7473 -1.3874 -0.0170
η̂i -0.0875 -0.0100 -0.2460 -0.5732 -1.1532 -0.8467 -1.0793 -0.7474 -1.3874 -0.0182

In addition, the adjacency matrices of the true (M) and estimated (M̂) networks shown below
also demonstrate the accuracy of the ICON estimation,

M =

































0.0000 0.0000 0.0000 0.1268 0.1065 0.0083 3.8192 0.6517 0.4258 0.0000
0.6995 0.0000 4.5908 0.0000 0.4477 0.0021 0.0000 1.7608 0.7478 4.4420
0.6095 1.4748 0.0000 1.9085 0.7482 0.0305 1.0076 1.5516 0.0000 0.4166
0.0000 0.2893 0.4904 0.0000 0.8956 0.5898 2.5807 1.5577 0.8336 2.3556
2.2007 2.6630 0.0000 0.0564 0.0000 3.4327 0.0162 0.0000 0.0618 0.8156
1.8485 0.0000 1.4446 1.0147 0.3760 0.0000 0.0549 0.0000 3.1003 5.3161
0.2140 0.0000 0.0000 1.6154 0.4362 0.1139 0.0000 0.0377 2.2530 0.7163
0.0000 0.0000 0.5203 5.3331 0.0000 0.9635 1.1648 0.0000 0.0000 0.0000
0.1439 0.1821 0.4999 2.4388 0.8186 1.0682 0.0698 4.1223 0.0000 3.6328
1.2805 1.3370 0.0000 0.0000 0.9856 3.3314 2.0202 0.1025 0.0115 0.0000

































,

M̂ =

































0.0000 0.0000 0.0013 0.1260 0.1117 0.0143 3.8190 0.6517 0.4268 0.0001
0.7009 0.0000 4.5908 0.0000 0.4478 0.0000 0.0000 1.7612 0.7478 4.4420
0.6096 1.4748 0.0000 1.9090 0.7485 0.0296 1.0050 1.5516 0.0000 0.4167
0.0000 0.2901 0.4902 0.0000 0.8956 0.5910 2.5807 1.5577 0.8336 2.3563
2.2007 2.6633 0.0005 0.0550 0.0000 3.4300 0.0000 0.0101 0.0618 0.8150
1.8485 0.0002 1.4444 1.0177 0.3760 0.0000 0.0549 0.0000 3.1003 5.3161
0.2151 0.0001 0.0001 1.6154 0.4364 0.1201 0.0000 0.0357 2.2530 0.7163
0.0000 0.0000 0.5201 5.3331 0.0000 0.9635 1.1649 0.0000 0.0000 0.0005
0.1436 0.1827 0.4995 2.4388 0.8178 1.0682 0.0711 4.1223 0.0000 3.6328
1.2805 1.3370 0.0000 0.0000 0.9856 3.3314 2.0202 0.0993 0.0115 0.0000

































,
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Figure S2: (a) The graph representation of the topology of a time-varying dense noisy network of 300 oscillators
(20.1% sparsity) synthesized by using the procedure described in Section 2.2.2 over the time period t ∈ [0, 20]. The
coupling functions are generated by interpolating polynomials with weights αij based on a uniform grid of 81 points,
and the polynomials are sampled by 15000 points with additive white noise of 1% intensity. The baseline dynamics
f(xi) = ωi of each agent and the coupling strength αij for each Kij were randomly selected within (0, 5) and [0, 12],
respectively. (c) The heat map showing the coupling topology of the network. (d) The estimated coupling topology
of the network with a full topology recovery (17986/17986 connections identified) and 96.1% accuracy on recovering
the coupling strength as illustrated in (b).

where the ijth elements, αij and α̂ij , of M and M̂, respectively, represent the synthetic and the
estimated coupling strength between oscillators i and j, defined by

αij
.
=

√

√

√

√

n
∑

u,v=1

α2
iujv

, α̂ij
.
=

√

√

√

√

n
∑

u,v=1

α̂2
iujv

,

where αiujv , α̂iujv are defined in (3).

2.4.3 Large-scale Networks

A dense network of 300 agents: In Figure S2, we show the topology estimation for a dense
synthetic network (20.1% sparsity rate) of 300 oscillators. The network shown in Figure S2(a)
was synthesized using the procedure described in Section 2.2.2 over the time period t ∈ [0, 20].
In particular, the coupling functions are generated by interpolating polynomials with weights αij

based on a uniform grid of 81 points, i.e., 0 = t0 < t1 < · · · < t80 = 20. These polynomials are
then sampled by 15000 points with additive white noise of 1% intensity. The baseline dynamics
f(xi) = ωi of each agent and the coupling strength αij (the ijth element of M) for each Kij were
randomly selected within (0, 5) and [0, 12], respectively. The heat map in Figure S2(a) illustrates
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(a) (b)

(c) (d)

Figure S3: (a) The coupling topology of a time-varying noisy network of 30000 oscillators (1.2% sparsity and 1%
noise intensity) synthesized using the procedure described in Section 2.2.1 over the time period t ∈ [0, 20] (60000
sampling points) in the presence of additive white noise of 1% intensity. The baseline dynamics f(xi) = ωi of each
agent and the coupling strength αij for each Kij were randomly selected within (0, 10) and [0, 32], respectively. In the
estimation, the time-varying coupling functions Kij were approximated by the two-dimensional Legendre polynomials
of order r = 1. (b) The estimated coupling topology of the network with 87.9% (9465526/10768516 identified). (c)
The graph representation of the network in which nodes with stronger connectivity are plotted in the center of the
graph and nodes with weaker connectivity are plotted off the center. (d) The estimated connectivity topology showing
good agreement with that of the true (synthetic) network shown in Figure 3(c).

the coupling topology of the network. In the estimation, the time-varying coupling functions Kij

were approximated by two-dimensional Fourier series of order r = 3. Figure S2(d) shows a perfect
recovery in topology (17986/17986 connections identified) of this dense network using ICON with
96.1% accuracy rate for recovering the coupling strength αij . The comparison between the true
and estimated coupling strength is shown in Figure S2(b). The computation time for this topology
estimation was 101.0 minutes and 51.64 seconds using parallel computing.

A myriad network of 30000 agents: In Figure S3, we show the capability and robustness
of ICON for inferring a very large network of 30000 agents (1.2% sparsity rate). The synthetic
network shown in Figure S3(a) (coupling topology) and Figure S3(c) (graph representation) was
synthesized using the procedure described in Section 2.2.1 over the time period t ∈ [0, 20] (60000
sampling points) in the presence of additive white noise of 1% intensity, and the coupling functions
were expanded using Fourier series of order r = 1. The baseline dynamics f(xi) = ωi of each
agent and the coupling strength αij (the ijth element of M) for each Kij were randomly selected
within (0, 10) and [0, 32], respectively. In the estimation, the time-varying coupling functions Kij

were approximated by the Fourier series of order r = 1. The recovery rate in connections was
87.9% (9465526/10768516 identified) (see Figure S3(b)). Figure S3(d) illustrates the estimated
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Figure S4: (a) The averaged accuracy rates of ICON applied to estimate networks of different sizes (200 trials for
each size of networks) with the same sparsity (1.5%) and noise intensity (1%) for the time period t ∈ [0, 20]. The
performance is plotted in terms of the recovery of coupling strength as well as connections. (b) The averaged accuracy
rates of ICON applied to estimate 500-node networks of various sparsity levels (200 trials for each case) in the presence
of 1% noise intensity for t ∈ [0, 20]. (c) The averaged accuracy rates of ICON applied to estimate 500-node networks
(1.5% sparsity) in the presence of different noise intensity ratios (200 trials for each size of networks) for t ∈ [0, 20].
The accuracy of recovering the connections (blue diamonds) and the coupling strength (red pentagrams) are both
displayed.

connectivity topology (nodes with stronger connectivity are plotted in the center of the graph,
and nodes with weaker connectivity are plotted off the center), which agrees with that of the true
(synthetic) network shown in Figure 3(c).

3 Robustness, Reliability, and Efficiency of ICON
In this section, we apply ICON to infer topology of synthetic networks in different sizes with different
noise intensities or sparsity levels. We use these estimation results to illustrate the reliability and
robustness of ICON through a statistical hypothesis test.

3.1 Robustness with respect to Network Properties
Here, we demonstrate the robustness of ICON to some essential network properties, including the
size, noise intensity, and sparsity. Figure S4(a) displays the averaged accuracy rates of ICON
(in terms of recovering the coupling strength or the number of connections) applied to estimate
networks of different sizes (200 trials for each size of networks) with the same sparsity (1.5%)
and noise intensity (1%). These networks were synthesized in the same way as those generated
in Figure S2. It is shown that the performance of the estimation remains excellent with the
increase of the network size (88% averaged accuracy over 200 trials for estimating networks of
8000 oscillators). Similar performance analysis of ICON was conducted and shown in Figure S4(b)
and S4(c) with respect to different sparsity levels (network size = 500; noise intensity = 1%) and
noise intensity ratios (network size = 500; sparsity = 1.5%), respectively. While the accuracy of
topology estimation was slightly degraded with the increase of the sparsity and noise intensity of
the network, the ICON technique was demonstrated to be sufficiently reliable and robust.

3.2 Reliability Analysis by Hypothesis Test
In addition to the validation through various numerical experiments presented in Section 3.1, the
reliability of ICON can be further illustrated statistically through a hypothesis test. To achieve
this, we created two independent networks of 400 nodes, each of which is densely connected, and
then considered the network of 800 nodes composed of these two subnetworks of 400 nodes (see
Figure S5(a)). The distributions of the coupling strength of estimated connections within each
of and between the two 400-node subnetworks, shown in Figure S5(a), were obtained based on
the estimation result by ICON, which are plotted in Figure S5(b). Based on these distributions,
we obtained the Receiver Operating Characteristic (ROC) curves for testing whether a connection
is within one of the two subnetworks (true positive) or not based on its strength. The ROC
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Figure S5: (a) The topology of the synthetic network constituted by two 400-node densely-connected networks.
(b) The distributions of the estimated coupling strength of connections within each of and between the two 400-node
subnetworks shown in (a). (c) The receiver operating characteristic (ROC) curves for testing whether a connection
is within one of the two subnetworks (true positive) of size 100, 200, and 400, based on its coupling strength.

curves plotted in Figure S5(c) are for networks of different sizes, where we observe high sensitivity
(probability of detection) of the estimation results. This hypothesis test demonstrates the reliability
of the ICON technique. Note that it is expected and reasonable to observe slight declination in the
sensitivity with the increase of the network size.

3.3 Computational Efficiency and Time Complexity of ICON
The ICON technique is computationally efficient owing to the linear formulation and its parallel
structure as presented in (5). Here, we illustrate the computational efficiency of ICON by using
the numerical experiments for estimating topology of the synthetic networks in different sizes and
sparsity levels created in Section 3.1. Figure S6(a) and S6(b) show the averaged running time per
agent over 200 trials for each experiment (circled) with respect to the change in the network size
and sparsity, respectively. In these figures, we observe sublinear time complexity of ICON in both
cases.
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Figure S6: (a) The averaged one-agent running time over 200 trials for each experiment (circled) on estimating
networks (created in Section 3.1, Figure 4(a)) of different sizes, where the sparsity of the networks is set to be 1.5%,
the noise intensity is 1%, and the time horizon is t ∈ [0, 20]. (b) The averaged running time over 200 trials for each
experiment (circled) on estimating 100-node networks (created in Section 3.1, Figure 4(b)) of different sparsity levels
in the presence of additive white noise of 1% intensity using parallel computing, where the time-horizon is t ∈ [0, 20].

4 Social Synchronization in Groups of Mice
Figure S7 illustrates the estimated network topology for 7 different quintets of mice using ICON. The
synchronization behavior of each group of mice can then be observed by evolving these estimated
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social networks with time. The distinct colored nodes in the figure represent five different mice in
each quintet and the edges represent the coupling (solid lines for strong connections and dashed lines
for weak connections with thickness denoting the coupling strength). The networks illustrated in
D, E, F, and G, form connected graphs over the period of cohabitation, which imply the inclination
of synchrony, ρ, as also reflected by the calculated sync indices (Kuramoto order [25, 35]), and
the dominant eigenvalues λ2 of the Laplacian matrix of each of these connected networks. The
increasing and stabilizing trend of ρ and the values of λ2 (0.0010, 0.0030, 0.0304, and 0.0734
for the networks D to G, respectively) indicate that they will be synchronized (in the order of
synchronizability) after 68 days of cohabitation; while the oscillatory behavior of ρ and the negligible
values of λ2 conclude asynchrony for the other three cases A, B, and C. Such predictions of social
synchronization from data using ICON match perfectly with the experimental observations [36,37].

Figure S7: Social Networks of Laboratory Mice. Subfigures A to G show the estimated network topology of 7
quintets of laboratory mice using ICON based on the measurement data of their body temperature. These results are
aligned in the ascending order with respect to the inclination of synchrony based on the trend of the sync indices and
the values of the dominant eigenvalues of the Laplacian matrix of the networks. Networks D to G are predicted to
be synchronous, while A to C are not after the period of cohabitation, which match perfectly with the experimental
observations.

The estimation was based on 68 days of temperature recording, which was set by the Ibutton’s
maximum capacity at the 15-min sampling rate (a trade-off we made between frequency of sampling
and length of recording). The table below shows the λ2 and σ values plotted in Figure 4E in the
manuscript:

λ2 0.0000 0.0000 0.0001 0.0002 0.0003 0.0306 0.0734
σ 0.3560 0.5036 0.5036 0.5609 0.6737 0.9171 0.9436

The Pearson correlation coefficient between these two variables is given by

rPearson =

∑

(σ −Mσ)(λ2 −Mλ2)
√

(

∑

(σ −Mσ)2
)(

∑

(λ2 −Mλ2)
2
)

= 0.8301.

Also, from the table above, we obtain the ranks of the values of λ2 and σ as follows:
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rλ2 1.5 1.5 3 4 5 6 7
rσ 1 2.5 2.5 4 5 6 7

with which the Spearman correlation coefficient can be computed, given by

rSpearman =

∑

(rσ −Mrσ)(rλ2 −Mrλ2
)

√

(

∑

(rσ −Mrσ)
2
)(

∑

(rλ2 −Mrλ2
)2
)

= 0.9727,

and the two-tailed value is 0.00023. This simple statistical analysis suggests that λ2 and σ are
monotonically correlated based on the given small sample size (7 data points from the experiments).

5 Circadian Neurons
Figure S8 is the graph representation of the estimated SCN network of 541 cells, in which there are
173,627 connections. In this experiment, the raw data for the Per2::Luc SCN recordings were the
complete measurement following TTX treatment.

Figure S8: Graph representation of the estimated SCN network.
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